Mitochondrial determinants of chemoresistance

Ansooya Bokil, Patricia Sancho, Ansooya Bokil, Patricia Sancho

Abstract

Chemoresistance constitute nowadays the major contributor to therapy failure in most cancers. There are main factors that mitigate cell response to therapy, such as target organ, inherent sensitivity to the administered compound, its metabolism, drug efflux and influx or alterations on specific cellular targets, among others. We now know that intrinsic properties of cancer cells, including metabolic features, substantially contribute to chemoresistance. In fact, during the last years, numerous reports indicate that cancer cells resistant to chemotherapy demonstrate significant alterations in mitochondrial metabolism, membrane polarization and mass. Metabolic activity and expression of several mitochondrial proteins are modulated under treatment to cope with stress, making these organelles central players in the development of resistance to therapies. Here, we review the role of mitochondria in chemoresistant cells in terms of metabolic rewiring and function of key mitochondria-related proteins.

Keywords: ABC transporters; Mitochondria; chemoresistance; fatty acid oxidation; metabolism; oxidative phosphorylation; uncoupling proteins.

Conflict of interest statement

All authors declared that there are no conflicts of interest.

© The Author(s) 2019.

Figures

Figure 1
Figure 1
Overview of the mitochondrial determinants of resistance. Some therapeutic drugs promote a shift in metabolism. Drugs like biguanides that target the complex I of mitochondria promote a shift to glycolysis to meet ATP needs. Similarly, glutaminase inhibitors promote cells to switch to oxidative phosphorylation and BRAF protein inhibitors push cells to metabolize glutamine. Mitochondrial FAO contributes to chemoresistance to 5-fluoro-uracil (5FU), Cisplatin and Cytarabine. Increased intracellular ROS induced by enhanced expression of uncoupling proteins (UCPs), electron transport chain (ETC) activity or drug action are also responsible for chemoresistance. In addition to metabolic shifts, therapeutic drugs also elevate the expression of mitochondrial ABC transporters proteins that allow drug efflux and helps to minimize the inhibitory activity of the drug. Bcl-2 family of prosurvival proteins block apoptosis induced by chemotherapeutic drugs. Mitochondrial biogenesis is also induced during therapy-induced stress by elevation of PGC1α

