Analgesic efficacy and safety of erector spinae plane block in breast cancer surgery: a systematic review and meta-analysis

Ying Zhang, Tieshuai Liu, Youfa Zhou, Yijin Yu, Gang Chen, Ying Zhang, Tieshuai Liu, Youfa Zhou, Yijin Yu, Gang Chen

Abstract

Background: Surgical resection is considered to be the primary and most effective therapy for breast cancer, postoperative pain is an issue gaining significant attention. In recent years, erector spinae plane block (ESPB) has attracted much attention in postoperative analgesia, but its effectiveness is still controversial. This meta-analysis was implemented to verify the clinical analgesic efficacy and safety of erector spinae plane block in patients undergoing breast cancer surgery.

Methods: We searched PubMed, EMBASE, Web of Science, the Cochrane Library and ClinicalTrials.gov for randomized controlled trials (RCTs) comparing ESPB with general anesthesia (GA) in breast cancer surgery that were published before December 25, 2020. The primary outcome was opioid consumption at the first 24 h after surgery, while secondary outcomes included pain scores at 1, 6,12 and 24 h after surgery, opioid consumption at 1, 6 and 12 h after surgery, intraoperative opioid consumption, number of patients who need for rescue analgesia, and the incidence of postoperative nausea and vomiting (PONV).

Results: Eleven randomized controlled trials involving 679 patients met the study inclusion criteria and were included in this study. In comparison to GA group, the ESPB group showed a significant reduction in morphine consumption at the first 24 h after surgery by a mean difference (MD) of - 7.67 mg [95% confidence interval (CI) - 10.35 to - 5.00] (P < 0.01). In addition, the ESPB group showed lower pain scores than the GA group in the four time periods (1, 6, 12 and 24 h after surgery). ESPB group significantly reduce the intraoperative consumption of fentanyl, the need for postoperative rescue analgesia, and the incidence of PONV.

Conclusions: Ultrasound-guided ESPB is an effective approach for reducing morphine consumption and pain intensity within the first 24 h after breast cancer surgery, compared with GA alone.

Keywords: Breast surgery; Erector spinae plane block (ESPB); Opioid consumption; Postoperative analgesia.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram of the literature search and study selection
Fig. 2
Fig. 2
The risk of bias assessment for included studies. Green, yellow and red circles indicate low, some concerns and high risk of bias, respectively
Fig. 3
Fig. 3
Forest plot of total opioid consumption at the first 24 h after surgery
Fig. 4
Fig. 4
Forest plot of total opioid consumption. (A) total opioid consumption at 1 h postoperatively. (B) total opioid consumption at 6,12 h postoperatively
Fig. 5
Fig. 5
Forest plot of pain scores postoperatively
Fig. 6
Fig. 6
Forest plot of the incidence of postoperative nausea and vomiting (PONV)
Fig. 7
Fig. 7
Forest plot of intraoperative opioid consumption (fentanyl equivalents)
Fig. 8
Fig. 8
Forest plot of postoperative rescue analgesia

