Prognostic and predictive value of androgen receptor expression in postmenopausal women with estrogen receptor-positive breast cancer: results from the Breast International Group Trial 1-98

Kevin H Kensler, Meredith M Regan, Yujing J Heng, Gabrielle M Baker, Michael E Pyle, Stuart J Schnitt, Aditi Hazra, Roswitha Kammler, Beat Thürlimann, Marco Colleoni, Giuseppe Viale, Myles Brown, Rulla M Tamimi, Kevin H Kensler, Meredith M Regan, Yujing J Heng, Gabrielle M Baker, Michael E Pyle, Stuart J Schnitt, Aditi Hazra, Roswitha Kammler, Beat Thürlimann, Marco Colleoni, Giuseppe Viale, Myles Brown, Rulla M Tamimi

Abstract

Background: The androgen receptor (AR) is an emerging prognostic marker and therapeutic target in breast cancer. AR is expressed in 60-80% of breast cancers, with higher prevalence among estrogen receptor-positive (ER+) tumors. Androgen treatment inhibits ER signaling in ER+/AR+ breast cancer cell lines, and AR expression is associated with improved survival for this subtype in epidemiologic studies. However, whether AR expression modifies the efficacy of selective ER modulators or aromatase inhibitors for ER+ cancers remains unclear.

Methods: We evaluated the prognostic and predictive value of AR expression among 3021 postmenopausal ER+ breast cancer patients in the Breast International Group (BIG) trial 1-98. The BIG 1-98 study was a four-armed, double-blind, phase III randomized clinical trial that compared 5 years of tamoxifen or letrozole monotherapy, or sequences of 2 years and 3 years treatment with one drug and then the other. AR expression was measured by immunohistochemistry and the percentage of AR-positive nuclei was quantified. The association between AR expression and prognosis was evaluated using Cox proportional hazards models. Continuous AR-by-treatment interactions were assessed using Subpopulation Treatment Effect Pattern Plots (STEPP).

Results: Eighty-two percent of patients had AR+ (≥ 1%) tumors. Patients with AR+ cancers were more likely to have smaller, lower-grade tumors, with higher expression of ER and PR. AR expression was not associated with breast cancer-free interval (BCFI) (415 events) over a median 8.0 years of follow-up (p = 0.12, log-rank test). In multivariable-adjusted models, AR expression was not associated with BCFI (HR = 1.07, 95% CI 0.83-1.36, p = 0.60). The letrozole versus tamoxifen monotherapy treatment effect did not significantly differ for AR+ tumors (HR = 0.63, 95% CI 0.44-0.75, p = 0.003) and AR- tumors (HR = 0.39, 95% CI 0.21-0.72, p = 0.002) (p-heterogeneity = 0.16). STEPP analysis also suggested no heterogeneity of the treatment effect across the continuum of AR expression.

Conclusions: AR expression was not associated with prognosis, nor was there heterogeneity of the letrozole versus tamoxifen treatment effect by AR expression. These findings suggest that AR expression may not be an informative biomarker for the selection of adjuvant endocrine therapy for postmenopausal women with ER+ breast cancers.

Trial registration: ClinicalTrials.gov , NCT00004205, Registered 27 January 2003-Retrospectively registered, https://ichgcp.net/clinical-trials-registry/NCT00004205 .

Keywords: Androgen receptor; BIG 1–98; Breast cancer; Letrozole; Tamoxifen.

Conflict of interest statement

Ethics approval and consent to participate

All patients provided informed written consent and all study protocols were approved by ethics committees at each BIG 1–98 study center and by relevant health authorities.

Consent for publication

Not applicable.

