Associations between serum mitokine levels and outcomes in stable COPD: an observational prospective study

Carlos A Amado, Paula Martín-Audera, Juan Agüero, Bernardo A Lavín, Armando R Guerra, Pedro Muñoz, Ana Berja, Ciro Casanova, Mayte García-Unzueta, Carlos A Amado, Paula Martín-Audera, Juan Agüero, Bernardo A Lavín, Armando R Guerra, Pedro Muñoz, Ana Berja, Ciro Casanova, Mayte García-Unzueta

Abstract

Mitokines (Humanin (HN), GDF15 and FGF21) are produced as a result of mitochondrial dysfunction and may have major roles in chronic inflammation, malnutrition and exercise capacity in people with COPD. Except for GDF15, studies on this subject are lacking. A total of 165 patients with stable COPD and 49 smokers without COPD were enrolled. We assessed their serum mitokine levels and clinical characteristics at baseline. We recorded moderate and severe exacerbation for the next 12 months. Baseline serum HN (p = 0.037) and GDF-15 (p = 0.013) levels were higher in the COPD group. High HN levels were independently associated with a high risk of exacerbation (HRE) (OR 2.798, 95% CI 1.266-6.187, p = 0.011), malnutrition (OR 6.645, 95% CI 1.859-23.749, p = 0.004), and 6MWD (OR 0.995, 95% CI 0.991-0.999, p = 0.008), and future moderate (HR 1.826, 95% CI 1.181-2.822, p = 0.007) and severe exacerbations (HR 3.445, 95% CI 1.357-8.740, p = 0.009). High GDF15 levels were associated with HRE (OR 3.028, 95% CI 1.134-8.083, p = 0.027), 6MWD (OR 0.995, 95% CI 0.990-0.999, p = 0.017) and predicted desaturation in 6MWT (OR 3.999, 95% CI 1.487-10.757, p = 0.006). High FGF21 levels were associated with HRE (OR 2.144, 95% CI 1.000-4.600, p = 0.05), and predicted future severe exacerbation (HR 4.217, 95% CI 1.459-12.193, p = 0.008). The mitokine levels were higher in patients with COPD than smokers without COPD, and were associated with important clinical outcomes such as exercise capacity and COPD exacerbation. Among the mitokines, HN showed the strongest association with COPD and may serve as a future risk biomarker in this disease.Trial registation NCT04449419.

Conflict of interest statement

Partially funded by GlaxoSmithKline. Carlos Amado has received speaker or consulting fees from Boehringer Ingelheim, Pfizer, AstraZeneca, Novartis, Chiesi, Faes Farma, Esteve and GlaxoSmithKline. Ciro Casanova has received speaker or consulting fees from AstraZeneca, Bial, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Menarini, Novartis, and research grants from GlaxoSmithKline, Menarini and AstraZeneca. The rest of the authors do not have any conflict of interest.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Flowchart for patient selection.
Figure 2
Figure 2
Serum HN levels as predictors of moderate COPD exacerbations.
Figure 3
Figure 3
High serum humanin levels (higher than the median) as predictors of severe COPD exacerbations.

