Update on the pathogenesis of vitiligo

Helena Zenedin Marchioro, Caio César Silva de Castro, Vinicius Medeiros Fava, Paula Hitomi Sakiyama, Gerson Dellatorre, Hélio Amante Miot, Helena Zenedin Marchioro, Caio César Silva de Castro, Vinicius Medeiros Fava, Paula Hitomi Sakiyama, Gerson Dellatorre, Hélio Amante Miot

Abstract

Vitiligo is a complex disease whose pathogenesis results from the interaction of genetic components, metabolic factors linked to cellular oxidative stress, melanocyte adhesion to the epithelium, and immunity (innate and adaptive), which culminate in aggression against melanocytes. In vitiligo, melanocytes are more sensitive to oxidative damage, leading to the increased expression of proinflammatory proteins such as HSP70. The lower expression of epithelial adhesion molecules, such as DDR1 and E-cadherin, facilitates damage to melanocytes and exposure of antigens that favor autoimmunity. Activation of the type 1-IFN pathway perpetuates the direct action of CD8+ cells against melanocytes, facilitated by regulatory T-cell dysfunction. The identification of several genes involved in these processes sets the stage for disease development and maintenance. However, the relationship of vitiligo with environmental factors, psychological stress, comorbidities, and the elements that define individual susceptibility to the disease are a challenge to the integration of theories related to its pathogenesis.

Keywords: Autoimmunity; Oxidative stress; Pigmentation; Vitiligo.

Copyright © 2022 Sociedade Brasileira de Dermatologia. Published by Elsevier España, S.L.U. All rights reserved.

Figures

Figure 1
Figure 1
Segmental vitiligo on the flank of a dark-skinned patient. Achromic macula, with zosteriform distribution; the periphery of the lesion shows a leukomelanoderma band, with several follicular repigmentation points – Source: authors’ file.
Figure 2
Figure 2
Active vitiligo. Histopathology: perivascular lymphocytic infiltrate, with epidermal aggression and basal layer vacuolar degeneration foci (Hematoxylin &eosin, ×40). Picture is a courtesy of Dr. Lismary Mosque.
Figure 3
Figure 3
Representation of Oxidative Stress (OS) and activation of innate immunity in vitiligo. The effects of ultraviolet radiation (UVR), phenolic compounds and trauma (Köbner) increase the production of reactive oxygen species (ROS). In parallel, genetic predisposition (such as mutations in the FOXO3A gene) lead to the inefficiency of antioxidant mechanisms, observed by an increase in the superoxide dismutase (SOD) enzyme, reduction in catalase (CAT) and glutathione (Glu), causing an imbalance in the redox status. OS also causes an accumulation of defective proteins in the endoplasmic reticulum, resulting in a phenomenon called the response to unfolded proteins (UPr), contributing to the process of autophagy leading to the production of proinflammatory interleukins (IL6 and IL8). The increased expression of TRPM2 (transient receptor potential cation channel subfamily M member 2), also induced by OS, promotes an influx of calcium into the melanocyte, culminating in its apoptosis. The OS promotes the release of DAMPs (damage-associated molecular patterns), especially HSP70, which initiate the innate response from the activation of dendritic cells (DC) and the participation of NK cells (natural killer) – Source: the authors.
Figure 4
Figure 4
Representation of Interleukin (IL)-15 transpresentation in keratinocytes induced by oxidative stress (OS) and the interaction of interferon gamma (IFNγ) with the Janus kinase/signal transducers and transcription activators (JAK/STAT) pathway. The OS promotes the transpresentation of I-15 in keratinocytes through the binding of IL-15 to the heterodimeric IL-15 receptor (IL15R) on memory CD8 + T lymphocytes, consisting of CD122 and CD132, and to the I-15α receptor (IL15Rα) on keratinocytes (CD215). This process potentiates the activation of memory CD8 + T Cells and the production of inflammatory cytokines, such as IFNy, via JAK/STAT signaling (JAK1-STAT3 and JAK3-STAT5). The IFNγ/STAT1/CXCL10 axis conducts the autoimmune destruction of melanocytes. IFNγ signals through the IFNγ receptor (IFNγR) to stimulate JAK1/JAK2 and activate STAT1. The activation induces the production of CXCL9 and CXCL10, which signals through the CXCR3 receptor for the recruitment of more autoreactive CD8+ T cells – Source: the authors.
