Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial

Maggie C Walter, Peter Reilich, Simone Thiele, Joachim Schessl, Herbert Schreiber, Karlheinz Reiners, Wolfram Kress, Clemens Müller-Reible, Matthias Vorgerd, Peter Urban, Bertold Schrank, Marcus Deschauer, Beate Schlotter-Weigel, Ralf Kohnen, Hanns Lochmüller, Maggie C Walter, Peter Reilich, Simone Thiele, Joachim Schessl, Herbert Schreiber, Karlheinz Reiners, Wolfram Kress, Clemens Müller-Reible, Matthias Vorgerd, Peter Urban, Bertold Schrank, Marcus Deschauer, Beate Schlotter-Weigel, Ralf Kohnen, Hanns Lochmüller

Abstract

Background: Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B).

Methods: We assessed the one-year-natural course of dysferlinopathy, and the safety and efficacy of deflazacort treatment in a double-blind, placebo-controlled cross-over trial. After one year of natural course without intervention, 25 patients with genetically defined dysferlinopathy were randomized to receive deflazacort and placebo for six months each (1 mg/kg/day in month one, 1 mg/kg every 2nd day during months two to six) in one of two treatment sequences.

Results: During one year of natural course, muscle strength declined about 2% as measured by CIDD (Clinical Investigation of Duchenne Dystrophy) score, and 76 Newton as measured by hand-held dynamometry. Deflazacort did not improve muscle strength. In contrast, there is a trend of worsening muscle strength under deflazacort treatment, which recovers after discontinuation of the study drug. During deflazacort treatment, patients showed a broad spectrum of steroid side effects.

Conclusion: Deflazacort is not an effective therapy for dysferlinopathies, and off-label use is not warranted. This is an important finding, since steroid treatment should not be administered in patients with dysferlinopathy, who may be often misdiagnosed as polymyositis.

Trial registration: This clinical trial was registered at http://www.ClincalTrials.gov, identifier: NCT00527228, and was always freely accessible to the public.

Figures

Figure 1
Figure 1
Description of the study population.
Figure 2
Figure 2
Flow chart of the clinical trial.
Figure 3
Figure 3
Manual muscle strength assessed by CIDD in both groups in 18 patients (sequence deflazacort-placebo, and placebo-deflazacort, completer population). a) Average course%CIDD sum score from natural history until end of both sequences. b) Pooled sequences for absolute change%CIDD from natural history until end of both sequences. c) Mutation-related CIDD subgroup analysis. Correlation between the type of mutation, resulting in residual dysferlin protein versus total loss of dysferlin protein, assessed by Western Blot and mutation prediction, and outcomes during treatment phases with a sample size of 4 patients in 3 subgroups (sequence deflazacort-placebo, protein present / sequence deflazacort-placebo, protein absent / sequence placebo-deflazacort, protein present) and 6 patients in the remaining subgroup (sequence placebo-deflazacort, protein absent).
Figure 4
Figure 4
Hand-held dynamometry (HHD) in both groups in 18 patients (sequence deflazacort-placebo, and placebo-deflazacort, completer population). a) Average course%HHD sum score from natural history until end of both sequences. b) Pooled sequences for absolute change%HHD from natural history until end of both sequences. c) Mutation-related HHD subgroup analysis. Correlation between the type of mutation, resulting in residual dysferlin protein versus total loss of dysferlin protein, assessed by Western Blot and mutation prediction, and outcomes during treatment phases with a sample size of 4 patients in 3 subgroups (sequence deflazacort-placebo, protein present / sequence deflazacort-placebo, protein absent / sequence placebo-deflazacort, protein present) and 6 patients in the remaining subgroup (sequence placebo-deflazacort, protein absent).
Figure 5
Figure 5
Neuromuscular Symptom Score (NSS) in both groups in 18 patients (sequence deflazacort-placebo, and placebo-deflazacort, completer population). a) Average course%NSS sum score from natural history until end of both sequences. b) Mutation-related NSS subgroup analysis. Correlation between the type of mutation, resulting in residual dysferlin protein versus total loss of dysferlin protein, assessed by Western Blot and mutation prediction, and outcomes during treatment phases with a sample size of 4 patients in 3 subgroups (sequence deflazacort-placebo, protein present / sequence deflazacort-placebo, protein absent / sequence placebo-deflazacort, protein present) and 6 patients in the remaining subgroup (sequence placebo-deflazacort, protein absent).

