Prevalence, incidence and characteristics of the metabolic syndrome (MetS) in a cohort of Mexican Mestizo early rheumatoid arthritis patients treated with conventional disease modifying anti-rheumatic drugs: the complex relationship between MetS and disease activity

Federico Parra-Salcedo, Irazú Contreras-Yáñez, Daniel Elías-López, Carlos A Aguilar-Salinas, Virginia Pascual-Ramos, Federico Parra-Salcedo, Irazú Contreras-Yáñez, Daniel Elías-López, Carlos A Aguilar-Salinas, Virginia Pascual-Ramos

Abstract

Introduction: A higher prevalence of metabolic syndrome (MetS) has been described in rheumatoid arthritis (RA), along with an association with disease activity. Objectives were to describe prevalence of MetS at RA diagnosis in a cohort of Mexican Mestizo early RA patients, and to define a causal association between MetS and disease activity.

Methods: The study population was a prospective cohort. At baseline and at fixed 6-months-intervals, patients had medical evaluations, fasting serum glucose, triglycerides, high-density lipoprotein cholesterol and acute reactant-phase determinations. MetS was defined according to international criteria and body mass index (BMI)≥30 kg/m2 was used as a surrogate of the waist circumference. The study was approved by the internal review board. Appropriated statistics and Cox regression analysis were used. All statistical tests were two-sided and evaluated at the 0.05 significance level.

Results: Up to March 2014, data from 160 patients were analyzed. At baseline, they were more frequently middle-aged females and had moderate to high disease activity. Prevalence of MetS varied from 11.3% to 17.5% in patients and was lower to that from matched controls (versus 26.3% to 30%, P≤0.01). Up to last follow-up, 39 patients (34.5%) developed incidental MetS. In the Cox regression analysis, cumulative disease activity score (DAS) 28 (odds ratio (OR): 1.81, 95% confidence interval (CI): 1.346 to 2.433, P=0.000) and baseline BMI (OR: 1.13, 96% CI: 1.035 to 1.236, P=0.007) were the only predictors for incidental MetS. RA patients with incidental MetS accumulated more disease activity and had less frequent remission than their counterparts. Logistic regression analysis showed that incidental MetS (OR: 0.2, 95% CI: 0.01 to 0.99, P=0.052) and baseline DAS28 (OR: 0.4, 95% CI: 0.2 to 0.9, P=0.02) were the only predictors for achieving or maintaining sustained (≥6 months) remission.

Conclusions: MetS prevalence in a cohort of early RA patients was lower than that from matched controls. Cumulative disease activity and higher BMI were risk factors for incidental Mets; higher baseline disease activity and incidental MetS prevented sustained remission. In addition to disease activity, MetS needs to be controlled to impact disease outcomes.

Figures

Figure 1
Figure 1
Comparison of prevalence of metabolic syndrome between rheumatoid arthritis patients and matched controls. Numbers inside bars represent the number of patients and controls with metabolic syndrome according to the three different definitions. AHA/NHLBI, American Heart Association/National Heart, Lung and Blood Institute; IDF, International Diabetes Federation; NCEPT/ATPIII, National Cholesterol Education Program Adult Treatment Panel III; RA, rheumatoid arthritis.
Figure 2
Figure 2
Annual metabolic syndrome incidence rate. MetS, metabolic syndrome.
Figure 3
Figure 3
Comparison of disease activity-related outcomes after the index date between cases and controls. Comparison of disease activity-related outcomes after the index date, between rheumatoid arthritis (RA) patients with incidental metabolic syndrome (Mets; cases) and their matched controls (RA patients who did not develop incidental MetS up to last follow-up). (A) Median (range) cumulative disease activity score evaluated in 28 joints after the index date in RA patients who developed incidental MetS and their controls. (B) Distribution (n (%)) of patients and controls who achieved or maintained remission and of patients and controls with disease flare or who never achieved remission, from the index date up to last follow-up.