Figure 5
Figure 5
Representation of alterations related to adaptive immunity in vitiligo. Melanocytes affected by oxidative stress (OS) trigger the activation of innate immunity through the secretion of exosomes, which contain damage-associated molecular patterns (DAMPs), especially heat shock protein 70 (HSP70). HSP70 stimulates the secretion of IFNα by dendritic cells in the initial phase of disease progression, which induces the production of chemokines CXCL9 and CXCL10 by keratinocytes and the recruitment of T-cells expressing the CXCR3 receptor. CXCL10 has an effector action, while CXCL9 acts on the global recruitment of autoreactive CD8+ T-cells. Effector CD8+ T-cells are responsible for the destruction of melanocytes through the production of interferon gamma (IFNγ), release of granzymes and perforins, facilitated by T- regulatory (Treg) cell dysfunction. CD8+ tissue-resident memory T cells (TRM) develop after the onset of the T-cell-mediated immune response and are implicated in disease maintenance, being retained in the tissue due to IL15 transpresentation by keratinocytes – Source: the authors.

References

    1. Zhang Y., Cai Y., Shi M., Jiang S., Cui S., Wu Y., et al. The prevalence of vitiligo: a meta-analysis. PLoS One. 2016;11
    1. Castro CCS, Miot HA. Prevalence of vitiligo in Brazil—a population survey. Pigment Cell Melanoma Res. 2018;31:448–450.
    1. Castro C.C.S., Nascimento L.L.M., Olandoski M., Mira M.T. A pattern of association between clinical form of vitiligo and disease-related variables in a Brazilian population. J Dermatol Sci. 2012;65:63–67.
    1. Boza J.C., Giongo N., Machado P., Horn R., Fabbrin A., Cestari T. Quality of life impairment in children and adults with vitiligo: a cross-sectional study based on dermatology-specific and disease-specific quality of life instruments. Dermatology. 2016;232:619–625.
    1. Dellatorre G., Antelo D.A.P., Bedrikow R.B., Cestari T.F., Follador I., Ramos D.G., et al. Consensus on the treatment of vitiligo — Brazilian Society of Dermatology. An Bras Dermatol. 2020;95:70–82.
    1. Arcos-Burgos M., Parodi E., Salgar M., Bedoya E., Builes J., Jaramillo D., et al. Vitiligo: complex segregation and linkage disequilibrium analyses with respect to microsatellite loci spanning the HLA. Hum Genet. 2002;110:334–342.
    1. Zhang X.J., Liu J.B., Gui J.P., Li M., Xiong Q.G., Wu H.B., et al. Characteristics of genetic epidemiology and genetic models for vitiligo. J Am Acad Dermatol. 2004;51:383–390.
    1. Spritz R.A., Gowan K., Bennett D.C., Fain P.R. Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet. 2004;74:188–191.
    1. Jin Y., Mailloux C.M., Gowan K., Riccardi S.L., LaBerge G., Bennett D.C., et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356:1216–1225.
    1. Jin Y., Birlea S.A., Fain P.R., Spritz R.A. Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol. 2007;127:2558–2562.
    1. Liang Y., Yang S., Zhou Y., Gui J., Ren Y., Chen J., et al. Evidence for two susceptibility loci on chromosomes 22q12 and 6p21-p22 in Chinese generalized vitiligo families. J Invest Dermatol. 2007;127:2552–2557.
    1. Birlea S.A., Jin Y., Bennett D.C., Herbstman D.M., Wallace M.R., McCormack W.T., et al. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol. 2011;131:371–381.
    1. Singh A., Sharma P., Kar H.K., Sharma V.K., Tembhre M.K., Gupta S., et al. HLA alleles and amino-acid signatures of the peptide-binding pockets of HLA molecules in vitiligo. J Invest Dermatol. 2012;132:124–134.