Competing interests

MMR has received research funding for IBCSG clinical trials from Novartis, Pfizer, Ipsen, Merck, Ferring, and Pierre Fabre and research funding from Novartis, Veridex, OncoGenex, Bayer, and Bristol-Myers Squibb, and serves in a consulting or advisory role for Ipsen and Bristol-Myers Squibb. MC receives an honorarium from Novartis and is a consultant for Pierre Fabre, Pfizer, OBI Pharma, Puma Biotechnology, Celldex, and AstraZeneca. MB receives sponsored research support from and has been a consultant to Novartis. MB has served on the scientific advisory board of Gtx, Inc. and currently serves on the scientific advisory board of Kronos Bio.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow diagram of participant inclusion
Fig. 2
Fig. 2
Kaplan-Meier estimate of breast cancer-free interval by tumor AR expression. AR expression is defined as ≥ 1% positive, P value from log-rank test is 0.12
Fig. 3
Fig. 3
Kaplan-Meier estimate of breast cancer-free interval by cross-classified AR expression and treatment in monotherapy population. AR expression is defined as ≥ 1% positive,

Fig. 4

Subpopulation Treatment Effect Patten Plot…

Fig. 4

Subpopulation Treatment Effect Patten Plot (STEPP) analysis of the letrozole versus tamoxifen treatment…

Fig. 4
Subpopulation Treatment Effect Patten Plot (STEPP) analysis of the letrozole versus tamoxifen treatment effect. Treatment effect is defined as the 5-year BCFI in the monotherapy population (n = 1753). Plots show treatment effects in subpopulations denoted by median AR expression on the x-axis. Treatment effects are shown as a 5-year cumulative incidences (%), b 5-year cumulative incidence differences (95% CI) [Let. – Tam.], and c hazard ratios (95% CI) [Let.:Tam.]
Fig. 4
Fig. 4
Subpopulation Treatment Effect Patten Plot (STEPP) analysis of the letrozole versus tamoxifen treatment effect. Treatment effect is defined as the 5-year BCFI in the monotherapy population (n = 1753). Plots show treatment effects in subpopulations denoted by median AR expression on the x-axis. Treatment effects are shown as a 5-year cumulative incidences (%), b 5-year cumulative incidence differences (95% CI) [Let. – Tam.], and c hazard ratios (95% CI) [Let.:Tam.]