References

    1. Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S, Zatz M, Beckmann JS, Bushby K. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet. 1998;20:37–42. doi: 10.1038/1689.
    1. Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH Jr. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 1998;20:31–36. doi: 10.1038/1682.
    1. Moore SA, Shilling CJ, Westra S, Wall C, Wicklund MP, Stolle C, Brown CA, Michele DE, Piccolo F, Winder TL, Stence A, Barresi R, King N, King W, Florence J, Campbell KP, Fenichel GM, Stedman HH, Kissel JT, Griggs RC, Pandya S, Mathews KD, Pestronk A, Serrano C, Darvish D, Mendell JR. Limb-girdle muscular dystrophy in the United States. J Neuropathol Exp Neurol. 2006;65:995–1003. doi: 10.1097/01.jnen.0000235854.77716.6c.
    1. Miyoshi K, Saijo K, Kuryu Y. Four cases of distal myopathy in two families. Jpn J Hum Genet. 1967;12:113.
    1. Illa I, Serrano-Munuera C, Gallardo E, Lasa A, Rojas-Garcia R, Palmer J, Gallano P, Baiget M, Matsuda C, Brown RH. Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol. 2001;49:130–134. doi: 10.1002/1531-8249(200101)49:1<130::AID-ANA22>;2-0.
    1. Ueyama H, Kumamoto T, Nagao S, Masuda T, Horinouchi H, Fujimoto S, Tsuda T. A new dysferlin gene mutation in two Japanese families with limb-girdle muscular dystrophy 2B and Miyoshi myopathy. Neuromuscul Disord. 2001;11:139–145. doi: 10.1016/S0960-8966(00)00168-1.
    1. McNally EM, Ly CT, Rosenmann H, Mitrani Rosenbaum S, Jiang W, Anderson LV, Soffer D, Argov Z. Splicing mutation in dysferlin produces limb-girdle muscular dystrophy with inflammation. Am J Med Genet. 2000;91:305–312. doi: 10.1002/(SICI)1096-8628(20000410)91:4<305::AID-AJMG12>;2-S.
    1. Weiler T, Bashir R, Anderson LV, Davison K, Moss JA, Britton S, Nylen E, Keers S, Vafiadaki E, Greenberg CR, Bushby CR, Wrogemann K. Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s) Hum Mol Genet. 1999;8:871–877. doi: 10.1093/hmg/8.5.871.
    1. Cagliani R, Magri F, Toscano A, Merlini L, Fortunato F, Lamperti C, Rodolico C, Prelle A, Sironi M, Aguennouz M, Ciscato P, Uncini A, Moggio M, Bresolin N, Comi GP. Mutation finding in patients with dysferlin deficiency and role of the dysferlin interacting proteins annexin A1 and A2 in muscular dystrophies. Hum Mutat. 2005;26:283.
    1. Linssen WH, Notermans NC, Van der Graaf Y, Wokke JH, Van Doorn PA, Höweler CJ, Busch HF, De Jager AE, De Visser M. Miyoshi-type distal muscular dystrophy. Clinical spectrum in 24 Dutch patients. Brain. 1997;120:1989–1996. doi: 10.1093/brain/120.11.1989.
    1. Bushby K, Griggs R. 145th ENMC international workshop: planning for an international trial of steroid dosage regimes in DMD (FOR DMD), 22-24th october 2006, naarden, the netherlands. MSG/ENMC FOR DMD trial study group. Neuromuscul Disord. 2007;17:423–428. doi: 10.1016/j.nmd.2007.01.006.
    1. Griggs RC, 3rd Moxley RT, Mendell JR, Fenichel GM, Brooke MH, Pestronk A, Miller JP. Prednisone in Duchenne dystrophy. A randomized, controlled trial defining the time course and dose response. Clinical investigation of Duchenne dystrophy group. Arch Neurol. 1991;48:383–388. doi: 10.1001/archneur.1991.00530160047012.
    1. Bonifati MD, Ruzza G, Bonometto P, Berardinelli A, Gorni K, Orcesi S, Lanzi G, Angelini C. A multicenter, double-blind, randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle Nerve. 2000;23:1344–1347. doi: 10.1002/1097-4598(200009)23:9<1344::AID-MUS4>;2-F.
    1. Griggs RC, Moxley RT 3rd, Mendell JR, Fenichel GM, Brooke MH, Pestronk A, Miller JP, Cwik VA, Pandya S, Robison J. Duchenne dystrophy: randomized, controlled trial of prednisone (18 months) and azathioprine (12 months) Neurology. 1993;43:520–752. doi: 10.1212/WNL.43.3_Part_1.520.
    1. Kirschner J, Schessl J, Schara U, Reitter B, Stettner GM, Hobbiebrunken E, Wilichowski E, Bernert G, Weiss S, Stehling F, Wiegand G, Müller-Felber W, Thiele S, Grieben U, von der Hagen M, Lütschg J, Schmoor C, Ihorst G, Korinthenberg R. Treatment of Duchenne muscular dystrophy with ciclosporin A: a randomised, double-blind, placebo-controlled multicentre trial. Lancet Neurol. 2010;9:1053–1059. doi: 10.1016/S1474-4422(10)70196-4.
