Effect of awake prone position on diaphragmatic thickening fraction in patients assisted by noninvasive ventilation for hypoxemic acute respiratory failure related to novel coronavirus disease

Gianmaria Cammarota, Elisa Rossi, Leonardo Vitali, Rachele Simonte, Tiziano Sannipoli, Francesco Anniciello, Luigi Vetrugno, Elena Bignami, Cecilia Becattini, Simonetta Tesoro, Danila Azzolina, Angelo Giacomucci, Paolo Navalesi, Edoardo De Robertis, Gianmaria Cammarota, Elisa Rossi, Leonardo Vitali, Rachele Simonte, Tiziano Sannipoli, Francesco Anniciello, Luigi Vetrugno, Elena Bignami, Cecilia Becattini, Simonetta Tesoro, Danila Azzolina, Angelo Giacomucci, Paolo Navalesi, Edoardo De Robertis

Abstract

Background: Awake prone position is an emerging rescue therapy applied in patients undergoing noninvasive ventilation (NIV) for acute hypoxemic respiratory failure (ARF) related to novel coronavirus disease (COVID-19). Although applied to stabilize respiratory status, in awake patients, the application of prone position may reduce comfort with a consequent increase in the workload imposed on respiratory muscles. Thus, we primarily ascertained the effect of awake prone position on diaphragmatic thickening fraction, assessed through ultrasound, in COVID-19 patients undergoing NIV.

Methods: We enrolled all COVID-19 adult critically ill patients, admitted to intensive care unit (ICU) for hypoxemic ARF and undergoing NIV, deserving of awake prone positioning as a rescue therapy. Exclusion criteria were pregnancy and any contraindication to awake prone position and NIV. On ICU admission, after NIV onset, in supine position, and at 1 h following awake prone position application, diaphragmatic thickening fraction was obtained on the right side. Across all the study phases, NIV was maintained with the same setting present at study entry. Vital signs were monitored throughout the entire study period. Comfort was assessed through numerical rating scale (0 the worst comfort and 10 the highest comfort level). Data were presented in median and 25th-75th percentile range.

Results: From February to May 2021, 20 patients were enrolled and finally analyzed. Despite peripheral oxygen saturation improvement [96 (94-97)% supine vs 98 (96-99)% prone, p = 0.008], turning to prone position induced a worsening in comfort score from 7.0 (6.0-8.0) to 6.0 (5.0-7.0) (p = 0.012) and an increase in diaphragmatic thickening fraction from 33.3 (25.7-40.5)% to 41.5 (29.8-50.0)% (p = 0.025).

Conclusions: In our COVID-19 patients assisted by NIV in ICU, the application of awake prone position improved the oxygenation at the expense of a greater diaphragmatic thickening fraction compared to supine position. Trial registration ClinicalTrials.gov, number NCT04904731. Registered on 05/25/2021, retrospectively registered. https://ichgcp.net/clinical-trials-registry/NCT04904731 .

Conflict of interest statement

Dr. Simonetta Tesoro declares speaking honoraria from MSD. Dr. Angelo Giacomucci declares unrestricted grant from CSL Behring, travel grant from Edwards, and travel grant from Abionic SPA. Prof Paolo Navalesi declares to have received: grants, personal fees and non-financial support from Maquet Critical Care—Getinge; grants and non-financial support from Draeger and Intersurgical S.p.A; and personal fees from Gilead, Philips, Resmed, MSD, and Novartis, in each case for reasons that remain unrelated to the submitted work. Prof. Navalesi also contributed to the development of the patented ‘helmet Next,’ the royalties for which are paid to Intersurgical Spa. Prof. Navalesi contributed to the development of a device not discussed in the present study with patent application number: EP20170199831.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Enrollment flow diagram. COVID-19, novel coronavirus disease; ICU, intensive care unit; NIV, noninvasive ventilation
Fig. 2
Fig. 2
Generalized linear mixed model predicted diaphragmatic thickening fractions according to comfort scores, adjusted for body position, i.e., supine versus prone. Generalized linear mixed model predicted diaphragmatic thickening fractions according to comfort scores with 95% confidence intervals, adjusted for body position, i.e., supine (green) versus prone (red), are depicted. Fixed effect comfort score estimate (95% CI) =  − 2.9 (− 5.5 to − 0.4); p = 0.025
Fig. 3
Fig. 3
Impact of body position on diaphragmatic thickening fraction in the patients who experienced or not noninvasive ventilation failure within 48 h following study completion. Boxes and whiskers represent median, 25th–75th percentile, and minimum-to-maximum interval of diaphragmatic thickening fractions acquired in supine and prone position. Hollow boxes refer to patients who experienced NIV failure while grey boxes refer to patients with NIV success. *p = 0.008, NIV failure versus NIV success, refers to mixed model analysis carried out with Satterthwaite methods of degrees of freedom. NIV, noninvasive ventilation