    1. Liu J.B., Li M., Chen H., Zhong S.Q., Yang S., Du WD, et al. Association of vitiligo with HLA-A2: a meta-analysis. J Eur Acad Dermatol Venereol. 2007;21:205–213.
    1. Yang C., Wu J., Zhang X., Wen L., Sun J., Cheng Y., et al. Fine-mapping analysis of the MHC region for vitiligo based on a new Han-MHC reference panel. Gene. 2018;648:76–81.
    1. Hayashi M., Jin Y., Yorgov D., Santorico S.A., Hagman J., Ferrara T.M., et al. Autoimmune vitiligo is associated with gain-of-function by a transcriptional regulator that elevates expression of HLA-A*02:01 in vivo. Proc Natl Acad Sci U S A. 2016;113:1357–1362.
    1. Chen J.J., Huang W., Gui J.P., Yang S., Zhou F.S., Xiong Q.G., et al. A novel linkage to generalized vitiligo on 4q13-q21 identified in a genome-wide linkage analysis of Chinese families. Am J Hum Genet. 2005;76:1057–1065.
    1. Alkhateeb A., Stetler G.L., Old W., Talbert J., Uhlhorn, Taylor M, et al. Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3-p32.2. Hum Mol Genet. 2002;11:661–667.
    1. Fain P.R., Gowan K., LaBerge G.S., Alkhteeb A., Stetler G.L., Talbert J., et al. A genome-wide screen for generalized vitiligo: confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci. Am J Hum Genet. 2003;72:1560–1564.
    1. Ramire L.D., Marcos E.V., Godoy D.A., de Souza-Santana F.C. Association of class I and II HLA alleles and haplotypes with susceptibility to vitiligo: a study of patients with vitiligo from southeast Brazil. Int J Dermatol. 2016;55:e347–55.
    1. Li Z., Ren J., Niu X., Xu Q., Wang X., Liu Y., et al. Meta-analysis of the association between vitiligo and human leukocyte antigen-A. Biomed Res Int. 2016;2016
    1. Jin Y., Andersen G., Yorgov D., Ferrara T.M., Ben S., Brownson K.M., et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48:1418–1424.
    1. Quan C., Ren Y.Q., Xiang L.H., Sun L.D., Xu A.E., Gao H., et al. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet. 2010;42:614–618.
    1. Jin Y., Birlea S.A., Fain P.R., Ferrara T.M., Bem S., Riccardi S.L., et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44:676–680.
    1. Tang X.F., Zhang Z., Hu D.Y., Xu A.E., Zhou H.S., Sun L.D., et al. Association analyses identify three susceptibility Loci for vitiligo in the Chinese Han population. J Invest Dermatol. 2013;133:403–410.
    1. Jin Y., Birlea S.A., Fain P.R., Gowan K., Riccardi S.L., Holland P.J., et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med. 2010;362:1686–1697.
    1. Chung SA, Criswell LA. PTPN22: its role in SLE and autoimmunity. Autoimmunity. 2007;40:582–590.
    1. Rivas M.A., Beaudoin M., Gardet A., Stevens C., Sharma Y., Zhang C.K., et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43:1066–1073.
    1. Pan F., Yu H., Dang E.V., Barbi J., Pan X., Grosso J.F., et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science. 2009;325:1142–1146.
    1. Roberts G.H.L., Paul S., Yorgov D., Santorico S.A., Spritz R.A. Family clustering of autoimmune vitiligo results principally from polygenic inheritance of common risk alleles. Am J Hum Genet. 2019;105:364–372.
    1. Tarlé R.G., Nascimento L.M., Mira M.T., Castro CCS. Vitiligo—part 1. An Bras Dermatol. 2014;89:461–470.
    1. Ricard A.S., Pain C., Daubos A., Ezzedine K., Lamrissi-Garcia I., Bibeyran A., et al. Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin. Exp Dermatol. 2012;21:411–416.