    1. Baudy AR, Reeves EK, Damsker JM, Heier C, Garvin LM, Dillingham BC, McCall J, Rayavarapu S, Wang Z, Vandermeulen JH, Sali A, Jahnke V, Duguez S, Dubois D, Rose MC, Nagaraju K, Hoffman EP. Modification of glucocorticoids dissociates nuclear factor-κB inhibitory efficacy from glucocorticoid response element-associated side effects. J Pharmacol Exp Ther. 2012;343:225–232. doi: 10.1124/jpet.112.194340.
    1. Hoffman EP, Rao D, Pachman LM. Clarifying the boundaries between the inflammatory and dystrophic myopathies: insights from molecular diagnostics and microarrays. Rheum Dis Clin North Am. 2002;28:743–757. doi: 10.1016/S0889-857X(02)00031-5.
    1. Angelini C, Pegoraro E, Turella E, Intino MT, Pini A, Costa C. Deflazacort in Duchenne dystrophy: study of long-term effect. Muscle Nerve. 1994;17:386–391. doi: 10.1002/mus.880170405.
    1. Siegel IM, Miller JE, Ray RD. Failure of corticosteroid in the treatment of Duchenne (pseudo-hypertrophic) muscular dystrophy. Report of a clinically matched three years double-blind study. Ill Med J. 1974;145:32–33.
    1. Moxley RT 3rd, Ashwal S, Pandya S, Connolly A, Florence J, Mathews K, Baumbach L, McDonald C, Sussman M, Wade C. Quality Standards Subcommittee of the American Academy of Neurology; Practice Committee of the Child Neurology Society. Practice parameter: corticosteroid treatment of duchenne dystrophy: report of the quality standards subcommittee of the American academy of neurology and the practice committee of the child neurology society. Neurology. 2005;11(64):13–20.
    1. Brooke MH, Griggs RC, Mendell JR, Fenichel GM, Shumate JB, Pellegrino RJ. Clinical trial in Duchenne dystrophy. I. The design of the protocol. Muscle Nerve. 1981;4:186–197. doi: 10.1002/mus.880040304.
    1. Merlini L, Mazzone ES, Solari A, Morandi L. Reliability of hand-held dynamometry in spinal muscular atrophy. Muscle Nerve. 2002;25:64–70.
    1. Dorstewitz B. Normwertstudie M3 Diagnos System Maximalkraft als maximale Drehmomente bei gesunden Probanden im Bereich der Armbeuge- und Kniestreckmuskulatur.
    1. Soueidan SA, Dalakas MC. Treatment of inclusion body myositis with high-dose intravenous immunoglobulin. Neurology. 1993;43:876–879. doi: 10.1212/WNL.43.5.876.
    1. Beenakker EA, Maurits NM, Fock JM, Brouwer OF, van der Hoeven JH. Functional ability and muscle force in healthy children and ambulant Duchenne muscular dystrophy patients. Eur J Pediatr Neurol. 2005;9:387–393. doi: 10.1016/j.ejpn.2005.06.004.
    1. Vignos PJ Jr. Diagnosis of progressive muscular dystrophy. J Bone Joint Surg Am. 1967;49:1212–1220.
    1. Scott OM, Goddard C, Dubowith V. Quantitation of muscle function in children: a prospective study in Duchenne muscular dystrophy. Muscle Nerve. 1982;5:291–301. doi: 10.1002/mus.880050405.
    1. Guy W. ECDEU Assessment Manual for Psychopharmacology. Rockville, MD, U.S: Department of Health, Education, and Welfare; 1976.
    1. Bullinger M, Kirchberger I. SF-36 Fragebogen zum Gesundheitszustand. Göttingen: Hogrefe Verlag; 1998. pp. 62–63.
    1. Lehmacher W. Analysis of cross-over trials in the presence of residual effects. Stat Med. 1991;10:891.899.
    1. Brown H, Prescott R. Applied mixed models in medicine. Chicester: Wiley; 1999.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. New York: Academic Press; 1988.
    1. Belanto JJ, Diaz-Perez SV, Magyar CE, Maxwell MM, Yilmaz Y, Topp K, Boso G, Jamieson CH, Cacalano NA, Jamieson CA. Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation. Neuromuscul Disord. 2010;20:111–121. doi: 10.1016/j.nmd.2009.12.003.
    1. Krahn M, Illa I, Lévy N, Bushby K. 172nd ENMC International Workshop: dysferlinopathies 29–31 January 2010, Naarden, The Netherlands. Neuromuscul Disord. 2011;21:503–512. doi: 10.1016/j.nmd.2011.04.006.

Source: PubMed

3
Abonneren