Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review

Craig R Butler, Richard Thompson, Mark Haykowsky, Mustafa Toma, Ian Paterson, Craig R Butler, Richard Thompson, Mark Haykowsky, Mustafa Toma, Ian Paterson

Abstract

Background: Screening for organ rejection is a critical component of care for patients who have undergone heart transplantation. Endomyocardial biopsy is the gold standard screening tool, but non-invasive alternatives are needed. Cardiovascular magnetic resonance (CMR) is well suited to provide an alternative to biopsy because of its ability to quantify ventricular function, morphology, and characterize myocardial tissue. CMR is not widely used to screen for heart transplant rejection, despite many trials supporting its use for this indication. This review summarizes the different CMR sequences that can detect heart transplant rejection as well as the strengths and weaknesses of their application.

Results: T2 quantification by spin echo techniques has been criticized for poor reproducibility, but multiple studies show its utility in screening for rejection. Human and animal data estimate that T2 quantification can diagnose rejection with sensitivities and specificities near 90%. There is also a suggestion that T2 quantification can predict rejection episodes in patients with normal endomyocardial biopsies.T1 quantification has also shown association with biopsy proven rejection in a small number of trials. T1 weighted gadolinium early enhancement appeared promising in animal data, but has had conflicting results in human trials. Late gadolinium enhancement in the diagnosis of rejection has not been evaluated.CMR derived measures of ventricular morphology and systolic function have insufficient sensitivity to diagnose mild to moderate rejection. CMR derived diastolic function can demonstrate abnormalities in allografts compared to native human hearts, but its ability to diagnose rejection has not yet been tested.There is promising animal data on the ability of iron oxide contrast agents to illustrate the changes in vascular permeability and macrophage accumulation seen in rejection. Despite good safety data, these contrast agents have not been tested in the human heart transplant population.

Conclusion: T2 quantification has demonstrated the best correlation to biopsy proven heart transplant rejection. Further studies evaluating diastolic function, late gadolinium enhancement, and iron oxide contrast agents to diagnose rejection are needed. Future studies should focus on combining multiple CMR measures into a transplant rejection scoring system which would improve sensitivity and possibly reduce, if not eliminate, the need for endomyocardial biopsy.

Figures

Figure 1
Figure 1
Comparison of T2 in 2 cardiac transplant patients. a) Localizing 3 chamber FISP image. b) Axial HASTE images with varying echo times (TE). White square represents septal ROI used to measure signal intensity (SI). c) Plot of SI vs. TE. T2 derived from fitting to curve to an exponential. Patient 1: CMR T2 = 53 ms (normal). Biopsy = no rejection. Patient 2: CMR T2 = 65 ms (elevated). Biopsy = ISHLT grade 2R rejection.