References

    1. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30. doi: 10.1085/jgp.8.6.519.
    1. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274. doi: 10.1159/000401202.
    1. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47. doi: 10.1016/j.cmet.2015.12.006.
    1. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11:9. doi: 10.1038/nchembio.1712.
    1. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–98. doi: 10.1038/nrc3365.
    1. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–66. doi: 10.1016/j.cell.2016.07.002.
    1. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20:745–54. doi: 10.1038/s41556-018-0124-1.
    1. Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: understanding the Heterogeneity. Trends Cancer. 2017;3:169–80. doi: 10.1016/j.trecan.2017.01.005.
    1. Lukey MJ, Katt WP, Cerione RA. Targeting amino acid metabolism for cancer therapy. Drug Discov Today. 2017;22:796–804. doi: 10.1016/j.drudis.2016.12.003.
    1. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200. doi: 10.1126/sciadv.1600200.
    1. Gentric G, Mieulet V, Mechta-Grigoriou F. Heterogeneity in cancer metabolism: new concepts in an old field. Antioxid Redox Signal. 2017;26:462–85. doi: 10.1089/ars.2016.6750.
    1. Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–5. doi: 10.1136/bmj.38415.708634.F7.
    1. Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. 2012;118:1202–11. doi: 10.1002/cncr.26439.
    1. Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of metformin and the risk of ovarian cancer: a case-control analysis. Gynecol Oncol. 2011;123:200–4. doi: 10.1016/j.ygyno.2011.06.038.
    1. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife. 2014;3:e02242. doi: 10.7554/eLife.02242.
    1. Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-based therapeutic strategies targeting cancer stem cells. Front Pharmacol. 2019;10:203. doi: 10.3389/fphar.2019.00203.
    1. Heeschen C, Sancho P. More challenges ahead-metabolic heterogeneity of pancreatic cancer stem cells. Mol Cell Oncol. 2016;3:e1105353. doi: 10.1080/23723556.2015.1105353.
    1. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, et al. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22:590–605. doi: 10.1016/j.cmet.2015.08.015.
    1. Zhou G, Myers R, Li Y, Chen Y, Shen X, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74. doi: 10.1172/JCI13505.
    1. Griss T, Vincent EE, Egnatchik R, Chen J, Ma EH, et al. Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLoS Biol. 2015;13:e1002309. doi: 10.1371/journal.pbio.1002309.
    1. Wang Y, Bai C, Ruan Y, Liu M, Chu Q, et al. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat Commun. 2019;10:201. doi: 10.1038/s41467-018-08033-9.
    1. Kim JH, Lee KJ, Seo Y, Kwon JH, Yoon JP, et al. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep. 2018;8:409. doi: 10.1038/s41598-017-18762-4.
    1. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell. 2013;23:143–58. doi: 10.1016/j.ccr.2012.12.008.
    1. Márquez J, Alonso FJ, Matés JM, Segura JA, Martín-Rufián M, et al. Glutamine Addiction In Gliomas. Neurochem Res. 2017;42:1735–46. doi: 10.1007/s11064-017-2212-1.
    1. Mohamed A, Deng X, Khuri FR, Owonikoko TK. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer. 2014;15:7–15. doi: 10.1016/j.cllc.2013.09.001.
    1. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762. doi: 10.1038/nature07823.
    1. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901. doi: 10.1158/1535-7163.MCT-13-0870.
    1. Qie S, Chu C, Li W, Wang C, Sang N. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem. 2014;115:498–509. doi: 10.1002/jcb.24684.
    1. Erickson JW, Cerione RA. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget. 2010;1:734–40. doi: 10.18632/oncotarget.208.
    1. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101. doi: 10.1038/nature12040.
    1. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70:8981–7. doi: 10.1158/0008-5472.CAN-10-1666.
    1. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest. 2015;125:1591–602. doi: 10.1172/JCI78239.
    1. Masamha CP, LaFontaine P. Molecular targeting of glutaminase sensitizes ovarian cancer cells to chemotherapy. J Cell Biochem. 2018;119:6136–45. doi: 10.1002/jcb.26814.
    1. Wang J-B, Erickson JW, Fuji R, Ramachandran S, Gao P, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18:207–19. doi: 10.1016/j.ccr.2010.08.009.
    1. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A. 2011;108:8674–9. doi: 10.1073/pnas.1016627108.
    1. Christa L, Simon MT, Flinois JP, Gebhardt R, Brechot C, et al. Overexpression of glutamine synthetase in human primary liver cancer. Gastroenterology. 1994;106:1312–20. doi: 10.1016/0016-5085(94)90024-8.
