"Is dopamine involved in Alzheimer's disease?"

Alessandro Martorana, Giacomo Koch, Alessandro Martorana, Giacomo Koch

Abstract

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and dementia. Recent advances indicate that AD pathogenesis appears more complex than its mere neuropathology. Changes in synaptic plasticity, neuronal disarray and cell death are pathways commonly recognized as pathogenic mechanisms of AD. It is thought that the altered metabolism of certain membrane proteins may lead to the production of amyloid (Aβ) oligomers that are characterized by an highly toxic effect on neurotransmission pathways, such as those mediated by Acetylcholine. The interaction of Aβ oligomers with these neurotansmitters systems would in turn induce cell dysfunction, neurotransmitters signaling imbalance and finally lead to the appearance of neurological signs. In this perspective, it is still debated how and if these mechanisms may also engage the dopaminergic system in AD. Recent experimental work revealed that the dopaminergic system may well be involved in the occurrence of cognitive decline, often being predictive of rapidly progressive forms of AD. However, a clear idea on the role of the dopamine system in AD is still missing. Here we review the more recent evidences supporting the notion that the dopaminergic dysfunction has a pathogenic role in cognitive decline symptoms of AD.

Keywords: Alzheimer's disease; apathy; dopamine; extrapyramidal signs; α7-nicotinic receptor.