References

    1. Solomon DH, Curhan GC, Rimm EB, Cannuscio CC, Karlson EW. Cardiovascular risk factors in women with and without rheumatoid arthritis. Arthritis Rheum. 2004;50:3444–9. doi: 10.1002/art.20636.
    1. Wolfe F, Mitchell DM, Sibley JT, Fries JF, Bloch DA, Williams CA, et al. The mortality of rheumatoid arthritis. Arthritis Rheum. 1994;37:481–94. doi: 10.1002/art.1780370408.
    1. Wallberg-Jonsson S, Ohman ML, Dahlqvist SR. Cardiovascular morbidity and mortality in patients with seropositive rheumatoid arthritis in northern Sweden. J Rheumatol. 1997;34:445–51.
    1. Rodríguez-Rodríguez L, González-Juanatey C, Palomino-Morales R, Vázquez-Rodríguez TR, Miranda-Filloy JA, Fernández-Gutiérrez B, et al. TNFA-308 (rs1800629) polymorphism is associated with a higher risk of cardiovascular disease in patients with rheumatoid arthritis. Atherosclerosis. 2011;216:125–30. doi: 10.1016/j.atherosclerosis.2010.10.052.
    1. Gonzalez-Gay MA, Gonzalez-Juanatey C, Lopez-Diaz MJ, Piñeiro A, Garcia-Porrua C, Miranda-Filloy JA, et al. HLA-DRB1 and persistent chronic inflammation contribute to cardiovascular events and cardiovascular mortality in patients with rheumatoid arthritis. Arthritis Rheum. 2007;57:125–32. doi: 10.1002/art.22482.
    1. Hahn BH, Grossman J, Chen W, McMahon M. The pathogenesis of atherosclerosis in autoimmune rheumatic diseases: roles of inflammation and dyslipidemia. J Autoimm. 2007;28:69–75. doi: 10.1016/j.jaut.2007.02.004.
    1. Wolfe F, Michaud K. The risk of myocardial infarction and pharmacologic and nonpharmacologic myocardial infarction predictors in rheumatoid arthritis: a cohort and nested case–control analysis. Arthritis Rheum. 2008;58:2612–21. doi: 10.1002/art.23811.
    1. Erb N, Pace AV, Douglas KM, Banks MJ, Kitas GD. Risk assessment for coronary heart disease in rheumatoid arthritis and osteoarthritis. Scand J Rheumatol. 2004;33:293–9. doi: 10.1080/03009740410006899.
    1. Escalante A, Haas RW, del Rincón I. Paradoxical effect of body mass index on survival in rheumatoid arthritis: role of comorbidity and systemic inflammation. Arch Intern Med. 2005;165:1624–9. doi: 10.1001/archinte.165.14.1624.
    1. Gabriel SE. Heart disease and rheumatoid arthritis: understanding the risks. Ann Rheum Dis. 2010;69:1624–9. doi: 10.1136/ard.2009.119404.
    1. Gonzalez A, Maradit Kremers H, Crowson CS, Ballman KV, Roger VL, Jacobsen SJ, et al. Do cardiovascular risk factors confer the same risk for cardiovascular outcomes in rheumatoid arthritis patients as in non-rheumatoid arthritis patients? Ann Rheum Dis. 2008;67:64–9. doi: 10.1136/ard.2006.059980.
    1. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–16. doi: 10.1001/jama.288.21.2709.
    1. Reilly MP, Rader DJ. The metabolic syndrome: more than the sum of its parts? Circulation. 2003;108:1546–51. doi: 10.1161/01.CIR.0000088846.10655.E0.
    1. Zhang J, Fu L, Shi J, Chen X, Li Y, Ma B, et al. The risk of metabolic syndrome in patients with rheumatoid arthritis: a meta-analysis of observational studies. Plos One. 2013;8:e78151. doi: 10.1371/journal.pone.0078151.
    1. Chung CP, Oeser A, Solus JF, Avalos I, Gebretsadik T, Shuintani A, et al. Prevalence of the metabolic syndrome is increased in rheumatoid arthritis and is associated with coronary atherosclerosis. Atherosclerosis. 2008;196:756–8. doi: 10.1016/j.atherosclerosis.2007.01.004.
    1. Dao HH, Do QT, Sakamoto J. Increased frequency of metabolic syndrome among Vietnamese women with early rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther. 2010;12:R218. doi: 10.1186/ar3203.
    1. Karakoc M, Batmaz I, Sariyildiz MA, Tahtasiz M, Cevik R, Tekbas E, et al. The relationship of metabolic syndrome with disease activity and the functional status in patients with rheumatoid arthritis. J Clin Med Res. 2012;4:279–85.
    1. Karvounaris SA, Sidiropoulos PI, Papadakis JA, Spanakis EK, Bertsias GK, Kritikos HD, et al. Metabolic syndrome is common among middle to older aged Mediterranean patients with rheumatoid arthritis and correlates with disease activity: a retrospective, cross-sectional, controlled study. Ann Rheum Dis. 2007;66:28–33. doi: 10.1136/ard.2006.053488.