References

    1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–2128. doi: 10.1016/S0140-6736(12)61728-0.
    1. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004;350(10):1005–1012. doi: 10.1056/NEJMoa021322.
    1. Schols AMWJ, Broekhuizen R, Weling-Scheepers CA, Wouters EF. Body composition and mortality in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2005;82:53–59. doi: 10.1093/ajcn/82.1.53.
    1. Soler-Cataluña JJ, Martínez-García MA, Sánchez LS, Tordera MP, Sánchez PR. Severe exacerbations and BODE index: Two independent risk factors for death in male COPD patients. Respir. Med. 2009;103(5):692–699. doi: 10.1016/j.rmed.2008.12.005.
    1. Michaeloudes C, Bhavsar PK, Mumby S, Chung KF, Adcock IM. Dealing with stress: Defective metabolic adaptation in chronic obstructive pulmonary disease pathogenesis. Ann. Am. Thorac. Soc. 2017;14:S374–S382. doi: 10.1513/AnnalsATS.201702-153AW.
    1. Caldeira DAF, Weiss DJ, Rocco PRM, Silva PL, Cruz FF. Mitochondria in focus: From function to therapeutic strategies in chronic lung diseases. Front. Immunol. 2021;12:782074. doi: 10.3389/fimmu.2021.782074.
    1. Sharma A, Ahmad S, Ahmad T, Ali S, Syed MA. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 2021;284:119876. doi: 10.1016/j.lfs.2021.119876.
    1. Haji G, Wiegman CH, Michaeloudes C, Patel MS, Curtis K, Bhavsar P, Polkey MI, Adcock IM, Chung KF, COPDMAP Consortium Mitochondrial dysfunction in airways and quadriceps muscle of patients with chronic obstructive pulmonary disease. Respir. Res. 2020;21:262. doi: 10.1186/s12931-020-01527-5.
    1. Manevski M, Muthumalage T, Devadoss D, Sundar IK, Wang Q, Singh KP, Unwalla HJ, Chand HS, Rahman I. Cellular stress responses and dysfunctional mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol. 2020;33:101443. doi: 10.1016/j.redox.2020.101443.
    1. Aghapour M, Remels AHV, Pouwels SD, Bruder D, Hiemstra PS, Cloonan SM, Heijink IH. Mitochondria: At the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020;318:L149–L164. doi: 10.1152/ajplung.00329.2019.
    1. Bachar AR, Scheffer L, Schroeder AS, Nakamura HK, Cobb LJ, Oh YK, et al. Humanin is expressed in human vascular walls and has a cytoprotective effect against oxidized LDL-induced oxidative stress. Cardiovasc. Res. 2010;88:360–366. doi: 10.1093/cvr/cvq191.
    1. Charununtakorn ST, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Potential roles of humanin on apoptosis in the heart. Cardiovasc. Ther. 2016;34:107–114. doi: 10.1111/1755-5922.12168.
    1. Gong Z, Tasset I. Humanin enhances the cellular response to stress by activation of chaperone-mediated autophagy. Oncotarget. 2018;9:10832–10833. doi: 10.18632/oncotarget.24396.
    1. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21:443–454. doi: 10.1016/j.cmet.2015.02.009.
    1. Lee C, Yen K, Cohen P. Humanin: A harbinger of mitochondrial-derived peptides? Trends Endocrinol. Metab. 2013;24:222–228. doi: 10.1016/j.tem.2013.01.005.
    1. Sreekumar PG, Ishikawa K, Spee C, Mehta HH, Wan J, Yen K, et al. The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and mitochondrial dysfunction. Investig. Ophthalmol. Vis. Sci. 2016;57:1238–1253. doi: 10.1167/iovs.15-17053.
    1. Yen K, Lee C, Mehta H, Cohen P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J. Mol. Endocrinol. 2013;50:R11–19. doi: 10.1530/JME-12-0203.
    1. Devosse T, Guillabert A, D'Haene N, Berton A, De Nadai P, Noel S, Brait M, Franssen JD, Sozzani S, Salmon I, Parmentier M. Formyl peptide receptor-like 2 is expressed and functional in plasmacytoid dendritic cells, tissue-specific macrophage subpopulations, and eosinophils. J. Immunol. 2009;182:4974–4984. doi: 10.4049/jimmunol.0803128.