References

    1. Taylor DO, Edwards LB, Boucek MM, Trulock EP, Waltz DA, Keck BM, Hertz MI. Registry of the International Society for Heart and Lung Transplantation: twenty-third official adult heart transplantation report – 2006. J Heart Lung Transplant. 2006;25:869–879. doi: 10.1016/j.healun.2006.05.002.
    1. Nielsen H, Sorensen FB, Nielsen B, Bagger JP, Thayssen P, Baandrup U. Reproducibility of the acute rejection diagnosis in human cardiac allografts. The Stanford Classification and the International Grading System. J Heart Lung Transplant. 1993;12:239–243.
    1. Gradek WQ, D'Amico C, Smith AL, Vega D, Book WM. Routine surveillance endomyocardial biopsy continues to detect significant rejection late after heart transplantation. J Heart Lung Transplant. 2001;20:497–502. doi: 10.1016/S1053-2498(01)00236-4.
    1. Lindenfeld J, Miller GG, Shakar SF, Zolty R, Lowes BD, Wolfel EE, Mestroni L, Page RL, 2nd, Kobashigawa J. Drug therapy in the heart transplant recipient: part I: cardiac rejection and immunosuppressive drugs. Circulation. 2004;110:3734–3740. doi: 10.1161/01.CIR.0000149745.83186.89.
    1. Caves PK, Stinson EB, Billingham M, Shumway NE. Percutaneous transvenous endomyocardial biopsy in human heart recipients. Experience with a new technique. Ann Thorac Surg. 1973;16:325–336.
    1. Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J, Abrams J, Andersen CB, Angelini A, Berry GJ, Burke MM, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005;24:1710–1720. doi: 10.1016/j.healun.2005.03.019.
    1. Baraldi-Junkins C, Levin HR, Kasper EK, Rayburn BK, Herskowitz A, Baughman KL. Complications of endomyocardial biopsy in heart transplant patients. J Heart Lung Transplant. 1993;12:63–67.
    1. Huddleston CB, Rosenbloom M, Goldstein JA, Pasque MK. Biopsy-induced tricuspid regurgitation after cardiac transplantation. Ann Thorac Surg. 1994;57:832–836.
    1. Spiegelhalter DJ, Stovin PG. An analysis of repeated biopsies following cardiac transplantation. Stat Med. 1983;2:33–40. doi: 10.1002/sim.4780020105.
    1. Winters GL, McManus BM. Consistencies and controversies in the application of the International Society for Heart and Lung Transplantation working formulation for heart transplant biopsy specimens. Rapamycin Cardiac Rejection Treatment Trial Pathologists. J Heart Lung Transplant. 1996;15:728–735.
    1. Marboe CC, Billingham M, Eisen H, Deng MC, Baron H, Mehra M, Hunt S, Wohlgemuth J, Mahmood I, Prentice J, Berry G. Nodular endocardial infiltrates (Quilty lesions) cause significant variability in diagnosis of ISHLT Grade 2 and 3A rejection in cardiac allograft recipients. J Heart Lung Transplant. 2005;24:S219–226. doi: 10.1016/j.healun.2005.04.001.
    1. Yeoh TK, Frist WH, Eastburn TE, Atkinson J. Clinical significance of mild rejection of the cardiac allograft. Circulation. 1992;86:II267–271.
    1. Valantine HA, Yeoh TK, Gibbons R, McCarthy P, Stinson EB, Billingham ME, Popp RL. Sensitivity and specificity of diastolic indexes for rejection surveillance: temporal correlation with endomyocardial biopsy. J Heart Lung Transplant. 1991;10:757–765.
    1. Knosalla C, Hummel M, Muller J, Grauhan O, Ewert R, Hetzer R. Diagnosis of heart graft rejection. Current Opinion in Organ Transplantation. 2000;5:118–125. doi: 10.1097/00075200-200006000-00014.
    1. Yun KL, Niczyporuk MA, Daughters GT, 2nd, Ingels NB, Jr, Stinson EB, Alderman EL, Hansen DE, Miller DC. Alterations in left ventricular diastolic twist mechanics during acute human cardiac allograft rejection. Circulation. 1991;83:962–973.
    1. Marie PY, Angioi M, Carteaux JP, Escanye JM, Mattei S, Tzvetanov K, Claudon O, Hassan N, Danchin N, Karcher G, et al. Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. J Am Coll Cardiol. 2001;37:825–831. doi: 10.1016/S0735-1097(00)01196-7.
