Effect of the combination of bumetanide plus chlorthalidone on hypertension and volume overload in patients with chronic kidney disease stage 4-5 KDIGO without renal replacement therapy: a double-blind randomized HEBE-CKD trial

Fabio Solis-Jimenez, Lucia Monserrat Perez-Navarro, Ricardo Cabrera-Barron, Jesus Antonio Chida-Romero, Geovana Martin-Alemañy, Edgar Dehesa-López, Magdalena Madero, Rafael Valdez-Ortiz, Fabio Solis-Jimenez, Lucia Monserrat Perez-Navarro, Ricardo Cabrera-Barron, Jesus Antonio Chida-Romero, Geovana Martin-Alemañy, Edgar Dehesa-López, Magdalena Madero, Rafael Valdez-Ortiz

Abstract

Background: The co-administration of loop diuretics with thiazide diuretics is a therapeutic strategy in patients with hypertension and volume overload. The aim of this study was to assess the efficacy and safety of treatment with bumetanide plus chlorthalidone in patients with chronic kidney disease (CKD) stage 4-5 KDIGO.

Methods: A double-blind randomized study was conducted. Patients were randomized into two groups: bumetanide plus chlorthalidone group (intervention) and the bumetanide plus placebo group (control) to evaluate differences in TBW, ECW and ECW/TBW between baseline and 30 Days of follow-up. Volume overload was defined as 'bioelectrical impedance analysis as fluid volume above the 90th percentile of a presumed healthy reference population. The study's registration number was NCT03923933.

Results: Thirty-two patients with a mean age of 57.2 ± 9.34 years and a median estimated glomerular filtration rate (eGFR) of 16.7 ml/min/1.73 m2 (2.2-29) were included. There was decreased volume overload in the liters of total body water (TBW) on Day 7 (intervention: -2.5 vs. control: -0.59, p = 0.003) and Day 30 (intervention: -5.3 vs. control: -0.07, p = 0.016); and in liters of extracellular water (ECW) on Day 7 (intervention: -1.58 vs. control: -0.43, p < 0.001) and Day 30 (intervention: -3.05 vs. control: -0.15, p < 0.000). There was also a decrease in systolic blood pressure on Day 7 (intervention: -18 vs. control: -7.5, p = 0.073) and Day 30 (intervention: -26.1 vs. control: -10, p = 0.028) and in diastolic blood pressure on Day 7 (intervention: -8.5 vs. control: -2.25, p = 0.059) and Day 30 (intervention: -13.5 vs. control: -3.4, p = 0.018).

Conclusion: In CKD stage 4-5 KDIGO without renal replacement therapy, bumetanide in combination with chlorthalidone is more effective in treating volume overload and hypertension than bumetanide with placebo.

Keywords: Bumetanide; CKD stage 4–5 KDIGO; Chlorthalidone.