    1. Issaq SH, Mendoza A, Fox SD, Helman LJ. Glutamine synthetase is necessary for sarcoma adaptation to glutamine deprivation and tumor growth. Oncogenesis. 2019;8:20. doi: 10.1038/s41389-019-0129-z.
    1. Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 2016;24:685–700. doi: 10.1016/j.cmet.2016.10.011.
    1. Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 2011;7:e1002229. doi: 10.1371/journal.pgen.1002229.
    1. Kuo CY, Ann DK. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun (Lond) 2018;38:47. doi: 10.1186/s40880-018-0317-9.
    1. Mancini R, Noto A, Pisanu ME, Vitis CD, Maugeri-Saccà M, et al. Metabolic features of cancer stem cells: the emerging role of lipid metabolism. Oncogene. 2018;37:2367. doi: 10.1038/s41388-018-0141-3.
    1. Yi M, Li J, Chen S, Cai J, Ban Y, et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res. 2018;37:118. doi: 10.1186/s13046-018-0784-5.
    1. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77. doi: 10.1038/nrc2222.
    1. Schcolnik-Cabrera A, Chavez-Blanco A, Dominguez-Gomez G, Taja-Chayeb L, Morales-Barcenas R, et al. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs. 2018;27:475–89. doi: 10.1080/13543784.2018.1471132.
    1. Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010;6:551–62. doi: 10.2217/fon.10.11.
    1. Papaevangelou E, Almeida GS, Box C, deSouza NM, Chung YL. The effect of FASN inhibition on the growth and metabolism of a cisplatin-resistant ovarian carcinoma model. Int J Cancer. 2018;143:992–1002. doi: 10.1002/ijc.31392.
    1. Zaytseva YY, Rychahou PG, Le AT, Scott TL, Flight RM, et al. Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget. 2018;9:24787–800. doi: 10.18632/oncotarget.25361.
    1. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503. doi: 10.1038/nm.2492.
    1. Alcalá AM, Flaherty KT. BRAF inhibitors for the treatment of metastatic melanoma: clinical trials and mechanisms of resistance. Clin Cancer Res. 2012;18:33–9. doi: 10.1158/1078-0432.CCR-11-0997.
    1. Baenke F, Chaneton B, Smith M, van den Broek N, Hogan K, et al. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Mol Oncol. 2016;10:73–84. doi: 10.1016/j.molonc.2015.08.003.
    1. Corazao-Rozas P, Guerreschi P, Jendoubi M, André F, Jonneaux A, et al. Mitochondrial oxidative stress is the Achille’s heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget. 2013;4:1986–98. doi: 10.18632/oncotarget.1420.
    1. Hernandez-Davies JE, Tran TQ, Reid MA, Rosales KR, Lowman XH, et al. Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. J Transl Med. 2015;13:210. doi: 10.1186/s12967-015-0581-2.
    1. Serkova N, Boros LG. Detection of resistance to Imatinib by metabolic profiling. Am J Pharmacogenomic. 2005;5:293–302. doi: 10.2165/00129785-200505050-00002.
    1. Kluza J, Jendoubi M, Ballot C, Dammak A, Jonneaux A, et al. Exploiting mitochondrial dysfunction for effective elimination of Imatinib-resistant leukemic cells. PLoS One. 2011;6:e21924. doi: 10.1371/journal.pone.0021924.
    1. Liu W, Fang Y, Wang XT, Liu J, Dan X, et al. Overcoming 5-Fu resistance of colon cells through inhibition of Glut1 by the specific inhibitor WZB117. Asian Pac J Cancer Prev. 2014;15:7037–41. doi: 10.7314/apjcp.2014.15.17.7037.
    1. Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, et al. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res. 2005;65:3162–70. doi: 10.1158/0008-5472.CAN-04-3300.
    1. Denise C, Paoli P, Calvani M, Taddei ML, Giannoni E, et al. 5-Fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits. Oncotarget. 2015;6:41706–21. doi: 10.18632/oncotarget.5991.
    1. Vellinga TT, Borovski T, Boer VCJ de, Fatrai S, van Schelven S, et al. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin Cancer Res. 2015;21:2870–9. doi: 10.1158/1078-0432.CCR-14-2290.
    1. Sancho P, Barneda D, Heeschen C. Hallmarks of cancer stem cell metabolism. Br J Cancer. 2016;114:1305–12. doi: 10.1038/bjc.2016.152.
    1. Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-based therapeutic strategies targeting cancer stem cells. Front Pharmacol. 2019;10:203. doi: 10.3389/fphar.2019.00203.
    1. He W, Liang B, Wang C, Li S, Zhao Y, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 2019;38:4637. doi: 10.1038/s41388-019-0747-0.
    1. Liang XJ, Finkel T, Shen DW, Yin JJ, Aszalos A, et al. SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. Mol Cancer Res. 2008;6:1499–506. doi: 10.1158/1541-7786.MCR-07-2130.
    1. Xu Y, Gao W, Zhang Y, Wu S, Liu Y, et al. ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells. Int J Oncol. 2018;53:1055–68. doi: 10.3892/ijo.2018.4476.
    1. Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23:1542. doi: 10.1038/cdd.2016.39.
    1. Zhu J, Wu G, Song L, Cao L, Tan Z, et al. NKX2-8 deletion-induced reprogramming of fatty acid metabolism confers chemoresistance in epithelial ovarian cancer. EBioMedicine. 2019;43:238–52. doi: 10.1016/j.ebiom.2019.04.041.