    1. Desruennes M, Corcos T, Cabrol A, Gandjbakhch I, Pavie A, Leger P, Eugene M, Bors V, Cabrol C. Doppler echocardiography for the diagnosis of acute cardiac allograft rejection. J Am Coll Cardiol. 1988;12:63–70.
    1. Vivekananthan K, Kalapura T, Mehra M, Lavie C, Milani R, Scott R, Park M. Usefulness of the combined index of systolic and diastolic myocardial performance to identify cardiac allograft rejection. Am J Cardiol. 2002;90:517–520. doi: 10.1016/S0002-9149(02)02525-0.
    1. Moidl R, Chevtchik O, Simon P, Grimm M, Wieselthaler G, Ullrich R, Mittlbock M, Wolner E, Laufer G. Noninvasive monitoring of peak filling rate with acoustic quantification echocardiography accurately detects acute cardiac allograft rejection. J Heart Lung Transplant. 1999;18:194–201. doi: 10.1016/S1053-2498(98)00031-X.
    1. Marie PY, Carteaux JP, Angioi M, Marwan NS, Tzvetanov K, Escanye JM, David N, Mattei S, Danchin N, Karcher G, et al. Detection and prediction of acute heart transplant rejection: preliminary results on the clinical use of a "black blood" magnetic resonance imaging sequence. Transplant Proc. 1998;30:1933–1935. doi: 10.1016/S0041-1345(98)00486-2.
    1. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21:1387–1396. doi: 10.1053/euhj.2000.2011.
    1. Bellenger NG, Marcus NJ, Davies C, Yacoub M, Banner NR, Pennell DJ. Left ventricular function and mass after orthotopic heart transplantation: a comparison of cardiovascular magnetic resonance with echocardiography. J Heart Lung Transplant. 2000;19:444–452. doi: 10.1016/S1053-2498(00)00079-6.
    1. Bellenger NG, Marcus NJ, Rajappan K, Yacoub M, Banner NR, Pennell DJ. Comparison of techniques for the measurement of left ventricular function following cardiac transplantation. J Cardiovasc Magn Reson. 2002;4:255–263. doi: 10.1081/JCMR-120003951.
    1. Paelinck BP, Lamb HJ, Bax JJ, Wall EE Van der, de Roos A. Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J. 2002;144:198–205. doi: 10.1067/mhj.2002.123316.
    1. Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt RF, Jr, Arai AE. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113:1865–1870. doi: 10.1161/CIRCULATIONAHA.105.576025.
    1. Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005;45:1815–1822. doi: 10.1016/j.jacc.2004.11.069.
    1. Abdel-Aty H, Cocker M, Friedrich MG. Myocardial edema is a feature of Tako-Tsubo cardiomyopathy and is related to the severity of systolic dysfunction: Insights from T2-weighted cardiovascular magnetic resonance. Int J Cardiol. 2007
    1. De Cobelli F, Pieroni M, Esposito A, Chimenti C, Belloni E, Mellone R, Canu T, Perseghin G, Gaudio C, Maseri A, et al. Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. J Am Coll Cardiol. 2006;47:1649–1654. doi: 10.1016/j.jacc.2005.11.067.
    1. Aherne T, Tscholakoff D, Finkbeiner W, Sechtem U, Derugin N, Yee E, Higgins CB. Magnetic resonance imaging of cardiac transplants: the evaluation of rejection of cardiac allografts with and without immunosuppression. Circulation. 1986;74:145–156.
    1. Huber DJ, Kirkman RL, Kupiec-Weglinski JW, Araujo JL, Tilney NL, Adams DF. The detection of cardiac allograft rejection by alterations in proton NMR relaxation times. Invest Radiol. 1985;20:796–802. doi: 10.1097/00004424-198511000-00006.
    1. Sasaguri S, Sunamori M, Saito K, Suzuki A. Early change of myocardial water during acute cardiac allograft rejection. Jpn Circ J. 1986;50:1113–1119.
    1. Lund G, Morin RL, Olivari MT, Ring WS. Serial myocardial T2 relaxation time measurements in normal subjects and heart transplant recipients. J Heart Transplant. 1988;7:274–279.
    1. Wisenberg G, Pflugfelder PW, Kostuk WJ, McKenzie FN, Prato FS. Diagnostic applicability of magnetic resonance imaging in assessing human cardiac allograft rejection. Am J Cardiol. 1987;60:130–136. doi: 10.1016/0002-9149(87)90999-4.
