Effect of Rotigotine vs Placebo on Cognitive Functions Among Patients With Mild to Moderate Alzheimer Disease: A Randomized Clinical Trial

Giacomo Koch, Caterina Motta, Sonia Bonnì, Maria Concetta Pellicciari, Silvia Picazio, Elias Paolo Casula, Michele Maiella, Francesco Di Lorenzo, Viviana Ponzo, Clarissa Ferrari, Eugenia Scaricamazza, Carlo Caltagirone, Alessandro Martorana, Giacomo Koch, Caterina Motta, Sonia Bonnì, Maria Concetta Pellicciari, Silvia Picazio, Elias Paolo Casula, Michele Maiella, Francesco Di Lorenzo, Viviana Ponzo, Clarissa Ferrari, Eugenia Scaricamazza, Carlo Caltagirone, Alessandro Martorana

Abstract

Importance: Impairment of dopaminergic transmission may contribute to cognitive dysfunction in Alzheimer disease (AD).

Objective: To investigate whether therapy with dopaminergic agonists may affect cognitive functions in patients with AD.

Design, setting, and participants: This phase 2, monocentric, randomized, double-blind, placebo-controlled trial was conducted in Italy. Patients with mild to moderate AD were enrolled between September 1, 2017, and December 31, 2018. Data were analyzed from July 1 to September 1, 2019.

Interventions: A rotigotine 2 mg transdermal patch for 1 week followed by a 4 mg patch for 23 weeks (n = 47) or a placebo transdermal patch for 24 weeks (n = 47).

Main outcomes and measures: The primary end point was change from baseline on the Alzheimer Disease Assessment Scale-Cognitive Subscale. Secondary end points were changes in Frontal Assessment Battery, Alzheimer Disease Cooperative Study-Activities of Daily Living, and Neuropsychiatric Inventory scores. Prefrontal cortex activity was evaluated by transcranial magnetic stimulation combined with electroencephalography.

Results: Among 94 patients randomized (mean [SD] age, 73.9 [5.6] years; 58 [62%] women), 78 (83%) completed the study. Rotigotine, as compared with placebo, had no significant effect on the primary end point: estimated mean change in Alzheimer Disease Assessment Scale-Cognitive Subscale score was 2.92 (95% CI, 2.51-3.33) for the rotigotine group and 2.66 (95% CI, 2.31-3.01) for the placebo group. For the secondary outcomes, there were significant estimated mean changes between groups for Alzheimer Disease Cooperative Study-Activities of Daily Living score (-3.32 [95% CI, -4.02 to -2.62] for rotigotine and -7.24 [95% CI, -7.84 to -6.64] for placebo) and Frontal Assessment Battery score (0.48 [95% CI, 0.31 to 0.65] for rotigotine and -0.66 [95% CI, -0.80 to -0.52] for placebo). There was no longitudinal change in Neuropsychiatric Inventory scores (1.64 [95% CI, 1.06-2.22] for rotigotine and 1.26 [95% CI, 0.77-1.75] for placebo group). Neurophysiological analysis of electroencephalography results indicated that prefrontal cortical activity increased in rotigotine but not in the placebo group. Adverse events were more common in the rotigotine group, with 11 patients dropping out compared with 5 in the placebo group.

Conclusions and relevance: In this randomized clinical trial, rotigotine treatment did not significantly affect global cognition in patients with mild to moderate AD; however, improvement was observed in cognitive functions highly associated with the frontal lobe and in activities of daily living. These findings suggest that treatment with the dopaminergic agonist rotigotine may reduce symptoms associated with frontal lobe cognitive dysfunction and thus may delay the impairment of activities of daily living.

Trial registration: ClinicalTrials.gov Identifier: NCT03250741.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Ferrari reported receiving grants from the Italian Ministry of Health (Ricerca Corrente) during the conduct of the study. No other disclosures were reported.