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492.
    1. Early Breast Cancer Trialists' Collaborative Group Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–1717. doi: 10.1016/S0140-6736(05)66544-0.
    1. Woolston C. Breast cancer. Nature. 2015;27(7578):s101. doi: 10.1038/527S101a.
    1. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-year risks of breast-Cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377(19):1836–1846. doi: 10.1056/NEJMoa1701830.
    1. El-Tamer MB, Ward BM, Schifftner T, Neumayer L, Khuri S, Henderson W. Morbidity and mortality following breast cancer surgery in women: national benchmarks for standards of care. Ann Surg. 2007;245(5):665–671. doi: 10.1097/01.sla.0000245833.48399.9a.
    1. Hickey OT, Burke SM, Hafeez P, Mudrakouski AL, Hayes ID, Shorten GD. Severity of acute pain after breast surgery is associated with the likelihood of subsequently developing persistent pain. Clin J Pain. 2010;26(7):556–560. doi: 10.1097/AJP.0b013e3181dee988.
    1. Andersen KG, Kehlet H. Persistent pain after breast cancer treatment: a critical review of risk factors and strategies for prevention. J Pain. 2011;12(7):725–746. doi: 10.1016/j.jpain.2010.12.005.
    1. Forero M, Adhikary SD, Lopez H, Tsui C, Chin KJ. The erector Spinae plane block: a novel analgesic technique in thoracic neuropathic pain. Reg Anesth Pain Med. 2016;41(5):621–627. doi: 10.1097/AAP.0000000000000451.
    1. Bonvicini D, Tagliapietra L, Giacomazzi A, Pizzirani E. Bilateral ultrasound-guided erector spinae plane blocks in breast cancer and reconstruction surgery. J Clin Anesth. 2018;44:3–4. doi: 10.1016/j.jclinane.2017.10.006.
    1. Moher, D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
    1. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785–1805. doi: 10.1177/0962280216669183.
    1. Knotkova H, Fine PG, Portenoy RK. Opioid rotation: the science and the limitations of the equianalgesic dose table. J Pain Symptom Manag. 2009;38(3):426–439. doi: 10.1016/j.jpainsymman.2009.06.001.
    1. Mercadante S, Caraceni A. Conversion ratios for opioid switching in the treatment of cancer pain: a systematic review. Palliat Med. 2011;25(5):504–515. doi: 10.1177/0269216311406577.
    1. Santonocito C, Noto A, Crimi C, Sanfilippo F. Remifentanil-induced postoperative hyperalgesia: current perspectives on mechanisms and therapeutic strategies. Local Reg Anesth. 2018;11:15–23. doi: 10.2147/LRA.S143618.
    1. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898.
    1. Aksu C, Kuş A, Yörükoğlu HU, Kılıç CT, Gürkan Y. Analgesic effect of the bi-level injection erector spinae plane block after breast surgery: a randomized controlled trial. Agri. 2019;31(3):132–137.
    1. Elsabeeny WY, Shehab NN, Wadod MA, Elkady MA. Perioperative analgesic modalities for breast Cancer surgeries: a prospective randomized controlled trial. J Pain Res. 2020;13:2885–2894. doi: 10.2147/JPR.S274808.
    1. Gürkan Y, Aksu C, Kuş A, Yörükoğlu UH, Kılıç CT. Ultrasound guided erector spinae plane block reduces postoperative opioid consumption following breast surgery: A randomized controlled study. J Clin Anesth. 2018;50:65–68. 2018. 50: p. 65–68.
    1. Gürkan Y, Aksu C, Kuş A, Yörükoğlu UH. Erector spinae plane block and thoracic paravertebral block for breast surgery compared to IV-morphine: a randomized controlled trial. J Clin Anesth. 2020;59:84–88. doi: 10.1016/j.jclinane.2019.06.036.
    1. He W-S, Wu Z-Y, Zu L-J, Sun H-J, Yang X-C. Application of erector spinae plane block guided by ultrasound for postoperative analgesia in breast cancer surgery: a randomized controlled trial. Cancer Commun (Lond) 2020;40(2–3):122–125. doi: 10.1002/cac2.12013.
    1. Li X, Tang D-L, Wang J, Shan Y. Ultrasound-guided erector spinae block and thoracic paravertebral block for the treatment of acute pain after surgery of breast cancer. J Intervent Radiol. 2020;8:777–781.
    1. Seelam S, Nair AS, Christopher A, Upputuri O, Naik V, Rayani BK. Efficacy of single-shot ultrasound-guided erector spinae plane block for postoperative analgesia after mastectomy: a randomized controlled study. Saudi J Anaesth. 2020;14(1):22–27. doi: 10.4103/sja.SJA_260_19.