    1. Smart FW, Young JB, Weilbaecher D, Kleiman NS, Wendt RE, 3rd, Johnston DL. Magnetic resonance imaging for assessment of tissue rejection after heterotopic heart transplantation. J Heart Lung Transplant. 1993;12:403–410.
    1. Almenar L, Igual B, Martinez-Dolz L, Arnau MA, Osa A, Rueda J, Palencia M. Utility of cardiac magnetic resonance imaging for the diagnosis of heart transplant rejection. Transplant Proc. 2003;35:1962–1964. doi: 10.1016/S0041-1345(03)00653-5.
    1. Mousseaux E, Farge D, Guillemain R, Bruneval P, Vulser C, Couetil JP, Carpentier A, Gaux JC. Assessing human cardiac allograft rejection using MRI with Gd-DOTA. J Comput Assist Tomogr. 1993;17:237–244. doi: 10.1097/00004728-199303000-00011.
    1. Doornbos J, Verwey H, Essed CE, Balk AH, de Roos A. MR imaging in assessment of cardiac transplant rejection in humans. J Comput Assist Tomogr. 1990;14:77–81. doi: 10.1097/00004728-199001000-00012.
    1. Revel D, Chapelon C, Mathieu D, Cochet P, Ninet J, Chuzel M, Champsaur G, Dureau G, Amiel M, Helenon O, et al. Magnetic resonance imaging of human orthotopic heart transplantation: correlation with endomyocardial biopsy. J Heart Transplant. 1989;8:139–146.
    1. Abdel-Aty H, Zagrosek A, Schulz-Menger J, Taylor AJ, Messroghli D, Kumar A, Gross M, Dietz R, Friedrich MG. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation. 2004;109:2411–2416. doi: 10.1161/01.CIR.0000127428.10985.C6.
    1. Sasaguri S, LaRaia PJ, Fabri BM, Fallon JT, Ayelsworth CA, D'Ambra MN, Newell JB, Brady TJ, Buckley MJ. Early detection of cardiac allograft rejection with proton nuclear magnetic resonance. Circulation. 1985;72:II231–236.
    1. Tscholakoff D, Aherne T, Yee ES, Derugin N, Higgins CB. Cardiac transplantations in dogs: evaluation with MR. Radiology. 1985;157:697–702.
    1. Kurland RJ, West J, Kelley S, Shoop JD, Harris R, Carr EA, Jr, Bergsland J, Wright J, Carroll M. Magnetic resonance imaging to detect heart transplant rejection: sensitivity and specificity. Transplant Proc. 1989;21:2537–2543.
    1. Sasaki H, Sada M, Nishimura T, Yutani C, Nakatani H, Yaku H, Yamaguchi T, Kawazoe K, Amemiya H, Fujita T. The expanded scope of effectiveness of nuclear magnetic resonance imaging to determine cardiac allograft rejection. Transplant Proc. 1987;19:1062–1064.
    1. Nishimura T, Sada M, Sasaki H, Yutani C, Fujita T, Amemiya H, Kozuka T, Akutsu T, Manabe H. Assessment of severity of cardiac rejection in heterotopic heart transplantation using indium-111 antimyosin and magnetic resonance imaging. Cardiovasc Res. 1988;22:108–112. doi: 10.1093/cvr/22.2.108.
    1. Nishimura T, Sada M, Sasaki H, Yutani C, Kozuka T, Amemiya H, Fujita T, Akutsu T, Manabe H. Identification of cardiac rejection with magnetic resonance imaging in heterotopic heart transplantation model. Heart Vessels. 1987;3:135–140. doi: 10.1007/BF02058789.
    1. Billingham ME. Diagnosis of cardiac rejection by endomyocardial biopsy. Heart transplantation. 1982;1:25–30.
    1. Billingham ME, Cary NR, Hammond ME, Kemnitz J, Marboe C, McCallister HA, Snovar DC, Winters GL, Zerbe A. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant. 1990;9:587–593.
    1. McAllister HA., Jr Histologic grading of cardiac allograft rejection: a quantitative approach. J Heart Transplant. 1990;9:277–282.
    1. Abdel-Aty H, Simonetti O, Friedrich MG. T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging. 2007;26:452–459. doi: 10.1002/jmri.21028.
    1. Simonetti OP, Finn JP, White RD, Laub G, Henry DA. "Black blood" T2-weighted inversion-recovery MR imaging of the heart. Radiology. 1996;199:49–57.