Figures

Figure 1.. Study Flowchart
Figure 1.. Study Flowchart
Figure 2.. Clinical Data Results
Figure 2.. Clinical Data Results
A, The generalized linear mixed model estimated mean change from baseline is shown for the Alzheimer Disease Assessment Scale–Cognitive Subscale (ADAS-Cog-11); scores range from 0 to 70, with higher scores indicating worse cognition. B, The estimated mean change from baseline is shown for the Frontal Assessment Battery (FAB); scores range from 0 to 18, with higher scores indicating better frontal cognitive functions. C, The estimated mean change from baseline is shown for the Alzheimer Disease Cooperative Study Activities of Daily Living scale (ADCS-ADL); scores range from 0 to 78, with lower scores indicating worse function. D, The estimated mean change from baseline is shown for the Neuropsychiatric Inventory (NPI); scores range from 0 to 144, with higher scores indicating worse behavioral symptoms. Baseline is plotted at week 0, which is the mean assessment time of the baseline measurement as offset from the first dose of the trial agent. Error bars indicate standard errors.
Figure 3.. TMS-EEG Results
Figure 3.. TMS-EEG Results
Changes in global mean field power (GMFP) (A, B) and oscillatory activity (C-F) evoked from the left dorsolateral prefrontal cortex in the rotigotine and placebo groups before and after completion of the trial. The upper panels depict the electroencephalographic activity evoked by transcranial magnetic simulation (TMS) before and after the 24-week period of treatment with rotigotine (A) or placebo (B). The middle panels show changes in oscillatory activity in the group of patients treated with rotigotine (C) and placebo (D), with dark blue indicating lower oscillatory activity; intense red, stronger oscillatory activity; and green, an intermediate value. Panels E and F show the power spectrum profile of evoked oscillatory activity depicted in panels C and D.