    1. Provan SA, Semb AG, Hisdal J, Stranden E, Agewall S, Dagfinrud H, et al. Remission is the goal for cardiovascular risk management in patients with rheumatoid arthritis: a cross-sectional comparative study. Ann Rheum Dis. 2011;70:812–7. doi: 10.1136/ard.2010.141523.
    1. Rojas R, Aguilar-Salinas CA, Jiménez-Corona A, Shamah-Levy T, Rauda J, Avila-Burgos L, et al. Metabolic syndrome in Mexican adults: results from the National Health and Nutrition Survey 2006. Salud Publica Mex. 2010;52:S11–8. doi: 10.1590/S0036-36342010000700004.
    1. Schargrodsky H, Hernández-Hernández R, Champagne BM, Silva H, Vinueza R, Silva Ayçaguer LC, et al. CARMELA: assessment of cardiovascular risk in seven Latin-American cities. Am J Med. 2008;121:58–65. doi: 10.1016/j.amjmed.2007.08.038.
    1. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52. doi: 10.1161/CIRCULATIONAHA.105.169404.
    1. Mody GM, Cardiel MH. Challenges in the management of rheumatoid arthritis in developing countries. Best Pract Res Clin Rheumatol. 2008;22:621–41. doi: 10.1016/j.berh.2008.04.003.
    1. Pascual-Ramos V, Contreras-Yáñez I, Villa AR, Cabiedes J, Rull-Gabayet M. Medication persistence over 2 years of follow-up in a cohort of early rheumatoid arhtitis patients: associated factors and relationship with disease activity and disability. Arthritis Res Ther. 2009;11:R26. doi: 10.1186/ar2620.
    1. Ramey DR, Raynauld JP, Fries JF. The health assessment questionnaire 1992: status and review. Arthritis Care Res. 1992;5:119–29. doi: 10.1002/art.1790050303.
    1. Kosinski M, Keller SD, Ware JE, Jr, Hatoum HT, Kong SX. The SF-36 Health Survey as a generic outcome measure in clinical trials of patients with osteoarthritis and rheumatoid arthritis: relative validity of scales in relation to clinical measures of arthritis severity. Med Care. 1999;37:MS23–9.
    1. Prevoo ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38:44–8. doi: 10.1002/art.1780380107.
    1. Contreras-Yáñez I, Ponce de León S, Cabiedes J, Rull-Gabayet M, Pascual-Ramos V. Inadequate therapy behavior is associated to disease flares in patients with rheumatoid arthritis who have achieved remission with disease-modifying antirheumatic drugs. Am J Med Sci. 2010;340:282–90. doi: 10.1097/MAJ.0b013e3181e8bcb0.
    1. Contreras-Yánez I, Rull-Gabayet M, Pascual-Ramos V. Early disease activity suppression and younger age predict excellent outcome of recent-onset rheumatoid arthritis patients treated with conventional disease modifying anti-rheumatic drugs. Clin Exp Rheumatol. 2012;30:402–8.
    1. de Velasco JEM, Morfin Martín J, Motta Martínez E, Colegio Mexicano de Especialistas en Ginecología y Obstetricia Clinical practice guidelines. Study of climacteric and menopause. Ginecol Obstet Mex. 2009;77:S253–76.
    1. Mäkinen H, Kautiainen H, Hannonen P, Sokka T. Is DAS28 an appropriated tool to assess remission in rheumatoid arthritis? Ann Rheum Dis. 2005;64:1410–3. doi: 10.1136/ard.2005.037333.
    1. Felson DT, Smolen JS, Wells G, Zhang B, van Tuyl LH, Funovits J, et al. American College of Rheumatology/European League Against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Arthritis Rheum. 2011;63:573–86. doi: 10.1002/art.30129.
    1. Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatmet). JAMA. 2001;285:2486-97.
    1. Alberti KG, Zimmet P, Shaw J. IDF Epidemiology Task Force Consensus Group. The metabolic syndrome – a new worldwide definition. Lancet. 2005;366:1059–62. doi: 10.1016/S0140-6736(05)67402-8.
    1. da Cunha VR, Brenol CV, Brenol JC, Xavier RM. Rheumatoid arthritis and metabolic syndrome. Rev Bras Reumatol. 2011;51:260–8.
    1. Ferraz-Amaro I, González-Juanatey C, López-Mejias R, Riancho-Zarrabeitia L, González-Gay MA. Metabolic syndrome in rheumatoid arthritis. Mediators Inflamm. 2013:710928. doi:10.1155/2013/710928.
    1. Karimi M, Mazloomzadech S, Kafan S, Amirmoghadami H. The frequency of metabolic syndrome in women with rheumatoid arthritis and in controls. Int J Rheum Dis. 2011;14:248–54. doi: 10.1111/j.1756-185X.2011.01595.x.