References

    1. Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;19:1–8.
    1. Franco C, Facciolongo N, Tonelli R, Dongilli R, Vianello A, Pisani L, et al. Feasibility and clinical impact of out-of-ICU noninvasive respiratory support in patients with COVID-19-related pneumonia. Eur Respir J. 2020;56.
    1. Winck JC, Ambrosino N. COVID-19 pandemic and non invasive respiratory management: every Goliath needs a David. An evidence based evaluation of problems. Pulmonology. 2020;26:213–20. doi: 10.1016/j.pulmoe.2020.04.013.
    1. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy early experience and forecast during an emergency response. JAMA. 2020;323:1545–1546. doi: 10.1001/jama.2020.4031.
    1. Raoof S, Nava S, Carpati C, Hill NS. High-flow, noninvasive ventilation and awake (nonintubation) proning in patients with coronavirus disease 2019 with respiratory failure. Chest. 2020;158:1992–2002. doi: 10.1016/j.chest.2020.07.013.
    1. Xu Q, Wang T, Qin X, Jie Y, Zha L, Lu W. Early awake prone position combined with high-flow nasal oxygen therapy in severe COVID-19: a case series. Crit Care. 2020;24:4–6. doi: 10.1186/s13054-019-2709-x.
    1. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Guérin C, Albert RK, Beitler J, Gattinoni L, Jaber S, Marini JJ, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46:2385–2396. doi: 10.1007/s00134-020-06306-w.
    1. Sartini C, Tresoldi M, Paolo S, Trettamanti A, Carcò F, Landoni G, et al. Respiratory parameters in patientswith COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA. 2020;323:2338–2340. doi: 10.1001/jama.2020.7861.
    1. Coppo A, Bellani G, Winterton D, Di Pierro M, Soria A, Faverio P, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med. 2020;8:765–774. doi: 10.1016/S2213-2600(20)30268-X.
    1. Ng Z, Tay WC, Benjamin Ho CH. Awake prone positioning for non-intubated oxygen dependent COVID-19 pneumonia patients. Eur Respir J. 2020;56.
    1. Elharrar X, Trigui Y, Dols A-M, Touchon F, Martinez S, Prud’homme E, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA 2020;323:2336–8.
    1. Riad Z, Mezidi M, Subtil F, Louis B, Guérin C. Short-Term effects of the prone positioning maneuver on lung and chest wall mechanics in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2018;197:1355–1358. doi: 10.1164/rccm.201709-1853LE.
    1. Chiumello D, Pelosi P, Crosi M, Bigatello LM, Gattinoni L. The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation. Eur Respir J. 2001;18:107–114. doi: 10.1183/09031936.01.00083901.
    1. Cammarota G, Longhini F, Perucca R, Ronco C, Colombo D, Messina A, et al. New setting of neurally adjusted ventilatory assist during noninvasive ventilation through a helmet. Anesthesiology. 2016;125:1181–1189. doi: 10.1097/ALN.0000000000001354.
    1. Cammarota G, Sguazzotti I, Zanoni M, Messina A, Colombo D, Vignazia GL, et al. Diaphragmatic ultrasound assessment in subjects with acute hypercapnic respiratory failure admitted to the emergency department. Respir Care. 2019;64:1469–1477. doi: 10.4187/respcare.06803.
    1. Mercurio G, Arrigo SD, Moroni R, Grieco DL, Menga LS, Romano A, et al. Diaphragm thickening fraction predicts noninvasive ventilation outcome: a preliminary physiological study. Crit Care. 2021;25:1–12. doi: 10.1186/s13054-021-03638-x.
    1. Corradi F, Vetrugno L, Orso D, Bove T, Schreiber A, Boero E, et al. Diaphragmatic thickening fraction as a potential predictor of response to continuous positive airway pressure ventilation in covid-19 pneumonia: a single-center pilot study. Respir Physiol Neurobiol. 2021;284:103585. doi: 10.1016/j.resp.2020.103585.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–2533.
    1. Ely EW, Truman B, Shintani A, Thomason JWW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS) J Am Med Assoc. 2003;289:2983–2991. doi: 10.1001/jama.289.22.2983.