References

    1. Alkondon M., Albuquerque E. X. (2002). A non-alpha7 nicotinic acetylcholine receptor modulates excitatory input to hippocampal CA1 interneurons. J. Neurophysiol. 87, 1651–1654
    1. Allard P., Alafuzoff I., Carlsson A., Eriksson K., Ericson E., Gottfries C. G., et al. (1990). Loss of dopamine uptake sites labeled with [3H]GBR-12935 in Alzheimer's disease. Eur. Neurol. 30, 181–185 10.1159/000117341
    1. Ambrée O., Richter H., Sachser N., Lewejohann L., Dere E., de Souza Silva M. A., et al. (2009). Levodopa ameliorates learning and memory deficits in a murine model of Alzheimer's disease. Neurobiol. Aging 30, 1192–1204 10.1016/j.neurobiolaging.2007.11.010
    1. Attems J., Quass M., Jellinger K. A. (2007). Tau and alpha-synuclein brainstem pathology in Alzheimer disease: relation with extrapyramidal signs. Acta Neuropathol. 113, 53–62 10.1007/s00401-006-0146-9
    1. Attems J., Thal D. R., Jellinger K. A. (2012). The relationship between subcortical tau pathology and Alzheimer's disease. Biochem. Soc. Trans. 40, 711–715 10.1042/BST20120034
    1. Bäckman L., Lindenberger U., Li S. C., Nyberg L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci. Biobehav. Rev. 34, 670–677 10.1016/j.neubiorev.2009.12.008
    1. Becker J. A., Hedden T., Carmasin J., Maye J., Rentz D. M., Putcha D., et al. (2011). Amyloid-β associated cortical thinning in clinically normal elderly. Ann. Neurol. 69, 1032–1042 10.1002/ana.22333
    1. Bolam J. P., Pissadaki E. K. (2012). Living on the edge with too many mouths to feed: why dopamine neurons die. Mov. Disord. 27, 1478–1483 10.1002/mds.25135
    1. Braak H., Braak E. (1990). Alzheimer's disease: striatal amyloid deposits and neurofibrillary changes. J. Neuropathol. Exp. Neurol. 49, 215–224 10.1097/00005072-199005000-00003
    1. Burns J. M., Galvin J. E., Roe C. M., Morris J. C., McKeel D. W. (2005). The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs. Neurology 64, 1397–1403 10.1212/01.WNL.0000158423.05224.7F
    1. Colloby S. J., McParland S., O'Brien J. T., Attems J. (2012). Neuropathological correlates of dopaminergic imaging in Alzheimer's disease and Lewy body dementias. Brain 135(Pt 9), 2798–27808 10.1093/brain/aws211
    1. Depp C. A., Jeste D. V. (2006). Definitions and predictors of successful aging: a comprehensive review of larger quantitative studies. Am. J. Geriatr. Psychiatry 14, 6–20 10.1097/01.JGP.0000192501.03069.bc
    1. Esposito Z., Belli L., Toniolo S., Sancesario G., Bianconi C., Martorana A. (2013). Amyloid β, glutamate, excitotoxicity in Alzheimer's disease: are we on the right track? CNS Neurosci. Ther. 19, 549–555 10.1111/cns.12095
    1. Ferrer I. (2012). Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog. Neurobiol. 97, 38–51 10.1016/j.pneurobio.2012.03.005
    1. Gibb W. R., Mountjoy C. Q., Mann D. M., Lees A. J. (1989). The substantia nigra and ventral tegmental area in Alzheimer's disease and Down's syndrome. J. Neurol. Neurosurg. Psychiatry 52, 193–200 10.1136/jnnp.52.2.193
    1. Grinberg L. T., Rüb U., Ferretti R. E., Nitrini R., Farfel J. M., Polichiso L., et al. (2009). The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer's disease. A precocious onset? Neuropathol. Appl. Neurobiol. 35, 406–416 10.1111/j.1365-2990.2008.00997.x
    1. Guzmán-Ramos K., Moreno-Castilla P., Castro-Cruz M., McGaugh J. L., Martínez-Coria H., LaFerla F. M., et al. (2012). Restoration of dopamine release deficits during object recognition memory acquisition attenuates cognitive impairment in a triple transgenic mice model of Alzheimer's disease. Learn. Mem. 19, 453–460 10.1101/lm.026070.112
    1. Haber S. N., Fudge J. L. (1997). The primate substantia nigra and VTA: integrative circuitry and function. Crit. Rev. Neurobiol. 11, 323–342 10.1615/CritRevNeurobiol.v11.i4.40
    1. Haber S. N., Knutson B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 10.1038/npp.2009.129
    1. Hardy J., Selkoe D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 10.1126/science.1072994
    1. Himeno E., Ohyagi Y., Ma L., Nakamura N., Miyoshi K., Sakae N., et al. (2011). Apomorphine treatment in Alzheimer mice promoting amyloid-β degradation. Ann. Neurol. 69, 248–256 10.1002/ana.22319
    1. Horvath J., Burkhard P. R., Herrmann F. R., Bouras C., Kövari E. (2014). Neuropathology of parkinsonism in patients with pure Alzheimer's disease. J. Alzheimers Dis. 39, 115–120 10.3233/JAD-131289
    1. Huang Y., Halliday G. (2013). Can we clinically diagnose dementia with Lewy bodies yet? Transl. Neurodegener. 2, 4 10.1186/2047-9158-2-4
    1. Iqbal K., Alonso A. D., Gondal J. A., Gong C. X., Haque N., Khatoon S., et al. (2000). Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach. J. Neural Transm. Suppl. 59, 213–222 10.1007/978-3-7091-6781-6_22