    1. Pereira NL, Zile MR, Harley RA, Van Bakel AB. Myocardial mechanisms causing heart failure early after cardiac transplantation. Transplant Proc. 2006;38:2999–3003. doi: 10.1016/j.transproceed.2006.08.117.
    1. Albers J, Schroeder A, de Simone R, Mockel R, Vahl CF, Hagl S. 3D evaluation of myocardial edema: experimental study on 22 pigs using magnetic resonance and tissue analysis. Thorac Cardiovasc Surg. 2001;49:199–203. doi: 10.1055/s-2001-16100.
    1. Vahl CF, Albers J, Makabe MH, Meinzer HP, Ilg M, Fu X, Szabo G, Muhling J, Hagl S. Heterogeneity of myocardial edema in isolated pig hearts after perfusion with different types of cardioprotective solutions. Thorac Cardiovasc Surg. 1998;46:285–292. doi: 10.1055/s-2007-1010240.
    1. Poon CS, Henkelman RM. Practical T2 quantitation for clinical applications. J Magn Reson Imaging. 1992;2:541–553. doi: 10.1002/jmri.1880020512.
    1. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984;11:425–448. doi: 10.1118/1.595535.
    1. He T, Gatehouse PD, Anderson LJ, Tanner M, Keegan J, Pennell DJ, Firmin DN. Development of a novel optimized breathhold technique for myocardial T2 measurement in thalassemia. J Magn Reson Imaging. 2006;24:580–585. doi: 10.1002/jmri.20681.
    1. He T, Kirk P, Firmin DN, Lam WM, Chu WC, Au WY, Chan GC, Tan RS, Ng I, Biceroglu S, et al. Multi-center transferability of a breath-hold T2 technique for myocardial iron assessment. J Cardiovasc Magn Reson. 2008;10:11. doi: 10.1186/1532-429X-10-11.
    1. Nishimura T, Sada M, Sasaki H, Amemiya H, Kozuka T, Fujita T, Akutsu T, Manabe H. Cardiac transplantation in dogs: evaluation with gated MRI and Gd-DTPA contrast enhancement. Heart Vessels. 1987;3:141–145. doi: 10.1007/BF02058790.
    1. Konstam MA, Aronovitz MJ, Runge VM, Kaufman DM, Brockway BA, Isner JM, Katzen NA, Dresdale AR, Diehl JT, Kaplan E, et al. Magnetic resonance imaging with gadolinium-DTPA for detecting cardiac transplant rejection in rats. Circulation. 1988;78:III87–94.
    1. Ciliberto GR, Mascarello M, Gronda E, Bonacina E, Anjos MC, Danzi G, Colombo P, Frigerio M, Alberti A, De Vita C. Acute rejection after heart transplantation: noninvasive echocardiographic evaluation. J Am Coll Cardiol. 1994;23:1156–1161.
    1. Walpoth BH, Muller MF, Celik B, Nicolaus B, Walpoth N, Schaffner T, Althaus U, Carrel T. Assessment of cardiac rejection by MR-imaging and MR-spectroscopy. Eur J Cardiothorac Surg. 1998;14:426–430. doi: 10.1016/S1010-7940(98)00202-4.
    1. Yoshida S, Dodd SJ, del Nido PJ, Williams DS, Ho C. Cardiac function of transplanted rat hearts using a working heart model assessed by magnetic resonance imaging. J Heart Lung Transplant. 1999;18:1054–1064. doi: 10.1016/S1053-2498(99)00077-7.
    1. McNamara D, Di Salvo T, Mathier M, Keck S, Semigran M, Dec GW. Left ventricular dysfunction after heart transplantation: incidence and role of enhanced immunosuppression. J Heart Lung Transplant. 1996;15:506–515.
    1. Sagar KB, Hastillo A, Wolfgang TC, Lower RR, Hess ML. Left ventricular mass by M-mode echocardiography in cardiac transplant patients with acute rejection. Circulation. 1981;64:II217–220.
    1. Yoshida S, Takeuchi K, del Nido PJ, Ho C. Diastolic dysfunction coincides with early mild transplant rejection: in situ measurements in a heterotopic rat heart transplant model. J Heart Lung Transplant. 1998;17:1049–1056.
    1. Nozynski J, Zakliczynski M, Zembala-Nozynska E, Konecka-Mrowka D, Przybylski R, Nikiel B, Lange D, Mrowka A, Przybylski J, Maruszewski M, Zembala M. Remodeling of human transplanted myocardium in ten-year follow-up: a clinical pathology study. Transplant Proc. 2007;39:2833–2840. doi: 10.1016/j.transproceed.2007.08.074.
    1. Donofrio MT, Clark BJ, Ramaciotti C, Jacobs ML, Fellows KE, Weinberg PM, Fogel MA. Regional wall motion and strain of transplanted hearts in pediatric patients using magnetic resonance tagging. Am J Physiol. 1999;277:R1481–1487.