Conflict of interest statement

None of the authors have conflicts of interest to carry out this study.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT 2010 flow diagram
Fig. 2
Fig. 2
Total body water analysis by bioimpedance vectors. The bumetanide plus placebo group is shown in blue (control group), and the bumetanide plus chlorthalidone group is shown in red (intervention group). A There was decreased volume overload in liters of TBW on Day 7 [intervention: -2.5 (95% CI, -3.6 to -1.5) vs. control: -0.59 (95% CI, -1.8 to 0.67), p = 0.003] and Day 30 [intervention: -5.3 (95% CI, -8.6 to -1.95) vs. control: -0.07 (95% CI, -1.02 to 0.87) p = 0.016]. B There was a decrease in ECW on Day 7 [intervention: -1.58 (95% CI, -1.95 to -1.2) vs. control: -0.43 (95% CI, -1.2 to 0.31) p < 0.001] and Day 30 [intervention: -3.05 (95% CI, -4.47 to –1.62) vs. control: -0.15 (95% CI, -0.8 to -0.5), p < 0.000]. C There was a reduction in the ECW/TBW ratio on Day 7 [intervention: -1.29 (95% CI, -2.32 to -0.25) vs. control: -0.72 (95% CI, -1.64 to 0.20), p = 0.384] and Day 30 [intervention: -4.38 (95% CI, -7.8 to -0.92) vs. control: -0.24 (95% CI, -1 to 0.52), p = 0.018]
Fig. 3
Fig. 3
Effects on blood pressure. The bumetanide plus placebo group is shown in blue (control group), and the bumetanide plus chlorthalidone group is shown in red (intervention group). A There was a decrease in SBP on Day 7 [intervention: -18 (95% CI, -25.2 to -10.5) vs. control: -7.5 (95% CI, -17 to 2), p = 0.073] and Day 30 [intervention: -26.1, 95% CI, -34.3 to -18.1, vs. control: -10 95% CI, -34.3 to -18.1; p = 0.028]. B There was a reduction in DBP on Day 7 (intervention: -8.5, 95% CI, -13.4 to -3.5, vs. control: -2.25, 95% CI, -6.8 to 2.3, p = 0.059) and Day 30 [intervention: -13.5 (95% CI, -19.2 to -7.7) vs. control: -3.4 (95% CI, -9.7 to -2.9), p = 0.018]. C There was a decrease in MAP on Day 7 (intervention: -11.7, 95% CI, -16.4 to -7.1, vs. control: -3.9, 95% CI, -9.4 to 1.5, p = 0.029) and Day 30 (intervention: -18.1, 95% CI, -22.8 to -13.4, vs. control: -5.4 95% CI, -13 to 2.2, p = 0.005)
Fig. 4
Fig. 4
Effect on fractional sodium excretion (FENa) and brain natriuretic peptide (BNP). The bumetanide plus placebo group is shown in blue (control group), and the bumetanide plus chlorthalidone group is shown in red (intervention group). A Analysis of FENA revealed that during the first week after the intervention, the bumetanide plus chlorthalidone group showed a decrease in FENA from 0.78 (95% CI, 0.35 to 1.22) to 0.59 (95% CI, -0.62 to 1.81) without intragroup statistical significance (p = 0.104), while the bumetanide plus placebo group had a change from baseline to day 30 of -0.34 (95% CI, -2.2 to -1.51; p = 0.605). B At the start of follow-up, the bumetanide plus placebo group showed an increase in BNP on Day 7 of 33.6 (95% CI, -61.5 to 128.8 pg/dL) and on Day 30 of 213.5 (95% CI, -143.4 to -570.5 pg/dL) without statistical significance (p = 0.175). The intervention group showed a decrease on Day 7 of -39.3 (95% CI, 19.3 to -25 pg/dL) and on Day 30 of -0.64 (95% CI, -78.7 to 77.4 pg/dL) without a significant difference (p = 0.221). Similarly, intergroup analysis did not reveal any significant differences
Fig. 5
Fig. 5
Effect of treatment on renal function. The bumetanide plus placebo group is shown in blue (control group), and the bumetanide plus chlorthalidone group is shown in red (intervention group). A Regarding serum creatinine, the intervention group showed a significant increase at Day 7 (p = 0.001) and Day 30 (p < 0.000). B Regarding GFR, a significant decrease in the intervention group was observed at Day 7 (p = 0.004) and Day 30 (p = 0.003). C Serum urea levels in both groups showed significant increases when comparing baseline versus Days 7 and 30 (control group, p = 0.02 and p < 0.000, respectively, and intervention group, p = 0.008 and p < 0.000, respectively)