    1. Reichert-Faria A., Jung J.E., Moreschi Neto V., Castro C.C.S., Mira M.T., Noronha L. Reduced immunohistochemical expression of Discoidin Domain Receptor 1 (DDR1) in vitiligo skin. J Eur Acad Dermatol Venereol. 2013;27:1057–1059.
    1. Tarlé R.G., Castro C.C.S., do Nascimento L.M., Mira M.T. Polymorphism of the E-cadherin gene CDH1 is associated with susceptibility to vitiligo. Exp Dermatol. 2015;24:300–302.
    1. Schallreuter K.U., Gibbons N.C.J., Zothner C., Elwary S.M., Rokos H., Wood J.M. Butyrylcholinesterase is present in the human epidermis and is regulated by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun. 2006;349:931–938.
    1. Nascimento L.M., Castro C.C.S., Fava V.M., Werneck R.I., Mira M.T. Genetic and biochemical evidence implicates the butyrylcholinesterase gene BCHE in vitiligo pathogenesis. Exp Dermatol. 2015;24:976–978.
    1. Montes L.F., Abulafia J., Wilborn W.H., Hyde B.M., Montes C.M. Value of histopathology in vitiligo. Int J Dermatol. 2003;42:57–61.
    1. Kim Y.C., Kim Y.J., Kang H.Y., Sohn S., Lee E.S. Histopathologic features in vitiligo. Am J Dermatopathol. 2008;30:112–116.
    1. Xiong X.X., Ding G.Z., Zhao W.E., Li X., Ling Y.T., Sun Li, et al. Differences in the melanosome distribution within the epidermal melanin units and its association with the impairing background of leukoderma in vitiligo and halo nevi: a retrospective study. Arch Dermatol Res. 2017;309:323–333.
    1. Goldstein N.B., Koster M.I., Jones K.L., Gao B., Hoaglin L.G., Robinson S.E., et al. Repigmentation of human vitiligo skin by NBUVB is controlled by transcription of GLI1 and activation of the beta-catenin pathway in the hair follicle bulge stem cells. J Invest Dermatol. 2018;138:657–668.
    1. Gniadecka M., Wulf H.C., Mortensen N.N., Poulsen T. Photoprotection in vitiligo and normal skin. A quantitative assessment of the role of stratum corneum, viable epidermis and pigmentation. Acta Derm Venereol. 1996;76:429–432.
    1. Bhawan J, Bhutani LK. Keratinocyte damage in vitiligo. J Cutan Pathol. 1983;10:207–212.
    1. Kovacs D., Bastonini E., Ottaviani M., Cota C., Migliano E., Dell’Anna M.L., et al. Vitiligo skin: exploring the dermal compartment. J Invest Dermatol. 2018;138:394–404.
    1. Boukhedouni N., Martins C., Darrigade A.S., Drullion C., Rambert J., Barrault C., et al. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo. JCI Insight. 2020;5
    1. Rani S., Chauhan R., Parsad D., Kumar R. Effect of Dickkopf1 on the senescence of melanocytes: in vitro study. Arch Dermatol Res. 2018;310:343–350.
    1. Hirobe T., Enami H., Nakayama A. Elastin fiber but not collagen fiber is decreased dramatically in the dermis of vitiligo patients. Int J Dermatol. 2020;59:e369–e372.
    1. Denat L., Kadekaro A.L., Marrot L., Leachman S.A., Abdel-Malek Z.A. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol. 2014;134:1512–1518.
    1. Jenkins N.C., Grossman D. Role of melanin in melanocyte dysregulation of reactive oxygen species. Biomed Res Int. 2013;2013
    1. Jiang L., Guo Z., Kong Y., Liang J., Wang Y., Wang K. Protective effects of glutamine on human melanocyte oxidative stress model. Indian J Dermatol Venereol Leprol. 2018;84:269–274.
    1. Arck P.C., Overall R., Spatz K., Liezman C., Handjiski B., Kalpp B.E., et al. Towards a “free radical theory of graying”: melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J. 2006;20:1567–1569.
    1. Jimenez-Cervantes C., Martinez-Esparza M., Perez C., Daum N., Solano F., Garcia-Borron J.C. Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. J Cell Sci. 2001;114:2335–2344.
