Association of body mass index with risk of acute myocardial infarction and mortality in Norwegian male and female patients with suspected stable angina pectoris: a prospective cohort study

Heidi Borgeraas, Jens Kristoffer Hertel, Gard Frodahl Tveitevåg Svingen, Reinhard Seifert, Eva Kristine Ringdal Pedersen, Hall Schartum-Hansen, Jøran Hjelmesæth, Ottar Nygård, Heidi Borgeraas, Jens Kristoffer Hertel, Gard Frodahl Tveitevåg Svingen, Reinhard Seifert, Eva Kristine Ringdal Pedersen, Hall Schartum-Hansen, Jøran Hjelmesæth, Ottar Nygård

Abstract

Background: A number of previous studies have suggested that overweight or obese patients with coronary artery disease (CAD) may have lower morbidity and mortality than their leaner counterparts. Few studies have addressed possible gender differences, and the results are conflicting. We examined the association between body mass index (BMI) and risk of acute myocardial infarction (AMI), cardiovascular (CV) death and all-cause mortality in men and women with suspected stable angina pectoris.

Method: The cohort included 4164 patients with suspected stable angina undergoing elective coronary angiography between 2000 and 2004. Events were registered until the end of 2006. Hazard ratios (HR) (95% confidence intervals) were estimated using Cox regression by comparing normal weight (18.5-24.9 kg/m2) with overweight (25-29.9 kg/m2) and obese (≥30 kg/m2) patients. Underweight (<18.5 kg/m2) patients were excluded from the study.

Results: Of 4131 patients with complete data, 72% were males and 75% were diagnosed with significant CAD. The mean (standard deviation (SD)) age in the total population was 62 (10) years. Mean (SD) BMI was 26.8 (3.9) kg/m2, 34% was normal weight, 48% overweight and 19% obese. During follow up, a total of 337 (8.2%) experienced an AMI and 302 (7.3%) patients died, of whom 165 (4.0%) died from cardiovascular causes. We observed a significant interaction between BMI groups and gender with regards to risk of AMI (p = 0.011) and CV death (p = 0.031), but not to risk of all-cause mortality; obese men had a multivariate adjusted increased risk of AMI (HR 1.80 (1.28, 2.52)) and CV death (HR 1.60 (1.00, 2.55)) compared to normal weight men. By contrast, overweight women had a decreased risk of AMI (HR 0.56 (0.33, 0.98)) compared to normal weight women. The risk of all-cause mortality did not differ between BMI categories.

Conclusion: Compared with normal weight subjects, obese men had an increased risk of AMI and CV death, while overweight women had a decreased risk of AMI. These findings may potentially explain some of the result variation in previous studies reporting on the obesity paradox.

Trial registration: ClinicalTrials.gov NCT00354081.