    1. Iqbal K., Flory M., Soininen H. (2013). Clinical symptoms and symptom signatures of Alzheimer's disease subgroups. J. Alzheimers Dis. 37, 475–481 10.3233/JAD-130899
    1. Jellinger K. A. (2004). Lewy body-related alpha synucleinopathy in the aged human brain. J. Neural Transm. 111, 1219–1235 10.1007/s00702-004-0138-7
    1. Jellinger K. A. (2009). Formation and development of Lewy pathology: a critical update. J. Neurol. 256Suppl. 3, 270–279 10.1007/s00415-009-5243-y
    1. Jin M., Shepardson N., Yang T., Chen G., Walsh D., Selkoe D. J. (2011). Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. U.S.A. 108, 5819–5824 10.1073/pnas.1017033108
    1. Joyce J. N., Smutzer G., Whitty C. J., Myers A., Bannon M. J. (1997). Differential modification of dopamine transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with Parkinson's, Alzheimer's with parkinsonism, and Alzheimer's disease. Mov. Disord. 12, 885–897 10.1002/mds.870120609
    1. Kar S., Slowikowski S. P., Westaway D., Mount H. T. (2004). Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer's disease. J. Psychiatry Neurosci. 29, 427–441
    1. Kemppainen N., Laine M., Laakso M. P., Kaasinen V., Någren K., Vahlberg T., et al. (2003). Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer's disease. Eur. J. Neurosci. 18, 149–154 10.1046/j.1460-9568.2003.02716.x
    1. Koch G., Belli L., Giudice T., Lorenzo F., Sancesario G. M., Sorge R., et al. (2013). Frailty among Alzheimer's disease patients. CNS Neurol. Disord. Drug Targets 12, 507–511 10.2174/1871527311312040010
    1. Koch G., Di Lorenzo F., Bonnì S., Giacobbe V., Bozzali M., Caltagirone C., et al. (2014). Dopaminergic modulation of cortical plasticity in Alzheimer's disease patients. Neuropsychopharmacology 39, 2654–2661 10.1038/npp.2014.119
    1. Kumar U., Patel S. C. (2007). Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer's disease brain. Brain Res. 187–96 10.1016/j.brainres.2006.10.049
    1. Lammel S., Ion D. I., Roeper J., Malenka R. C. (2011). Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70, 855–862 10.1016/j.neuron.2011.03.025
    1. Lopez O. L., Wisnieski S. R., Becker J. T., Boller F., DeKosky S. T. (1997). Extrapyramidal signs in patients with probable Alzheimer disease. Arch. Neurol. 54, 969–975 10.1001/archneur.1997.00550200033007
    1. Lowe V. J., Kemp B. J., Jack C. R., Jr., Senjem M., Weigand S., Shiung M., et al. (2009). Comparison of 18F-FDG and PiB PET in cognitive impairment. J. Nucl. Med. 50, 878–886 10.2967/jnumed.108.058529
    1. Martorana A., Di Lorenzo F., Esposito Z., Lo Giudice T., Bernardi G., Caltagirone C., et al. (2013). Dopamine D2-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer's disease patients. Neuropharmacology 64, 108–113 10.1016/j.neuropharm.2012.07.015
    1. Martorana A., Mori F., Esposito Z., Kusayanagi H., Monteleone F., Codecà C., et al. (2009). Dopamine modulates cholinergic cortical excitability in Alzheimer's disease patients. Neuropsychopharmacology 34, 2323–2328 10.1038/npp.2009.60
    1. Mitchell R. A., Herrmann N., Lanctôt K. L. (2011). The role of dopamine in symptoms and treatment of apathy in Alzheimer's disease. CNS Neurosci. Ther. 17, 411–427 10.1111/j.1755-5949.2010.00161.x
    1. Murray A. M., Weihmueller F. B., Marshall J. F., Hurtig H. I., Gottleib G. L., Joyce J. N. (1995). Damage to dopamine systems differs between Parkinson's disease and Alzheimer's disease with parkinsonism. Ann. Neurol. 37, 300–312 10.1002/ana.410370306
    1. Musicco M., Salamone G., Caltagirone C., Cravello L., Fadda L., Lupo F., et al. (2010). Neuropsychological predictors of rapidly progressing patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 30, 219–228 10.1159/000319533
    1. Nalivaeva N. N., Turner A. J. (2013). The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett. 587, 2046–2054 10.1016/j.febslet.2013.05.010
    1. Ni R., Marutle A., Nordberg A. (2013). Modulation of α7 nicotinic acetylcholine receptor and fibrillar amyloid-β interactions in Alzheimer's disease brain. J. Alzheimers Dis. 33, 841–851 10.3233/JAD-2012-121447
    1. Palop J. J., Mucke L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 10.1038/nn.2583
    1. Perez S. E., Lazarov O., Koprich J. B., Chen E. Y., Rodriguez-Menendez V., Lipton J. W., et al. (2005). Nigrostriatal dysfunction in familial Alzheimer's disease-linked APPswe/PS1DeltaE9 transgenic mice. J. Neurosci. 25, 10220–10229 10.1523/JNEUROSCI.2773-05.2005
    1. Pievani M., Bocchetta M., Boccardi M., Cavedo E., Bonetti M., Thompson P. M., et al. (2013). Striatal morphology in early-onset and late-onset Alzheimer's disease: a preliminary study. Neurobiol. Aging 34, 1728–1739 10.1016/j.neurobiolaging.2013.01.016