    1. Conte M, Ostan R, Fabbri C, Santoro A, Guidarelli G, Vitale G, et al. Human aging and longevity are characterized by high levels of mitokines. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:600–607. doi: 10.1093/gerona/gly153.
    1. Salvioli S, Monti D, Lanzarini C, Conte M, Pirazzini C, Bacalini MG, Garagnani P, Giuliani C, Fontanesi E, Ostan R, Bucci L, Sevini F, Yani SL, Barbieri A, Lomartire L, Borelli V, Vianello D, Bellavista E, Martucci M, Cevenini E, Pini E, Scurti M, Biondi F, Santoro A, Capri M, Franceschi C. Immune system, cell senescence, aging and longevity—Inflammaging reappraised. Curr. Pharm. Des. 2013;19:1675–1679.
    1. Merdzo I, Rutkai I, Sure VNLR, Katakam PVG, Busija DW. Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. Am. J. Physiol. Heart Circ. Physiol. 2019;317:H1086–H1092. doi: 10.1152/ajpheart.00341.2019.
    1. Cai H, Liu Y, Men H, Zheng Y. Protective mechanism of humanin against oxidative stress in aging-related cardiovascular diseases. Front. Endocrinol. (Lausanne) 2021;12:683151. doi: 10.3389/fendo.2021.683151.
    1. Bilbao-Malavé V, González-Zamora J, de la Puente M, Recalde S, Fernandez-Robredo P, Hernandez M, Layana AG, Saenz de Viteri M. Mitochondrial dysfunction and endoplasmic reticulum stress in age related macular degeneration, role in pathophysiology, and possible new therapeutic strategies. Antioxidants (Basel) 2021;10:1170. doi: 10.3390/antiox10081170.
    1. Conte M, Martucci M, Chiariello A, Franceschi C, Salvioli S. Mitochondria, immunosenescence and inflammaging: A role for mitokines? Semin. Immunopathol. 2020;42:607–617. doi: 10.1007/s00281-020-00813-0.
    1. Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: A translational prospective. J. Diabetes Res. 2015;2015:490842. doi: 10.1155/2015/490842.
    1. Verhamme FM, Freeman CM, Brusselle GG, Bracke KR, Curtis JL. GDF-15 in pulmonary and critical care medicine. Am. J. Respir. Cell. Mol. Biol. 2019;60:621–628. doi: 10.1165/rcmb.2018-0379TR.
    1. Scholle LM, Lehmann D, Deschauer M, Kraya T, Zierz S. FGF-21 as a potential biomarker for mitochondrial diseases. Curr. Med. Chem. 2018;25:2070–2081. doi: 10.2174/0929867325666180111094336.
    1. Global strategy for the diagnosis, management, and prevention of Chronic Obstructive Pulmonary Disease (2022 Report). Global initiative for chronic obstructive lung disease (2022). . Accessed March 24, 2022.
    1. García-Río F, Calle M, Burgos F, Casan P, Del Campo F, Galdiz JB, Giner J, González-Mangado N, Ortega F, Puente Maestu L. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) Spirometry Arch Bronconeumol. 2013;49:388–401.
    1. Barreiro E, Bustamante V, Cejudo P, Gáldiz JB, Gea J, de Lucas P, Martínez-Llorens J, Ortega F, Puente-Maestu L, Roca J, Rodríguez-González Moro JM, SEPAR Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease. Arch. Bronconeumol. 2015;51:384–395. doi: 10.1016/j.arbres.2015.04.011.
    1. Cederholm T, Bosaeus I, Barazzoni R, Bauer J, Van Gossum A, Klek S, et al. Diagnostic criteria for malnutrition—An ESPEN consensus statement. Clin. Nutr. 2015;34:335–340. doi: 10.1016/j.clnu.2015.03.001.
    1. Casanova C, Cote C, Marin JM, Pinto-Plata V, de Torres JP, Aguirre-Jaíme A, Vassaux C, Celli BR. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest. 2008;134:746–752. doi: 10.1378/chest.08-0520.
    1. Husebø GR, Grønseth R, Lerner L, Gyuris J, Hardie JA, Bakke PS, Eagan TM. Growth differentiation factor-15 is a predictor of important disease outcomes in patients with COPD. Eur. Respir. J. 2017;49:1601298. doi: 10.1183/13993003.01298-2016.