References

    1. Martorana A, Koch G. Is dopamine involved in Alzheimer’s disease? Front Aging Neurosci. 2014;6:252. doi:10.3389/fnagi.2014.00252
    1. Itoh A, Nitta A, Nadai M, et al. . Dysfunction of cholinergic and dopaminergic neuronal systems in beta-amyloid protein–infused rats. J Neurochem. 1996;66(3):1113-1117. doi:10.1046/j.1471-4159.1996.66031113.x
    1. Joyce JN, Smutzer G, Whitty CJ, Myers A, Bannon MJ. Differential modification of dopamine transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with Parkinson’s, Alzheimer’s with parkinsonism, and Alzheimer’s disease. Mov Disord. 1997;12(6):885-897. doi:10.1002/mds.870120609
    1. Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K, Liu A. Dopamine and dopamine receptors in Alzheimer’s disease: a systematic review and network meta-analysis. Front Aging Neurosci. 2019;11:175. doi:10.3389/fnagi.2019.00175
    1. Kumar U, Patel SC. Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer’s disease brain. Brain Res. 2007;1131(1):187-196. doi:10.1016/j.brainres.2006.10.049
    1. Kemppainen N, Laine M, Laakso MP, et al. . Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer’s disease. Eur J Neurosci. 2003;18(1):149-154. doi:10.1046/j.1460-9568.2003.02716.x
    1. Lewis C, Ballinger BR, Presly AS. Trial of levodopa in senile dementia. BMJ. 1978;1(6112):550. doi:10.1136/bmj.1.6112.550
    1. Birks J, Flicker L. Selegiline for Alzheimer’s disease. Cochrane Database Syst Rev. 2003;(1):CD000442.
    1. Himeno E, Ohyagi Y, Ma L, et al. . Apomorphine treatment in Alzheimer mice promoting amyloid-β degradation. Ann Neurol. 2011;69(2):248-256. doi:10.1002/ana.22319
    1. Moreno-Castilla P, Rodriguez-Duran LF, Guzman-Ramos K, Barcenas-Femat A, Escobar ML, Bermudez-Rattoni F. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment. Neurobiol Aging. 2016;41:187-199. doi:10.1016/j.neurobiolaging.2016.02.021
    1. Nobili A, Latagliata EC, Viscomi MT, et al. . Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun. 2017;8:14727. doi:10.1038/ncomms14727
    1. Martorana A, Mori F, Esposito Z, et al. . Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients. Neuropsychopharmacology. 2009;34(10):2323-2328. doi:10.1038/npp.2009.60
    1. Koch G, Di Lorenzo F, Bonnì S, et al. . Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients. Neuropsychopharmacology. 2014;39(11):2654-2661. doi:10.1038/npp.2014.119
    1. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412-2414. doi:10.1212/WNL.43.11.2412-a
    1. Dubois B, Feldman HH, Jacova C, et al. . Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614-629. doi:10.1016/S1474-4422(14)70090-0
    1. Martorana A, Di Lorenzo F, Esposito Z, et al. . Dopamine D2-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology. 2013;64:108-113. doi:10.1016/j.neuropharm.2012.07.015
    1. Mohs RC, Knopman D, Petersen RC, et al. . Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11(suppl 2):S13-S21. doi:10.1097/00002093-199700112-00003
    1. Galasko D, Bennett D, Sano M, et al. . An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11(suppl 2):S33-S39. doi:10.1097/00002093-199700112-00005
    1. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55(11):1621-1626. doi:10.1212/WNL.55.11.1621
    1. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):2308-2314. doi:10.1212/WNL.44.12.2308
    1. Koch G, Bonnì S, Casula EP, et al. . Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol. 2019;76(2):170-178. doi:10.1001/jamaneurol.2018.3639
    1. Kumar S, Zomorrodi R, Ghazala Z, et al. . Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease. JAMA Psychiatry. 2017;74(12):1266-1274. doi:10.1001/jamapsychiatry.2017.3292
    1. Lin J, Lin LA, Sankoh S. A general overview of adaptive randomization design for clinical trials. J Biom Biostat. 2016;7(2):294. doi:10.4172/2155-6180.1000294
    1. Poewe WH, Rascol O, Quinn N, et al. ; SP 515 Investigators . Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol. 2007;6(6):513-520. doi:10.1016/S1474-4422(07)70108-4
    1. LeWitt PA, Lyons KE, Pahwa R; SP 650 Study Group . Advanced Parkinson disease treated with rotigotine transdermal system: PREFER Study. Neurology. 2007;68(16):1262-1267. doi:10.1212/
    1. Park JH, Myung W, Choi J, et al. . Extrapyramidal signs and cognitive subdomains in Alzheimer disease. Am J Geriatr Psychiatry. 2016;24(7):566-574. doi:10.1016/j.jagp.2016.02.051
    1. Ott T, Nieder A. Dopamine and cognitive control in prefrontal cortex. Trends Cogn Sci. 2019;23(3):213-234. doi:10.1016/j.tics.2018.12.006
    1. Liu-Seifert H, Siemers E, Price K, et al. ; Alzheimer’s Disease Neuroimaging Initiative . Cognitive impairment precedes and predicts functional impairment in mild Alzheimer’s disease. J Alzheimers Dis. 2015;47(1):205-214. doi:10.3233/JAD-142508
    1. Schroeter ML, Vogt B, Frisch S, et al. . Executive deficits are related to the inferior frontal junction in early dementia. Brain. 2012;135(Pt 1):201-215. doi:10.1093/brain/awr311
    1. Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA; Alzheimer’s Disease Neuroimaging Initiative . Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. 2011;7(3):300-308. doi:10.1016/j.jalz.2010.04.005
    1. Salmon E, Lespagnard S, Marique P, et al. . Cerebral metabolic correlates of four dementia scales in Alzheimer’s disease. J Neurol. 2005;252(3):283-290. doi:10.1007/s00415-005-0551-3
    1. Rowe CC, Ng S, Ackermann U, et al. . Imaging beta-amyloid burden in aging and dementia. Neurology. 2007;68(20):1718-1725. doi:10.1212/01.wnl.0000261919.22630.ea
    1. Trillo L, Das D, Hsieh W, et al. . Ascending monoaminergic systems alterations in Alzheimer’s disease. translating basic science into clinical care. Neurosci Biobehav Rev. 2013;37(8):1363-1379. doi:10.1016/j.neubiorev.2013.05.008
    1. Duszkiewicz AJ, McNamara CG, Takeuchi T, Genzel L. Novelty and dopaminergic modulation of memory persistence: a tale of two systems. Trends Neurosci. 2019;42(2):102-114. doi:10.1016/j.tins.2018.10.002
    1. De Marco M, Venneri A. Volume and connectivity of the ventral tegmental area are linked to neurocognitive signatures of Alzheimer’s disease in humans. J Alzheimers Dis. 2018;63(1):167-180. doi:10.3233/JAD-171018
    1. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18(2):73-85. doi:10.1038/nrn.2016.165
    1. Takeuchi T, Duszkiewicz AJ, Sonneborn A, et al. . Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 2016;537(7620):357-362. doi:10.1038/nature19325
    1. Alcolea D, Martínez-Lage P, Sánchez-Juan P, et al. . Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology. 2015;85(7):626-633. doi:10.1212/WNL.0000000000001859
    1. Doody RS, Thomas RG, Farlow M, et al. ; Alzheimer’s Disease Cooperative Study Steering Committee; Solanezumab Study Group . Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):311-321. doi:10.1056/NEJMoa1312889
    1. Salloway S, Sperling R, Fox NC, et al. ; Bapineuzumab 301 and 302 Clinical Trial Investigators . Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322-333. doi:10.1056/NEJMoa1304839
    1. Egan MF, Kost J, Tariot PN, et al. . Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2018;378(18):1691-1703. doi:10.1056/NEJMoa1706441
    1. Howard R, McShane R, Lindesay J, et al. . Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893-903. doi:10.1056/NEJMoa1106668

Source: PubMed

3
Abonneren