References

    1. Burstein HJ, Prestrud AA, Seidenfeld J, Anderson H, Buchholz TA, Davidson NE, et al. American Society of Clinical Oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Clin Oncol. 2010;28(23):3784–96.
    1. Early Breast Cancer Trialists’ Collaborative Group Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–1717.
    1. Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol. 2011;24(7):924–931.
    1. Dimitrakakis C, Zhou J, Bondy CA. Androgens and mammary growth and neoplasia. Fertil Steril. 2002;77(Suppl 4):S26–S33.
    1. Gonzalez LO, Corte MD, Vazquez J, Junquera S, Sanchez R, Alvarez AC, et al. Androgen receptor expresion in breast cancer: relationship with clinicopathological characteristics of the tumors, prognosis, and expression of metalloproteases and their inhibitors. BMC Cancer. 2008;8:149.
    1. Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM, Bhargava R. Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol. 2010;23(2):205–212.
    1. Ricciardelli C, Bianco-Miotto T, Jindal S, Butler LM, Leung S, McNeil CM, et al. The magnitude of androgen receptor positivity in breast cancer is critical for reliable prediction of disease outcome. Clin Cancer Res. 2018;24(10):2328–2341.
    1. Majumder A, Singh M, Tyagi SC. Post-menopausal breast cancer: from estrogen to androgen receptor. Oncotarget. 2017;8(60):102739–102758.
    1. Hickey TE, Robinson JL, Carroll JS, Tilley WD. Minireview: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol. 2012;26(8):1252–1267.
    1. Lim E, Ni M, Hazra A, Tamimi R, Brown M. Elucidating the role of androgen receptor in breast cancer. Clin Investig. 2012;2(10):1003–1011.
    1. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006;25(28):3994–4008.
    1. Bozovic-Spasojevic I, Zardavas D, Brohee S, Ameye L, Fumagalli D, Ades F, et al. The prognostic role of androgen receptor in patients with early-stage breast cancer: a meta-analysis of clinical and gene expression data. Clin Cancer Res. 2017;23(11):2702–2712.
    1. Peters AA, Buchanan G, Ricciardelli C, Bianco-Miotto T, Centenera MM, Harris JM, et al. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res. 2009;69(15):6131–6140.
    1. Elebro K, Bendahl PO, Jernstrom H, Borgquist S. Androgen receptor expression and breast cancer mortality in a population-based prospective cohort. Breast Cancer Res Treat. 2017;165(3):645–57.
    1. Giobbie-Hurder A, Price KN, Gelber RD. Design, conduct, and analyses of Breast International Group (BIG) 1–98: a randomized, double-blind, phase-III study comparing letrozole and tamoxifen as adjuvant endocrine therapy for postmenopausal women with receptor-positive, early breast cancer. Clin Trials. 2009;6(3):272–287.
    1. Thurlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353(26):2747–2757.
    1. Regan MM, Neven P, Giobbie-Hurder A, Goldhirsch A, Ejlertsen B, Mauriac L, et al. Assessment of letrozole and tamoxifen alone and in sequence for postmenopausal women with steroid hormone receptor-positive breast cancer: the BIG 1-98 randomised clinical trial at 8.1 years median follow-up. Lancet Oncol. 2011;12(12):1101–1108.
    1. Viale G, Giobbie-Hurder A, Regan MM, Coates AS, Mastropasqua MG, Dell'Orto P, et al. Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1-98 comparing adjuvant tamoxifen with letrozole. J Clin Oncol. 2008;26(34):5569–75.
    1. Viale G, Regan MM, Maiorano E, Mastropasqua MG, Dell'Orto P, Rasmussen BB, et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1-98. J Clin Oncol. 2007;25(25):3846–3852.
    1. Rasmussen BB, Regan MM, Lykkesfeldt AE, Dell'Orto P, Del Curto B, Henriksen KL, et al. Adjuvant letrozole versus tamoxifen according to centrally-assessed ERBB2 status for postmenopausal women with endocrine-responsive early breast cancer: supplementary results from the BIG 1-98 randomised trial. Lancet Oncol. 2008;9(1):23–28.
    1. Park S, Park HS, Koo JS, Yang WI, Kim SI, Park BW. Higher expression of androgen receptor is a significant predictor for better endocrine-responsiveness in estrogen receptor-positive breast cancers. Breast Cancer Res Treat. 2012;133(1):311–320.
    1. Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D'Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7.
    1. Kennedy BJ. Fluoxymesterone therapy in advanced breast cancer. N Engl J Med. 1958;259(14):673–675.
    1. Goldenberg IS. Testosterone propionate therapy in breast cancer. Jama. 1964;188:1069–1072.
    1. Macedo LF, Guo Z, Tilghman SL, Sabnis GJ, Qiu Y, Brodie A. Role of androgens on MCF-7 breast cancer cell growth and on the inhibitory effect of letrozole. Cancer Res. 2006;66(15):7775–7782.
    1. Hudis CA, Barlow WE, Costantino JP, Gray RJ, Pritchard KI, Chapman JA, et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol. 2007;25(15):2127–2132.
    1. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med. 1989;8(5):551–561.