    1. Marchioni A, Castaniere I, Tonelli R, Fantini R, Fontana M, Tabbì L, et al. Ultrasound-assessed diaphragmatic impairment is a predictor of outcomes in patients with acute exacerbation of chronic obstructive pulmonary disease undergoing noninvasive ventilation. Crit Care. 2018;22:1–9. doi: 10.1186/s13054-017-1923-7.
    1. Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39:801–10. doi: 10.1007/s00134-013-2823-1.
    1. Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:642–649. doi: 10.1007/s00134-015-3687-3.
    1. Vivier E, Dessap AM, Dimassi S, Vargas F, Lyazidi A, Thille AW, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012;38:796–803. doi: 10.1007/s00134-012-2547-7.
    1. Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011;183:341–347. doi: 10.1164/rccm.201003-0369OC.
    1. Cammarota G, Lauro G, Sguazzotti I, Mariano I, Perucca R, Messina A, et al. Esophageal pressure versus gas exchange to set PEEP during intraoperative ventilation. Respir Care. 2020;65:625–635. doi: 10.4187/respcare.07238.
    1. Cammarota G, Boniolo E, Santangelo E, De Vita N, Verdina F, Crudo S, et al. Diaphragmatic kinetics assessment by tissue doppler imaging and extubation outcome. Respir Care. 2021;66:983–993. doi: 10.4187/respcare.08702.
    1. Grieco DL, Menga LS, Cesarano M, Rosà T, Spadaro S, Bitondo MM, et al. Effect of helmet noninvasive ventilation versus high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure: the henivot randomized clinical trial. JAMA. 2021;325:1731–1743. doi: 10.1001/jama.2021.4682.
    1. Vaschetto R, Longhini F, Persona P, Ori C, Stefani G, Liu S, et al. Early extubation followed by immediate noninvasive ventilation vs. standard extubation in hypoxemic patients: a randomized clinical trial. Intensive Care Med. 2018;45:62–71. doi: 10.1007/s00134-018-5478-0.
    1. Vaschetto R, Turucz E, Dellapiazza F, Guido S, Colombo D, Cammarota G, et al. Noninvasive ventilation after early extubation in patients recovering from hypoxemic acute respiratory failure: a single-centre feasibility study. Intensive Care Med. 2012;38:1599–1606. doi: 10.1007/s00134-012-2652-7.
    1. Cammarota G, Vaschetto R, Azzolina D, De Vita N, Olivieri C, Ronco C, et al. Early extubation with immediate non-invasive ventilation versus standard weaning in intubated patients for coronavirus disease 2019: a retrospective multicenter study. Sci Rep. 2021;11:1–9. doi: 10.1038/s41598-021-92960-z.
    1. Pelosi P, Tubiolo D, Mascheroni D, Vicardi P, Crotti S, Valenza F, et al. Effects of the Prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med. 1998;157:387–393. doi: 10.1164/ajrccm.157.2.97-04023.
    1. Vaschetto R, Cena T, Sainaghi PP, Meneghetti G, Bazzano S, Vecchio D, et al. Cerebral nervous system vasculitis in a Covid-19 patient with pneumonia. J Clin Neurosci. 2020;79:71–73. doi: 10.1016/j.jocn.2020.07.032.
    1. Deana C, Verriello L, Pauletto G, Corradi F, Forfori F, Cammarota G, et al. Insights into neurological dysfunction of critically ill COVID-19 patients. Trends Anaesth Crit Care. 2021;36:30–38. doi: 10.1016/j.tacc.2020.09.005.
    1. Gattinoni L, Marini JJ, Camporota L. The respiratory drive: an overlooked tile of COVID-19 pathophysiology. Am J Respir Crit Care Med. 2020;208:1079–1080. doi: 10.1164/rccm.202008-3142ED.
    1. Esnault P, Cardinale M, Hraiech S, Goutorbe P, Baumstrack K, Prud’homme E, et al. High respiratory drive and excessive respiratory efforts predict relapse of respiratory failure in critically ill patients with COVID-19. Am J Respir Crit Care Med. 2020;208:1173–8. doi: 10.1164/rccm.202005-1582LE.
    1. Avdeev SN, Nekludova GV, Trushenko NV, Tsareva NA, Yaroshetskiy AI, Kosanovic D. Lung ultrasound can predict response to the prone position in awake non-intubated patients with COVID-19 associated acute respiratory distress syndrome. Crit Care. 2021;25:4–7. doi: 10.1186/s13054-021-03472-1.
    1. Rousset D, Sarton B, Riu B, Bataille B, Silva S, Aguersif A, et al. Bedside ultrasound monitoring of prone position induced lung inflation. Intensive Care Med. 2021;47:626–628. doi: 10.1007/s00134-021-06347-9.

Source: PubMed

3
Abonneren