References

    1. Pugh D, Gallacher PJ, Dhaun N. Management of hypertension in chronic kidney disease. Drugs. 2019;79(4):365–379. doi: 10.1007/s40265-019-1064-1.
    1. Phan O, Burnier M, Wuerzner G. Hypertension in chronic kidney disease - role of arterial calcification and impact on treatment. Eur Cardiol. 2014;9(2):115–119. doi: 10.15420/ecr.2014.9.2.115.
    1. Bowman BN, Nawarskas JJ, Anderson JR. Treating diuretic resistance: an overview. Cardiol Rev. 2016;24(5):256–260. doi: 10.1097/CRD.0000000000000116.
    1. Cox ZL. Testani JM Loop diuretic resistance complicating acute heart failure. Heart Fail Rev. 2020;25(1):133–145. doi: 10.1007/s10741-019-09851-9.
    1. Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol. 2010;56(19):1527–1534. doi: 10.1016/j.jacc.2010.06.034.
    1. Hung SC, Lai YS, Kuo KL, Tarng DC. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies. J Am Heart Assoc. 2015;4(5):e001918. doi: 10.1161/JAHA.115.001918.
    1. Sinha AD, Agarwal R. Thiazides in advanced chronic kidney disease: time for a randomized Bumetanide plus placeboled trial. Curr Opin Cardiol. 2015;30(4):366–372. doi: 10.1097/HCO.0000000000000188.
    1. Dussol B, Moussi-Frances J, Morange S, Somma-Delpero C, Mundler O, Berland Y. A pilot study comparing furosemide and hydrochlorothiazide in patients with hypertension and stage 4 or 5 chronic kidney disease. J Clin Hypertens (Greenwich) 2012;14(1):32–37. doi: 10.1111/j.1751-7176.2011.00564.x.
    1. Agarwal R, Sinha AD, Cramer AE, et al. Chlorthalidone for hypertension in advanced chronic kidney disease. N Engl J Med. 2021;385(27):2507–2519. doi: 10.1056/NEJMoa2110730.
    1. Allison ME, Lindsay MK, Kennedy AC. Oral bumetanide in chronic renal failure. Postgrad Med J. 1975;51(Suppl 6):47–50.
    1. Marcantonio LA, Auld WH, Murdoch WR, et al. The pharmacokinetics and pharmacodynamics of the diuretic bumetanide in hepatic and renal disease. J Clin Pharmacol. 1983;15(2):245–252. doi: 10.1111/j.1365-2125.1983.tb01493.x).
    1. Riess W, Dubach UC, Burckhardt D, et al. Pharmacokinetic studies with chlorthalidone (hygroton®) in man. Eur J Clin Pharmacol. 1977;12:375–382. doi: 10.1007/BF00562454).
    1. Mulley BA, Parr GD, Rye RM. Pharmacokinetics of chlorthalidone. Eur J Clin Pharmacol. 1980;17:203–207. doi: 10.1007/BF00561901.
    1. Reubi FC, Cottier PT. Effects of reduced glomerular filtration rate on responsiveness to chlorothiazide and mercurial diuretics. Circulation. 1961;23:200–210. doi: 10.1161/01.CIR.23.2.200.
    1. Hoshino T, Ookawara S, Miyazawa H, et al. Renoprotective effects of thiazides combined with loop diuretics in patients with type 2 diabetic kidney disease. Clin Exp Nephrol. 2015;19(2):247–53. doi: 10.1007/s10157-014-0981-2.
    1. Fliser D, Schröter M, Neubeck M, Ritz E. Coadministration of thiazides increases the efficacy of loop diuretics even in patients with advanced renal failure. Kidney Int. 1994;46(2):482–488. doi: 10.1038/ki.1994.298.
    1. Flythe JE, Bansal N. The relationship of volume overload an its control to hypertension in hemodialysis patients. Semin Dial. 2019;32(6):500–506. doi: 10.1111/sdi.12838.
    1. Agarwal R. Volume-associated ambulatory blood pressure patterns in hemodialysis patients. Hypertension. 2009;54:241–247. doi: 10.1161/HYPERTENSIONAHA.109.136366.
    1. Hung SC, Lin YP, Huang HL, Pu HF, Tarng DC. Aldosterone and mortality in hemodialysis patients: role of volume overload. PLoS ONE. 2013;8(2):e57511. doi: 10.1371/journal.pone.0057511.
    1. Anisman SD, Erickson SB, Morden NE. How to prescribe loop diuretics in oedema. BMJ. 2019;364:l359. doi: 10.1136/bmj.l359.
    1. Ellison DH, Felker GM. Diuretic Treatment in Heart Failure. N Engl J Med. 2018;378(7):684–685.
    1. Dussol B, Moussi-Frances J, Morange S, Somma-Delpero C, Mundler O, Berland Y. A randomized trial of furosemide vs hydrochlorothiazide in patients with chronic renal failure and hypertension. Nephrol Dial Transplant. 2005;20(2):349–353. doi: 10.1093/ndt/gfh650.
    1. Loon NR, Wilcox CS, Unwin RJ. Mechanism of impaired natriuretic response to furosemide during prolonged therapy. Kidney Int. 1989;36(4):682–689. doi: 10.1038/ki.1989.246.