References

    1. The top 10 causes of death.
    1. Goff DC, Jr, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Sr, Gibbons R, Greenland P, Lackland DT, Levy D, O'Donnell CJ, Robinson J, Schwartz JS, Shero ST, Smith SC, Jr, Sorlie P, Stone NJ, Wilson PWF. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2013.
    1. Chrysant SG, Chrysant GS. New insights into the true nature of the obesity paradox and the lower cardiovascular risk. J Am Soc Hypertens. 2013;7(1):85–94. doi: 10.1016/j.jash.2012.11.008.
    1. Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Despres JP. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr. 1993;58(4):463–467.
    1. Domanski MJ, Jablonski KA, Rice MM, Fowler SE, Braunwald E, Investigators P. Obesity and cardiovascular events in patients with established coronary disease. Eur Heart J. 2006;27(12):1416–1422.
    1. Dagenais GR, Yi Q, Mann JF, Bosch J, Pogue J, Yusuf S. Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease. Am Heart J. 2005;149(1):54–60. doi: 10.1016/j.ahj.2004.07.009.
    1. Kragelund C, Hassager C, Hildebrandt P, Torp-Pedersen C, Kober L. Impact of obesity on long-term prognosis following acute myocardial infarction. Int J Cardiol. 2005;98(1):123–131. doi: 10.1016/j.ijcard.2004.03.042.
    1. Nikolsky E, Stone GW, Grines CL, Cox DA, Garcia E, Tcheng JE, Griffin JJ, Guagliumi G, Stuckey T, Turco M, Negoita M, Lansky AJ, Mehran R. Impact of body mass index on outcomes after primary angioplasty in acute myocardial infarction. Am Heart J. 2006;151(1):168–175. doi: 10.1016/j.ahj.2005.03.024.
    1. Wessel TR, Arant CB, Olson MB, Johnson BD, Reis SE, Sharaf BL, Shaw LJ, Handberg E, Sopko G, Kelsey SF, Pepine CJ, Merz NB. Relationship of physical fitness vs body mass index with coronary artery disease and cardiovascular events in women. JAMA. 2004;292(10):1179–1187. doi: 10.1001/jama.292.10.1179.
    1. Svingen GF, Ueland PM, Pedersen EK, Schartum-Hansen H, Seifert R, Ebbing M, Loland KH, Tell GS, Nygard O. Plasma dimethylglycine and risk of incident acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol. 2013.
    1. Ebbing M, Bleie O, Ueland PM, Nordrehaug JE, Nilsen DW, Vollset SE, Refsum H, Pedersen EK, Nygard O. Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial. JAMA. 2008;300(7):795–804. doi: 10.1001/jama.300.7.795.
    1. Benowitz NL, Jacob P III, Ahijevych K, Jarvis MJ, Hall S, LeHouezec J, Hansson A, Henningfield J, Tsoh J, Hurt RD. Velicer W for the The SRNT Subcommittee on Biochemical Verification. Biochemical verification of tobacco use and cessation. Nicotine Tob Res. 2002;4(2):149–159. doi: 10.1080/14622200210123581.
    1. Midttun O, Hustad S, Ueland PM. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(9):1371–1379. doi: 10.1002/rcm.4013.
    1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Alpert JS, Antman E, Apple F, Beller G, Breithardt G, Armstrong PW, Bassand JP, Baye´s de Luna A, Chaitman BR, Clemmensen P, Falk E, Fishbein MC, Galvani M, Garson A Jr, Grines C, Hamm C, Hoppe U, Jaffe A, Katus H, Kjekshus J, Klein W, Klootwijk P, Lenfant C, Levy D, Levy RI, Luepker R, Marcus F, Näslund U, Ohman M, Pahlm O. et al.Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur Heart J. 2000;21(18):1502–1513.
    1. Cannon CP, Battler A, Brindis RG, Cox JL, Ellis SG, Every NR, Flaherty JT, Harrington RA, Krumholz HM, Simoons ML, Van De Werf FJJ, Weintraub WS, Mitchell KR, Morrisson SL, Anderson HV, Cannom DS, Chitwood WR, Cigarroa JE, Collins-Nakai RL, Gibbons RJ, Grover FL, Heidenreich PA, Khandheria BK, Knoebel SB, Krumholz HL, Malenka DJ, Mark DB, Mckay CR, Passamani ER, Radford MJ. et al.American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes. A report of the American College of Cardiology Task Force on Clinical Data Standards (Acute Coronary Syndromes Writing Committee) J Am Coll Cardiol. 2001;38(7):2114–2130. doi: 10.1016/S0735-1097(01)01702-8.
    1. Greenland S. Modeling and variable selection in epidemiologic analysis. Am J Public Health. 1989;79(3):340–349. doi: 10.2105/AJPH.79.3.340.
    1. Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation. 1999;100(13):1481–1492. doi: 10.1161/01.CIR.100.13.1481.
    1. Eckel RH. Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee. Am Heart Assoc Circul. 1997;96(9):3248–3250.
    1. De Bacquer D, De Backer G, Ostor E, Simon J, Pyorala K, Group EIS. Predictive value of classical risk factors and their control in coronary patients: a follow-up of the EUROASPIRE I cohort. Eur J Cardiovasc Prev Rehabil. 2003;10(4):289–295. doi: 10.1097/00149831-200308000-00012.
    1. Snijder MB, van Dam RM, Visser M, Seidell JC. What aspects of body fat are particularly hazardous and how do we measure them? Int J Epidemiol. 2006;35(1):83–92.
    1. Silva TC, Barrett-Connor E, Ramires JA, Mansur AP. Obesity, estrone, and coronary artery disease in postmenopausal women. Maturitas. 2008;59(3):242–248. doi: 10.1016/j.maturitas.2008.01.008.
    1. Castracane VD, Kraemer GR, Ogden BW, Kraemer RR. Interrelationships of serum estradiol, estrone, and estrone sulfate, adiposity, biochemical bone markers, and leptin in post-menopausal women. Maturitas. 2006;53(2):217–225. doi: 10.1016/j.maturitas.2005.04.007.
    1. Romero-Corral A, Somers VK, Sierra-Johnson J, Jensen MD, Thomas RJ, Squires RW, Allison TG, Korinek J, Lopez-Jimenez F. Diagnostic performance of body mass index to detect obesity in patients with coronary artery disease. Eur Heart J. 2007;28(17):2087–2093. doi: 10.1093/eurheartj/ehm243.
    1. Rexrode KM, Carey VJ, Hennekens CH, Walters EE, Colditz GA, Stampfer MJ, Willett WC, Manson JE. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280(21):1843–1848. doi: 10.1001/jama.280.21.1843.
    1. Maas AH, van der Schouw YT, Regitz-Zagrosek V, Swahn E, Appelman YE, Pasterkamp G, Ten Cate H, Nilsson PM, Huisman MV, Stam HC, Eizema K, Stramba-Badiale M. Red alert for women's heart: the urgent need for more research and knowledge on cardiovascular disease in women: proceedings of the workshop held in Brussels on gender differences in cardiovascular disease, 29 September 2010. Eur Heart J. 2011;32(11):1362–1368. doi: 10.1093/eurheartj/ehr048.

Source: PubMed

3
Abonneren