    1. Lazar AA, Cole BF, Bonetti M, Gelber RD. Evaluation of treatment-effect heterogeneity using biomarkers measured on a continuous scale: subpopulation treatment effect pattern plot. J Clin Oncol. 2010;28(29):4539–4544.
    1. Yip WK, Bonetti M, Cole BF, Barcella W, Wang XV, Lazar A, et al. Subpopulation Treatment Effect Pattern Plot (STEPP) analysis for continuous, binary, and count outcomes. Clin Trials. 2016;13(4):382–390.
    1. Schoenfeld DA. Sample-size formula for the proportional-hazards regression model. Biometrics. 1983;39(2):499–503.
    1. Schmoor C, Sauerbrei W, Schumacher M. Sample size considerations for the evaluation of prognostic factors in survival analysis. Stat Med. 2000;19(4):441–452.
    1. Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20(1):119–131.
    1. Hilborn E, Gacic J, Fornander T, Nordenskjold B, Stal O, Jansson A. Androgen receptor expression predicts beneficial tamoxifen response in oestrogen receptor-alpha-negative breast cancer. Br J Cancer. 2016;114(3):248–255.
    1. Elebro K, Borgquist S, Simonsson M, Markkula A, Jirstrom K, Ingvar C, et al. Combined androgen and estrogen receptor status in breast cancer: treatment prediction and prognosis in a population-based prospective cohort. Clin Cancer Res. 2015;21(16):3640–3650.
    1. Kensler KH, Poole EM, Heng YJ, Collins LC, Glass B, Beck AH, et al. Androgen receptor expression and breast cancer survival: results from the nurses’ health studies. J Natl Cancer Inst. 2018. Article is in press.
    1. Agoff SN, Swanson PE, Linden H, Hawes SE, Lawton TJ. Androgen receptor expression in estrogen receptor-negative breast cancer. Immunohistochemical, clinical, and prognostic associations. Am J Clin Pathol. 2003;120(5):725–731.
    1. Luo X, Shi YX, Li ZM, Jiang WQ. Expression and clinical significance of androgen receptor in triple negative breast cancer. Chin J Cancer. 2010;29(6):585–590.
    1. Loibl S, Muller BM, von Minckwitz G, Schwabe M, Roller M, Darb-Esfahani S, et al. Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;130(2):477–487.
    1. Gonzalez-Angulo AM, Stemke-Hale K, Palla SL, Carey M, Agarwal R, Meric-Berstam F, et al. Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res. 2009;15(7):2472–2478.
    1. Kono M, Fujii T, Lim B, Karuturi MS, Tripathy D, Ueno NT. Androgen receptor function and androgen receptor-targeted therapies in breast cancer: a review. JAMA Oncol. 2017;3(9):1266–1273.
    1. Vera-Badillo FE, Templeton AJ, de Gouveia P, Diaz-Padilla I, Bedard PL, Al-Mubarak M, et al. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(1):djt319.
    1. Qu Q, Mao Y, Fei XC, Shen KW. The impact of androgen receptor expression on breast cancer survival: a retrospective study and meta-analysis. PLoS One. 2013;8(12):e82650.
    1. Kim Y, Jae E, Yoon M. Influence of androgen receptor expression on the survival outcomes in breast cancer: a meta-analysis. J Breast Cancer. 2015;18(2):134–142.
    1. Szelei J, Jimenez J, Soto AM, Luizzi MF, Sonnenschein C. Androgen-induced inhibition of proliferation in human breast cancer MCF7 cells transfected with androgen receptor. Endocrinology. 1997;138(4):1406–1412.
    1. O'Shaughnessy J, Campone M, Brain E, Neven P, Hayes D, Bondarenko I, et al. Abiraterone acetate, exemestane or the combination in postmenopausal patients with estrogen receptor-positive metastatic breast cancer. Ann Oncology. 2016;27(1):106–113.
    1. Need EF, Selth LA, Harris TJ, Birrell SN, Tilley WD, Buchanan G. Research resource: interplay between the genomic and transcriptional networks of androgen receptor and estrogen receptor alpha in luminal breast cancer cells. Mol Endocrinol. 2012;26(11):1941–1952.
    1. Castellano I, Allia E, Accortanzo V, Vandone AM, Chiusa L, Arisio R, et al. Androgen receptor expression is a significant prognostic factor in estrogen receptor positive breast cancers. Breast Cancer Res Treat. 2010;124(3):607–617.
    1. De Amicis F, Thirugnansampanthan J, Cui Y, Selever J, Beyer A, Parra I, et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat. 2010;121(1):1–11.
    1. Ciupek A, Rechoum Y, Gu G, Gelsomino L, Beyer AR, Brusco L, et al. Androgen receptor promotes tamoxifen agonist activity by activation of EGFR in ERalpha-positive breast cancer. Breast Cancer Res Treat. 2015;154(2):225–237.
    1. Bronte G, Rocca A, Ravaioli S, Puccetti M, Tumedei MM, Scarpi E, et al. Androgen receptor in advanced breast cancer: is it useful to predict the efficacy of anti-estrogen therapy? BMC Cancer. 2018;18(1):348.
    1. Tokunaga E, Hisamatsu Y, Taketani K, Yamashita N, Akiyoshi S, Okada S, et al. Differential impact of the expression of the androgen receptor by age in estrogen receptor-positive breast cancer. Cancer medicine. 2013;2(6):763–773.
    1. Jiang HS, Kuang XY, Sun WL, Xu Y, Zheng YZ, Liu YR, et al. Androgen receptor expression predicts different clinical outcomes for breast cancer patients stratified by hormone receptor status. Oncotarget. 2016;7(27):41285–41293.

Source: PubMed

3
Abonneren