    1. Sharma S, Arora S, Jafra A, Singh G. Efficacy of erector spinae plane block for postoperative analgesia in total mastectomy and axillary clearance: a randomized controlled trial. Saudi J Anaesth. 2020;14(2):186–191. doi: 10.4103/sja.SJA_625_19.
    1. Singh S, Kumar G. Akhileshwar. Ultrasound-guided erector spinae plane block for postoperative analgesia in modified radical mastectomy: a randomised control study. Indian J Anaesth. 2019;63(3):200–204. doi: 10.4103/ija.IJA_758_18.
    1. Wang H-J, Liu Y, Ge W-W, Bian L-D, Pu L-F, Jiang Y, et al. Comparison of ultrasound-guided serratus anterior plane block and erector spinae plane blockperioperatively in radical mastectomy. Zhonghua Yi Xue Za Zhi. 2019;99(23):1809–1813.
    1. Yao Y-S, Li H, He Q-L, Chen T-T, Wang Y-H, Zheng X-C. Efficacy of ultrasound-guided erector spinae plane block on postoperative quality of recovery and analgesia after modified radical mastectomy: randomized controlled trial. Reg Anesth Pain Med. 2019;doi: 10.1136/rapm-2019-100983.
    1. Chin KJ, Adhikary S, Sarwani N, Forero M. The analgesic efficacy of pre-operative bilateral erector spinae plane (ESP) blocks in patients having ventral hernia repair. Anaesthesia. 2017;72(4):452–460. doi: 10.1111/anae.13814.
    1. Yang H-M, Choi YJ, Kwon H-J, O J, Cho TH, Kim SH. Comparison of injectate spread and nerve involvement between retrolaminar and erector spinae plane blocks in the thoracic region: a cadaveric study. Anaesthesia. 2018;73(10):1244–1250. doi: 10.1111/anae.14408.
    1. Ueshima H, Hiroshi O. Spread of local anesthetic solution in the erector spinae plane block. J Clin Anesth. 2018;45:23. doi: 10.1016/j.jclinane.2017.12.007.
    1. Ivanusic J, Konishi Y, Barrington MJ. A cadaveric study investigating the mechanism of action of erector Spinae blockade. Reg Anesth Pain Med. 2018;43(6):567–571. doi: 10.1097/AAP.0000000000000789.
    1. Altıparmak B, Korkmaz Toker M, Uysal AI, Kuşçu Y, Gümüş DS. Ultrasound-guided erector spinae plane block versus oblique subcostal transversus abdominis plane block for postoperative analgesia of adult patients undergoing laparoscopic cholecystectomy: randomized, controlled trial. J Clin Anesth. 2019;57:31–36. doi: 10.1016/j.jclinane.2019.03.012.
    1. Schwartzmann A, Peng P, Maciel MA, Forero M. Mechanism of the erector spinae plane block: insights from a magnetic resonance imaging study. Can J Anaesth. 2018;65(10):1165–1166. doi: 10.1007/s12630-018-1187-y.
    1. Tulgar S, Selvi O, Ahiskalioglu A, Ozer Z. Can unilateral erector spinae plane block result in bilateral sensory blockade? Can J Anaesth. 2019;66(8):1001–1002. doi: 10.1007/s12630-019-01402-y.
    1. Adhikary SD, Bernard S, Lopez H, Chin KJ. Erector Spinae plane block versus Retrolaminar block: a magnetic resonance imaging and anatomical study. Reg Anesth Pain Med. 2018;43(7):756–762.
    1. ElHawary H, Abdelhamid K, Meng F, Janis JE. Erector Spinae plane block decreases pain and opioid consumption in breast surgery: systematic review. Plast Reconstr Surg Glob Open. 2019;7(11):e2525. doi: 10.1097/GOX.0000000000002525.
    1. Ueshima H. Pneumothorax after the erector spinae plane block. J Clin Anesth. 2018;48:12. doi: 10.1016/j.jclinane.2018.04.009.
    1. Hamilton DL. Pneumothorax following erector spinae plane block. J Clin Anesth. 2019;52:17. doi: 10.1016/j.jclinane.2018.08.026.
    1. Sun Q-C, Liu S-Y, Wu H-Y, Kang W-Y, Dong S-S, Cui Y-F, et al. Clinical analgesic efficacy of pectoral nerve block in patients undergoing breast cancer surgery: a systematic review and meta-analysis. Medicine (Baltimore) 2020;99(14):e19614. doi: 10.1097/MD.0000000000019614.
    1. Altıparmak B, Korkmaz Toker M, Uysal Aİ, Gümüş DS. Comparison of the efficacy of erector spinae plane block performed with different concentrations of bupivacaine on postoperative analgesia after mastectomy surgery: ramdomized, prospective, double blinded trial. BMC Anesthesiol. 2019;19(1):31. doi: 10.1186/s12871-019-0700-3.

Source: PubMed

3
Abonneren