    1. Hansen DE, Daughters GT, 2nd, Alderman EL, Stinson EB, Baldwin JC, Miller DC. Effect of acute human cardiac allograft rejection on left ventricular systolic torsion and diastolic recoil measured by intramyocardial markers. Circulation. 1987;76:998–1008.
    1. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet. 2001;357:21–28. doi: 10.1016/S0140-6736(00)03567-4.
    1. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–1453. doi: 10.1056/NEJM200011163432003.
    1. Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, Petrou M, Pennell DJ. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43:2260–2264. doi: 10.1016/j.jacc.2004.03.035.
    1. Moon JC, Sheppard M, Reed E, Lee P, Elliott PM, Pennell DJ. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson. 2006;8:479–482. doi: 10.1080/10976640600605002.
    1. Steen H, Merten C, Refle S, Klingenberg R, Dengler T, Giannitsis E, Katus HA. Prevalence of different gadolinium enhancement patterns in patients after heart transplantation. J Am Coll Cardiol. 2008;52:1160–1167. doi: 10.1016/j.jacc.2008.05.059.
    1. Marchal G, Van Hecke P, Demaerel P, Decrop E, Kennis C, Baert AL, Schueren E van der. Detection of liver metastases with superparamagnetic iron oxide in 15 patients: results of MR imaging at 1.5 T. AJR Am J Roentgenol. 1989;152:771–775.
    1. Deserno WM, Harisinghani MG, Taupitz M, Jager GJ, Witjes JA, Mulders PF, Hulsbergen van de Kaa CA, Kaufmann D, Barentsz JO. Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology. 2004;233:449–456. doi: 10.1148/radiol.2332031111.
    1. Memarsadeghi M, Riedl CC, Kaneider A, Galid A, Rudas M, Matzek W, Helbich TH. Axillary lymph node metastases in patients with breast carcinomas: assessment with nonenhanced versus uspio-enhanced MR imaging. Radiology. 2006;241:367–377. doi: 10.1148/radiol.2412050693.
    1. Taylor AM, Panting JR, Keegan J, Gatehouse PD, Amin D, Jhooti P, Yang GZ, McGill S, Burman ED, Francis JM, et al. Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging. 1999;9:220–227. doi: 10.1002/(SICI)1522-2586(199902)9:2<220::AID-JMRI11>;2-A.
    1. Wikstrom LJ, Johansson LO, Ericsson BA, Borseth A, Akeson PA, Ahlstrom KH. Abdominal vessel enhancement with an ultrasmall, superparamagnetic iron oxide blood pool agent: evaluation of dose and echo time dependence at different field strengths. Acad Radiol. 1999;6:292–298. doi: 10.1016/S1076-6332(99)80452-8.
    1. Kellar KE, Fujii DK, Gunther WH, Briley-Saebo K, Bjornerud A, Spiller M, Koenig SH. NC100150 Injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging. 2000;11:488–494. doi: 10.1002/(SICI)1522-2586(200005)11:5<488::AID-JMRI4>;2-V.
    1. Bjornerud A, Johansson L. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed. 2004;17:465–477. doi: 10.1002/nbm.904.
    1. Kanno S, Wu YJ, Lee PC, Dodd SJ, Williams M, Griffith BP, Ho C. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation. 2001;104:934–938. doi: 10.1161/hc3401.093148.
    1. Johansson L, Johnsson C, Penno E, Bjornerud A, Ahlstrom H. Acute cardiac transplant rejection: detection and grading with MR imaging with a blood pool contrast agent – experimental study in the rat. Radiology. 2002;225:97–103. doi: 10.1148/radiol.2251010698.
    1. Penno E, Johansson L, Ahlstrom H, Johnsson C. Ultrasmall iron oxide particle contrast agent and MRI can be used to monitor the effect of anti-rejection treatment. Transplantation. 2007;84:374–379. doi: 10.1097/01.tp.0000276957.62313.fe.
    1. Wood JC, Otto-Duessel M, Aguilar M, Nick H, Nelson MD, Coates TD, Pollack H, Moats R. Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy. Circulation. 2005;112:535–543. doi: 10.1161/CIRCULATIONAHA.104.504415.

Source: PubMed

3
Abonneren