    1. Peterzan MA, Hardy R, Chaturvedi N, Hughes AD. Meta-analysis of dose-response relationships for hydrochlorothiazide, chlorthalidone, and bendroflumethiazide on blood pressure, serum potassium, and urate. Hypertension. 2012;59(6):1104–1109. doi: 10.1161/HYPERTENSIONAHA.111.190637.
    1. Dineva S, Uzunova K, Pavlova V, Filipova E, Kalinov K, Vekov T. Comparative efficacy and safety of chlorthalidone and hydrochlorothiazide-meta-analysis. J Hum Hypertens. 2019;33(11):766–774. doi: 10.1038/s41371-019-0255-2.
    1. Ernst ME, Neaton JD, Grimm RH, Jr, Collins G, Thomas W, Soliman EZ, et al. Long-term effects of chlorthalidone versus hydrochlorothiazide on electrocardiographic left ventricular hypertrophy in the multiple risk factor intervention trial. Hypertension. 2011;58(6):1001–7. doi: 10.1161/HYPERTENSIONAHA.111.181248.
    1. Dorsch MP, Gillespie BW, Erickson SR, Bleske BE, Weder AB. Chlorthalidone reduces cardiovascular events compared with hydrochlorothiazide: a retrospective cohort analysis. Hypertension. 2011;57(4):689–694. doi: 10.1161/HYPERTENSIONAHA.110.161505.
    1. Beretta-Piccoli C, Weidmann P, De Chatel R, Reubi F. Hypertension associated with early stage kidney disease. complementary roles of circulating renin, the body sodium/volume state and duration of hypertension. Am J Med. 1976;61(5):739–47. doi: 10.1016/0002-9343(76)90155-8.
    1. Carter BL. Guidelines for use of diuretics: a view from a member of JNC 7. J Clin Hypertens (Greenwich). 2012;14(5):273–276. doi: 10.1111/j.1751-7176.2012.00621.x.
    1. Salvetti A, Ghiadoni L. Thiazide diuretics in the treatment of hypertension: an update. J Am Soc Nephrol. 2006;17(4 suppl 2):S25–S29. doi: 10.1681/ASN.2005121329).
    1. Bennett WM, McDonald WJ, Kuehnel E, Hartnett MN, Porter GA. Do diuretics have antihypertensive properties independent of natriuresis? Clin Pharmacol Ther. 1977;22(5 Pt 1):499–504. doi: 10.1002/cpt1977225part1499.
    1. Teruel JL, Burguera Vion V, Gomis Couto A, Rivera Gorrin M, Fernandez-Lucas M, Rodriguez Mendiola N, et al. Choosing conservative therapy in chronic kidney disease. Nefrologia. 2015;35(3):273–279. doi: 10.1016/j.nefro.2015.05.005.
    1. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol. 2006;47(4):742–748. doi: 10.1016/j.jacc.2005.11.030.
    1. McCullough PA, Duc P, Omland T, McCord J, Nowak RM, Hollander JE, et al. B-type natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study. Am J Kidney Dis. 2003;41(3):571–579. doi: 10.1053/ajkd.2003.50118.
    1. Park CS, Lee SE, Cho HJ, Kim YJ, Kang HJ, Oh BH, et al. Body fluid status assessment by bio-impedance analysis in patients presenting to the emergency department with dyspnea. Korean J Intern Med. 2018;33(5):911–921. doi: 10.3904/kjim.2016.358.
    1. Davies SJ, Davenport A. The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int. 2014;86(3):489–496. doi: 10.1038/ki.2014.207.
    1. Ohashi Y, Saito A, Yamazaki K, Tai R, Matsukiyo T, Aikawa A, et al. Brain Natriuretic Peptide and Body Fluid Composition in Patients with Chronic Kidney Disease: A Cross-Sectional Study to Evaluate the Relationship between Volume Overload and Malnutrition. Cardiorenal Med. 2016;6(4):337–346. doi: 10.1159/000447024.
    1. Burke M, Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol. 2014;12(6):845–858. doi: 10.2174/15701611113116660149.
    1. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371(1):58–66. doi: 10.1056/NEJMra1214243.
    1. Hsu RK, Hsu CY. The Role of Acute Kidney Injury in Chronic Kidney Disease. Semin Nephrol. 2016;36(4):283–292. doi: 10.1016/j.semnephrol.2016.05.005.
    1. Steele TH, Oppenheimer S. Factors affecting urate excretion following diuretic administration in man. Am J Med. 1969;47(4):564–574. doi: 10.1016/0002-9343(69)90187-9.
    1. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369(9557):201–207. doi: 10.1016/S0140-6736(07)60108-1.
    1. Garofalo C, Borrelli S, Provenzano M, De Stefano T, Vita C, Chiodini P, et al. Dietary Salt Restriction in Chronic Kidney Disease: A Meta-Analysis of Randomized Clinical Trials. Nutrients. 2018;10(6):732. doi: 10.3390/nu10060732.

Source: PubMed

3
Abonneren