    1. Wu X., Yang Y., Xiang L., Zhang C. The fate of melanocyte: mechanisms of cell death in vitiligo. Pigment Cell Melanoma Res. 2021;34:256–267.
    1. Maresca V., Roccella M., Roccella F., Camera E., Del Porto G., Passi S., et al. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol. 1997;109:310–313.
    1. Speeckaert R., Dugardin J., Lambert J., Lapeere H., Verghaehe E., Speeckaert M.M., et al. Critical appraisal of the oxidative stress pathway in vitiligo: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2018;32:1089–1098.
    1. Zedan H., Abdel-Motaleb A.A., Kassem N.M., Hafeez H.A., Hussein M.R. Low glutathione peroxidase activity levels in patients with vitiligo. J Cutan Med Surg. 2015;19:144–148.
    1. Akoglu G., Emre S., Metin A., Akbas A., Yorulmaz A., Isikoglu A., et al. Evaluation of total oxidant and antioxidant status in localized and generalized vitiligo. Clin Exp Dermatol. 2013;38:701–706.
    1. Turkcu U.O., Tekin N.S., Edgunlu T.G., Celik S.K., Oner S. The association of FOXO3A gene polymorphisms with serum FOXO3A levels and oxidative stress markers in vitiligo patients. Gene. 2014;536:129–134.
    1. Karsli N., Akcali C., Ozgoztasi O., Kirtak N., Inaloz S. Role of oxidative stress in the pathogenesis of vitiligo with special emphasis on the antioxidant action of narrowband ultraviolet B phototherapy. J Int Med Res. 2014;42:799–805.
    1. Kang P., Zhang W., Chen X., Yi X., Song P., Chang Y., et al. TRPM2 mediates mitochondria-dependent apoptosis of melanocytes under oxidative stress. Free Radic Biol Med. 2018;126:259–268.
    1. Zhang C.F., Gruber F., Ni C., Mildner M., Koening U., Karner S., et al. Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes. J Invest Dermatol. 2015;135:1348–1357.
    1. He Y., Li S., Zhang W., Dai W., Cui T., Wang G., et al. Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo. Sci Rep. 2017;7
    1. Rodrigues M., Ezzedine K., Hamzavi I., Pandya A.G., Harris J.E., Group V.W. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 2017;77:1–13.
    1. Toosi S., Orlow S.J., Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol. 2012;132:2601–2609.
    1. Boorn J.G., Picavet D.I., Swieten P.F., Veen H.A., Konijnenberg D., Veelen P.A., et al. Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. J Invest Dermatol. 2011;131:1240–1251.
    1. Bertolotti A., Boniface K., Vergier B., Mossalayi D., Taieb A., Ezzedine K., et al. Type I interferon signature in the initiation of the immune response in vitiligo. Pigment Cell Melanoma Res. 2014;27:398–407.
    1. Harris JE. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Ver. 2016;269:11–25.
    1. Yu R., Broady R., Huang Y., Wang Y., Yu J., Gao M., et al. Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS One. 2012;7
    1. Tulic M.K., Cavazza E., Cheli Y., Jacquel A., Luci C., Cardot-Leccia, et al. Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. Nat Commun. 2019;10
    1. Gholijani N., Yazdani M.R., Dastgheib L. Predominant role of innate proinflammatory cytokines in vitiligo disease. Arch Dermatol Res. 2020;312:123–131.
    1. Kroll T.M., Bommiasamy H., Boissy R.E., Hernandez C., Nickoloff B.J., Mestril R., et al. 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol. 2005;124:798–806.
    1. Zininga T., Ramatsui L., Shonhai A. Heat shock proteins as immunomodulants. Molecules. 2018;23:2846.
    1. Jacquemin C., Rambert J., Guillet S., Thiolat D., Boukhedouni N., Doutre M.-S., et al. Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. Br J Dermatol. 2017;177:1367–1375.
    1. Mosenson J.A., Zloza A., Klarquist J., Barfuss A.J., Guevara-Patino J.A., Poole I.C. HSP70i is a critical component of the immune response leading to vitiligo. Pigment Cell Melanoma Res. 2012;25:88–98.