    1. Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, Ponikowski P, Filippatos GS, Rozentryt P, Drexler H, Anker SD, Wollert KC. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J. Am. Coll. Cardiol. 2007;50:1054–1060. doi: 10.1016/j.jacc.2007.04.091.
    1. Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell. Biol. 2016;17:213–226. doi: 10.1038/nrm.2016.23.
    1. Smati S, Régnier M, Fougeray T, Polizzi A, Fougerat A, Lasserre F, Lukowicz C, Tramunt B, Guillaume M, Burnol AF, Postic C, Wahli W, Montagner A, Gourdy P, Guillou H. Regulation of hepatokine gene expression in response to fasting and feeding: Influence of PPAR-α and insulin-dependent signalling in hepatocytes. Diabetes Metab. 2020;46:129–136. doi: 10.1016/j.diabet.2019.05.005.
    1. Hill CM, Qualls-Creekmore E, Berthoud HR, Soto P, Yu S, McDougal DH, Münzberg H, Morrison CD. FGF21 and the physiological regulation of macronutrient preference. Endocrinology. 2020;161:bqaa19. doi: 10.1210/endocr/bqaa019.
    1. Hathazi D, Griffin H, Jennings MJ, Giunta M, Powell C, Pearce SF, Munro B, Wei W, Boczonadi V, Poulton J, Pyle A, Calabrese C, Gomez-Duran A, Schara U, Pitceathly RDS, Hanna MG, Joost K, Cotta A, Paim JF, Navarro MM, Duff J, Mattman A, Chapman K, Servidei S, Della Marina A, Uusimaa J, Roos A, Mootha V, Hirano M, Tulinius M, Giri M, Hoffmann EP, Lochmüller H, DiMauro S, Minczuk M, Chinnery PF, Müller JS, Horvath R. Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO J. 2020;39:e105364. doi: 10.15252/embj.2020105364.
    1. Freeman CM, Martinez CH, Todt JC, Martinez FJ, Han MK, Thompson DL, McCloskey L, Curtis JL. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood. Respir. Res. 2015;16:94. doi: 10.1186/s12931-015-0251-1.
    1. Mutlu LC, Altintas N, Aydin M, Tulubas F, Oran M, Kucukyalin V, Kaplan G, Gurel A. Growth differentiation factor-15 is a novel biomarker predicting acute exacerbation of chronic obstructive pulmonary disease. Inflammation. 2015;38:1805–1813. doi: 10.1007/s10753-015-0158-5.
    1. Mueller T, Leitner I, Egger M, Haltmayer M, Dieplinger B. Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin. Chim. Acta. 2015;445:155–160. doi: 10.1016/j.cca.2015.03.033.
    1. Patel MS, Lee J, Baz M, Wells CE, Bloch S, Lewis A, Donaldson AV, Garfield BE, Hopkinson NS, Natanek A, Man WD, Wells DJ, Baker EH, Polkey MI, Kemp PR. Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J. Cachexia Sarcopenia Muscle. 2016;7:436–448. doi: 10.1002/jcsm.12096.
    1. Wu X, Xuan W, You L, Lian H, Li F, Zhang X, Chen Q, Sun K, Chen C, Xu M, Li Y, Yan L, Zhang X, Ren M. Associations of GDF-15 and GDF-15/adiponectin ratio with odds of type 2 diabetes in the Chinese population. Endocrine. 2021;72:423–436. doi: 10.1007/s12020-021-02632-1.
    1. Verhamme FM, Seys LJM, De Smet EG, Provoost S, Janssens W, Elewaut D, Joos GF, Brusselle GG, Bracke KR. Elevated GDF-15 contributes to pulmonary inflammation upon cigarette smoke exposure. Mucosal Immunol. 2017;10:1400–1411. doi: 10.1038/mi.2017.3.
    1. Martinez CH, Freeman CM, Nelson JD, Murray S, Wang X, Budoff MJ, Dransfield MT, Hokanson JE, Kazerooni EA, Kinney GL, Regan EA, Wells JM, Martinez FJ, Han MK, Curtis JL, COPDGene Investigators GDF-15 plasma levels in chronic obstructive pulmonary disease are associated with subclinical coronary artery disease. Respir. Res. 2017;18:42. doi: 10.1186/s12931-017-0521-1.
    1. Cha YS, Chang JS, Kim H, Park KS. Application of mitochondrial and oxidative stress biomarkers in the evaluation of neurocognitive prognosis following acute carbon monoxide poisoning. Metabolites. 2022;12:201. doi: 10.3390/metabo12030201.

Source: PubMed

3
Abonneren