    1. Sahebari M, Goshayeshi L, Mirfeizi Z, Rezaieyazdi Z, Hatef MR, Ghayour-Mobarhan M, et al. Investigation of the asssociation of metabolic syndrome and disease activity in rheumatoid arthritis. Sci World J. 2011;11:1195–205. doi: 10.1100/tsw.2011.111.
    1. La Montagna G, Cacciapuoti F, Buono R, Manzella D, Mennillo GA, Arciello A, et al. Insulin resistance is an independent risk factor for atherosclerosis in rheumatoid arthritis. Diab Vasc Dis Resp. 2007;4:130–5. doi: 10.3132/dvdr.2007.031.
    1. Giles JT, Allison M, Blumenthal RS, Post W, Gelber AC, Petri M, et al. Abdominal adiposity in rheumatoid arthritis: associations with cardiometabolic risk factors and disease characteristics. Arthritis Rheum. 2010;62:3173–82. doi: 10.1002/art.27629.
    1. Mok CC, Ko GT, Ho LY, Yu KL, Chan PT, To CH. Prevalence of atherosclerotic risk factors and the Metabolic syndrome in patients with chronic inflammatory arthritis. Arthritis Care Res (Hoboken). 2011;63:195–202. doi: 10.1002/acr.20363.
    1. Zonana-Nacach A, Santana-Sahagún E, Jiménez-Balderas FJ, Camargo-Coronel A. Prevalence and factors associated with metabolic syndrome in patients with rheumatoid arthritis and systemic lupus erythematosus. J Clin Rheumatol. 2008;14:74–7. doi: 10.1097/RHU.0b013e31816b2faa.
    1. González-Gay MA, Llorca J, García-Unzueta MT, González-Juanatey C, De Matias JM, Martin J, et al. High-grade inflammation, circulating adiponectin concentrations and cardiovascular risk factors in severe rheumatoid arthritis. Clin Exp Rheumatol. 2008;26:596–603.
    1. Rostom S, Mengat M, Lahlou R, Hari A, Bahiri R, Hajjaj-Hassouni N. Metabolic syndrome in rheumatoid arthritis: a case control study. BMC Musculoskelet Disord. 2013;14:147. doi: 10.1186/1471-2474-14-147.
    1. Crowson CS, Myasoedova E, Davis JM, 3rd, Matteson EL, Roger VL, Therneau TM, et al. Increased prevalence of metabolic syndrome associated with rheumatoid arthritis in patients without clinical cardiovascular disease. J Rheumatol. 2011;38:29–35. doi: 10.3899/jrheum.100346.
    1. Toms TE, Panoulas VF, John H, Douglas KM, Kitas GD. Methotrexate therapy associates with reduced prevalence of the metabolic syndrome in rheumatoid arthritis patients over the age of 60 – more than just an anti-inflammatory effect? A cross sectional study. Arthritis Res Ther. 2009;11:R110. doi: 10.1186/ar2765.
    1. da Cunha VR, Brenol CV, Brenol JC, Fuchs SC, Arlindo EM, Melo IM, et al. Metabolic syndrome prevalence is increased in rheumatoid arthritis patients and is associated with disease activity. Scand J Rheumatol. 2012;41:186–91. doi: 10.3109/03009742.2011.626443.
    1. Gremese E, Ferraccioli G. The metabolic syndrome: the crossroads between rheumatoid arthritis and cardiovascular risks. Autoimmun Rev. 2011;10:582–9. doi: 10.1016/j.autrev.2011.04.018.
    1. González-Gay MA, Llorca J, García-Unzueta MT, González-Juanatey C, Miranda-Filloy JA, Vázquez-Rodríguez TR, et al. Anti-TNF-alpha therapy modulates resistin in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2008;26:311–6.
    1. González-Gay MA, González-Juanatey C, Vázquez-Rodríguez TR, Miranda-Filloy JA, Llorca J. Insulin resistance in rheumatoid arthritis: the impact of anti-TNF-alpha therapy. Ann NY Acad Sci. 2010;2010:153–9. doi: 10.1111/j.1749-6632.2009.05287.x.
    1. Blazar BR, Whitley CB, Kitabchi AE, Tsai MY, Santiago J, White N, et al. In vivo chloroquine-induced inhibition of insulin degradation in a diabetic patient with severe insulin resistance. Diabetes. 1984;33:1133–7. doi: 10.2337/diab.33.12.1133.
    1. Dessein PH, Tobias M, Veller MG. Metabolic syndrome and subclinical atherosclerosis in rheumatoid arthritis. J Rheumatol. 2006;33:2425–31.
    1. Dessein PH, Joffe BI, Veller MG, Stevens BA, Tobias M, Reddie K, et al. Traditional and non-traditional cardiovascular risk factors are associated with atherosclerosis in rheumatoid arthritis. J Rheumatol. 2005;32:435–42.

Source: PubMed

3
Abonneren