    1. Mosenson J.A., Zloza A., Nieland J.D., Garrent-Mayer E., Eby J.M., Huelsmann E.J., et al. Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med. 2013;5
    1. Levandowski C.B., Mailloux C.M., Ferrara T.M., Gowan K., Ben S., Jin Y., et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1β processing via the NLRP1 inflammasome. Proc Natl Acad Sci U S A. 2013;110:2952–2956.
    1. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720–3732.
    1. Marie J., Kovacs D., Pain C., Jouary T., Cota C., Vergier B., et al. Inflammasome activation and vitiligo/nonsegmental vitiligo progression. Br J Dermatol. 2014;170:816–823.
    1. Boorn J.G., Konijnenberg D., Dellemijn T.A.M., Veen J.P.W., Bos J.D., Melief C.J.M., et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol. 2009;129:2220–2232.
    1. Kroon M.W., Kemp E.H., Wind B.S., Krebbers G., Bos J.D., Gawkrodger D.J., et al. Melanocyte antigen-specific antibodies cannot be used as markers for recent disease activity in patients with vitiligo. J Eur Acad Dermatol Venereol. 2013;27:1172–1175.
    1. Riding RL, Harris JE. The role of memory CD8 + T cells in vitiligo. J Immunol. 2019;203:11–19.
    1. Wankowicz-Kalinska A., Wijngaard RMJGJ, Tigges B.J., Westerhof W., Ogg G.S., Crundolo V., et al. Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest. 2003;83:683–695.
    1. Palermo B., Campanelli R., Garbelli S., Mantovani S., Lantelme E., Brazzelli V., et al. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol. 2001;117:326–332.
    1. Harris J.E., Harris T.H., Weninger W., Wherry E.J., Hunter C.A., Turka L.A. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin. J Invest Dermatol. 2012;132:1869–1876.
    1. Wang X.X., Wang Q.Q., Wu J.Q., Jiang M., Chen L., Zhang C.F., et al. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo. Br J Dermatol. 2016;174:1318–1326.
    1. Rashighi M., Agarwal P., Richmond J.M., Harris T.H., Dresser K., Su M.W., et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6
    1. Richmond J.M., Masterjohn E., Chu R., Tedstone J., Youd M.E., Harris J.E. CXCR3 depleting antibodies prevent and reverse vitiligo in mice. J Invest Dermatol. 2017;137:982–985.
    1. Frisoli ML, Essien K, Harris JE. Vitiligo: mechanisms of pathogenesis and treatment. Annu Rev Immunol. 2020;38:621–648.
    1. Richmond J.M., Strassner J.P., Zapata Jr L., Garg M., Riding R.L., Refat M.A., et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci Transl Med. 2018;10
    1. Jacquemin C., Martins C., Lucchese F., Thiolat D., Taieb A., Seneschal J., et al. NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo. J Invest Dermatol. 2020;140:1143–1153.
    1. Chen X., Guo W., Chang Y., Chen J., Kang P., Yi X., et al. Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8(+) T cells activation via JAK-STAT pathway in vitiligo. Free Radic Biol Med. 2019;139:80–91.
    1. Ahmed M.B., Zaraa I., Rekik R., Elbeldi-Ferchiou A., Kourda N., Hmida N.B., et al. Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res. 2012;25:99–109.
    1. Mukhatayev Z., Dellacecca E.R., Cosgrove C., Shivde R., Jaishankar D., Pontarolo-Maag K., et al. Antigen specificity enhances disease control by Tregs in vitiligo. Front Immunol. 2020;11
    1. Willemsen M., Post N.F., Uden N.O.P., Narayan V.S., Chielie S., Kemp E.H., et al. Immunophenotypic analysis reveals differences in circulating immune cells in peripheral blood of segmental and nonsegmental vitiligo patients. J Invest Dermatol. 2022;142:876–883.