    1. Portet F., Scarmeas N., Cosentino S., Helzner E. P., Stern Y. (2009). Extrapyramidal signs before and after diagnosis of incident Alzheimer disease in a prospective population study. Arch. Neurol. 66, 1120–1126 10.1001/archneurol.2009.196
    1. Posadas I., López-Hernández B., Ceña V. (2013). Nicotinic receptors in neurodegeneration. Curr. Neuropharmacol 11, 298–314 10.2174/1570159X11311030005
    1. Puzzo D., Arancio O. (2013). Amyloid-β peptide: Dr. Jekyll or Mr. Hyde? J. Alzheimers Dis. 33Suppl. 1, S111–S120 10.3233/JAD-2012-129033
    1. Puzzo D., Privitera L., Leznik E., Fà M., Staniszewski A., Palmeri A., et al. (2008). Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 28, 14537–14545 10.1523/JNEUROSCI.2692-08.2008
    1. Richard E., Schmand B., Eikelenboom P., Yang S. C., Ligthart S. A., Moll van Charante E. P., et al. (2012). Alzheimer's disease neuroimaging initiative. Symptoms of apathy are associated with progression from mild cognitive impairment to Alzheimer's disease in non-depressed subjects. Dement. Geriatr. Cogn. Disord. 33, 204–209 10.1159/000338239
    1. Rinne J. O., Säkö E., Paljärvi L., Mölsä P. K., Rinne U. K. (1986). Brain dopamine D-2 receptors in senile dementia. J. Neural Transm. 65, 51–62 10.1007/BF01249611
    1. Robert P. H., Mulin E., Malléa P., David R. (2010). Apathy diagnosis, assessment, and treatment in Alzheimer's disease. CNS Neurosci. Ther. 16, 263–271 10.1111/j.1755-5949.2009.00132.x
    1. Rudelli R. D., Ambler M. W., Wisniewski H. M. (1984). Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol. 64, 273–281 10.1007/BF00690393
    1. Schliebs R., Arendt T. (2011). The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563 10.1016/j.bbr.2010.11.058
    1. Schmidt C., Wolff M., Weitz M., Bartlau T., Korth C., Zerr I. (2011). Rapidly progressive Alzheimer disease. Arch. Neurol. 68, 1124–1130 10.1001/archneurol.2011.189
    1. Selden N., Mesulam M. M., Geula C. (1994). Human striatum: the distribution of neurofibrillary tangles in Alzheimer's disease. Brain Res. 648, 327–331 10.1016/0006-8993(94)91136-3
    1. Simic G., Stanic G., Mladinov M., Jovanov-Milosevic N., Kostovic I., Hof P. R. (2009). Does Alzheimer's disease begin in the brainstem? Neuropathol. Appl. Neurobiol. 35, 532–554 10.1111/j.1365-2990.2009.01038.x
    1. Sperling R. A., Dickerson B. C., Pihlajamaki M., Vannini P., LaViolette P. S., Vitolo O. V., et al. (2010). Functional alterations in memory networks in early Alzheimer's disease. Neuromolecular Med. 12, 27–43 10.1007/s12017-009-8109-7
    1. Starkstein S. E., Merello M., Brockman S., Bruce D., Petracca G., Power B. D. (2009). Apathy predicts more severe parkinsonism in Alzheimer's disease. Am. J. Geriatr. Psychiatry 17, 291–298 10.1097/JGP.0b013e31818a0e35
    1. Storga D., Vrecko K., Birkmayer J. G., Reibnegger G. (1996). Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci. Lett. 203, 29–32 10.1016/0304-3940(95)12256-7
    1. Trillo L., Das D., Hsieh W., Medina B., Moghadam S., Lin B., et al. (2013). Ascending monoaminergic systems alterations in Alzheimer's disease. translating basic science into clinical care. Neurosci. Biobehav. Rev. 37, 1363–1379 10.1016/j.neubiorev.2013.05.008
    1. Turner P. R., O'Connor K., Tate W. P., Abraham W. C. (2003). Roles of amyloid protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70, 1–32 10.1016/S0301-0082(03)00089-3
    1. Van der Vlies A. E., Verwey N. A., Bouwman F. H., Blankenstein M. A., Klein M., Scheltens P., et al. (2009). CSF biomarkers in relationship to cognitive profiles in Alzheimer disease. Neurology. 72, 1056–1061 10.1212/01.wnl.0000345014.48839.71
    1. Vilalta-Franch J., Calvó-Perxas L., Garre-Olmo J., Turró-Garriga O., López-Pousa S. (2013). Apathy syndrome in Alzheimer's disease epidemiology: prevalence, incidence, persistence, and risk and mortality factors. J. Alzheimers Dis. 33, 535–543 10.3233/JAD-2012-120913
    1. Volkow N. D., Fowler J. S., Wang G. J., Logan J., Schlyer D., MacGregor R., et al. (1994). Decreased dopamine transporters with age in health human subjects. Ann. Neurol. 36, 237–239 10.1002/ana.410360218
    1. Wallin A. K., Blennow K., Zetterberg H., Londos E., Minthon L., Hansson O. (2010). CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology 74, 1531–1537 10.1212/WNL.0b013e3181dd4dd8
    1. Wang H. Y., Lee D. H., D'Andrea M. R., Peterson P. A., Shank R. P., Reitz A. B. (2000). Beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J. Biol. Chem. 275, 5626–5632 10.1074/jbc.275.8.5626
    1. Yates F. E. (2002). Complexity of a human being: changes with age. Neurobiol. Aging 23, 17–9 10.1016/S0197-4580(01)00261-5

Source: PubMed

3
Abonneren