    1. Dahir AM, Thomsen SF. Comorbidities in vitiligo: comprehensive review. Int J Dermatol. 2018;57:1157–1164.
    1. Failla C.M., Carbone M.L., Fortes C., Pagnanelli G., D’Atri S. Melanoma and vitiligo: in good company. Int J Mol Sci. 2019;20:5731.
    1. Geel N., Speeckaert R., Mollet I., Schepper S., Wolf J., Tjin E.P.M., et al. In vivo vitiligo induction and therapy model: double-blind, randomized clinical trial. Pigment Cell Melanoma Res. 2012;25:57–65.
    1. Hart P.H., Norval M., Byrne S.N., Rhodes L.E. Exposure to ultraviolet radiation in the modulation of human diseases. Annu Rev Pathol. 2019;14:55–81.
    1. Hariharan V., Klarquist J., Reust M.J., Koshoffer A., Mckee M.D., Boissey R.E., et al. Monobenzyl ether of hydroquinone and 4-tertiary butyl phenol activate markedly different physiological responses in melanocytes: relevance to skin depigmentation. J Invest Dermatol. 2010;130:211–220.
    1. Inoue S., Katayama I., Suzuki T., Tanemura A., Ito S., Abe Y., et al. Rhododendrol-induced leukoderma update II: Pathophysiology, mechanisms, risk evaluation, and possible mechanism-based treatments in comparison with vitiligo. J Dermatol. 2021;48:969–978.
    1. Harris JE. Chemical-induced vitiligo. Dermatol Clin. 2017;35:151–161.
    1. Arase N., Tanemura A., Jin H., Nishioka M., Aoyoma Y., Oisio N., et al. Autoantibodies detected in patients with vitiligo vulgaris but not in those with rhododendrol-induced leukoderma. J Dermatol Sci. 2019;95:80–83.
    1. Al’Abadie M.S., Senior H.J., Bleehen S.S., Gawkrodger D.J. Neuropeptide and neuronal marker studies in vitiligo. Br J Dermatol. 1994;131:160–165.
    1. Simons R.E., Zevy D.L., Jafferany M. Psychodermatology of vitiligo: psychological impact and consequences. Dermatol Ther. 2020;33
    1. Lazarova R., Hristakieva E., Lazarov N., Shani J. Vitiligo-related neuropeptides in nerve fibers of the skin. Arch Physiol Biochem. 2000;108:262–267.
    1. Falabella R., Barona M.I., Echeverri I.C., Alzate A. Substance P may play a part during depigmentation in vitiligo. A pilot study. J Eur Acad Dermatol Venereol. 2003;17:355–356.
    1. Song H., Fang F., Tomasson G., Arnberg F.K., Mataix-Cols D., Cruz L.F., et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA. 2018;319:2388–2400.
    1. Craiglow BG, King BA. Tofacitinib citrate for the treatment of vitiligo: a pathogenesis-directed therapy. JAMA Dermatol. 2015;151:1110–1112.
    1. Agrawal D., Shajil E.M., Marfatia Y.S., Begum R. Study on the antioxidant status of vitiligo patients of different age groups in Baroda. Pigment Cell Res. 2004;17:289–294.
    1. Vaish U., Kumar A.A., Varshney S., Ghosh S., Sengupta S., Sood C., et al. Micro RNAs upregulated in Vitiligo skin play an important role in its aetiopathogenesis by altering TRP1 expression and keratinocyte-melanocytes cross-talk. Sci Rep. 2019;9
    1. Wong P.M., Yang Lil, Yang Lin, Wu H., Li W., Ma X., et al. New insight into the role of exosomes in vitiligo. Autoimmun Ver. 2020;19
    1. Bzioueche H., Sjodin K.S., West C.E., Khemis A., Rocchi S., Passeron T., et al. Analysis of matched skin and gut microbiome of patients with vitiligo reveals deep skin dysbiosis: link with mitochondrial and immune changes. J Invest Dermatol. 2021;141:2280–2290.
    1. Varikasuvu S.R., Aloori S., Varshney S., Bhongir A.V. Decreased circulatory levels of Vitamin D in Vitiligo: a meta-analysis. An Bras Dermatol. 2021;96:284–294.

Source: PubMed

3
Abonneren