    1. Li J, Zhao S, Zhou X, Zhang T, Zhao L, et al. Inhibition of lipolysis by Mercaptoacetate and Etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to Paclitaxel. PLoS One. 2013;8:e74623. doi: 10.1371/journal.pone.0074623.
    1. Freiburghaus C, Emruli VK, Johansson A, Olsson R, Ek F, et al. Resistance to cytarabine in mantle cell lymphoma is mediated by down-regulation of deoxycytidine kinase at the protein level. Blood. 2016;128:1769.
    1. Lokody I. Drug resistance: overcoming resistance in acute myeloid leukaemia treatment. Nat Rev Cancer. 2014;14:452–3. doi: 10.1038/nrc3776.
    1. Farge T, Saland E, Toni Fd, Aroua N, Hosseini M, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7:716–35. doi: 10.1158/-16-0441.
    1. Carretero MV, Torres L, Latasa U, García-Trevijano ER, Prieto J, et al. Transformed but not normal hepatocytes express UCP2. FEBS Lett. 1998;439:55–8. doi: 10.1016/s0014-5793(98)01335-0.
    1. Giatromanolaki A, Balaska K, Kalamida D, Kakouratos C, Sivridis E, et al. Thermogenic protein UCP1 and UCP3 expression in non-small cell lung cancer: relation with glycolysis and anaerobic metabolism. Cancer Biol Med. 2017;14:396–404. doi: 10.20892/j.issn.2095-3941.2017.0089.
    1. Horimoto M, Resnick MB, Konkin TA, Routhier J, Wands JR, et al. Expression of uncoupling protein-2 in human colon cancer. Clin Cancer Res. 2004;10:6203–7. doi: 10.1158/1078-0432.CCR-04-0419.
    1. Klingenberg M. Uncoupling protein--a useful energy dissipator. J Bioenerg Biomembr. 1999;31:419–30. doi: 10.1023/A:1005440221914.
    1. Baffy G. Uncoupling protein-2 and cancer. Mitochondrion. 2010;10:243–52. doi: 10.1016/j.mito.2009.12.143.
    1. Samudio I, Fiegl M, Andreeff M. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res. 2009;69:2163–6. doi: 10.1158/0008-5472.CAN-08-3722.
    1. Baffy G. Mitochondrial uncoupling in cancer cells: liabilities and opportunities. Biochim Biophys Acta Bioenerg. 2017;1858:655–64. doi: 10.1016/j.bbabio.2017.01.005.
    1. Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, et al. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res. 2008;68:2813–9. doi: 10.1158/0008-5472.CAN-08-0053.
    1. Nedergaard J, Cannon B. The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp Physiol. 2003;88:65–84. doi: 10.1113/eph8802502.
    1. Pecqueur C, Alves-Guerra C, Ricquier D, Bouillaud F. UCP2, a metabolic sensor coupling glucose oxidation to mitochondrial metabolism? IUBMB Life. 2009;61:762–7. doi: 10.1002/iub.188.
    1. Koziel A, Sobieraj I, Jarmuszkiewicz W. Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels. Am J Physiol Heart Circ Physiol. 2015;309:H147–56. doi: 10.1152/ajpheart.00759.2014.
    1. Dalla Pozza E, Fiorini C, Dando I, Menegazzi M, Sgarbossa A, et al. Role of mitochondrial uncoupling protein 2 in cancer cell resistance to gemcitabine. BBA-Mol Cell Res. 2012;1823:1856–63. doi: 10.1016/j.bbamcr.2012.06.007.
    1. Mailloux RJ, Adjeitey CNK, Harper ME. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents. PLoS One. 2010;5:e13289. doi: 10.1371/journal.pone.0013289.
    1. Collins P, Jones C, Choudhury S, Damelin L, Hodgson H. Increased expression of uncoupling protein 2 in HepG2 cells attenuates oxidative damage and apoptosis. Liver Int. 2005;25:880–7. doi: 10.1111/j.1478-3231.2005.01104.x.
    1. Liu WY, He W, Li H. Exhaustive training increases uncoupling protein 2 expression and decreases Bcl-2/Bax ratio in rat skeletal muscle. Oxid Med Cell Longev. 2013;2013:23365696. doi: 10.1155/2013/780719.
    1. Deng S, Yang Y, Han Y, Li X, Wang X, et al. UCP2 inhibits ROS-mediated apoptosis in A549 under hypoxic conditions. PLoS One. 2012;7:e30714. doi: 10.1371/journal.pone.0030714.
    1. Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat Oncol. 2016;3:57–9. doi: 10.2217/hep.15.41.
    1. Elliott AM, Al-Hajj MA. ABCB8 mediates doxorubicin resistance in melanoma cells by protecting the mitochondrial genome. Mol Cancer Res. 2009;7:79–87. doi: 10.1158/1541-7786.MCR-08-0235.
    1. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219. doi: 10.1038/nrd1984.
    1. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol. 2010;19:27–32. doi: 10.1016/j.suronc.2009.01.004.
    1. Eyre R, Harvey I, Stemke-Hale K, Lennard TWJ, Tyson-Capper A, et al. Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population. Tumor Biol. 2014;35:9879–92. doi: 10.1007/s13277-014-2277-2.
    1. Begicevic RR, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci. 2017;18:2362. doi: 10.3390/ijms18112362.
    1. Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol. 2018;24:3222–38. doi: 10.3748/wjg.v24.i29.3222.
    1. Kubota N, Nishio K, Takeda Y, Ohmori T, Funayama Y, et al. Characterization of an etoposide-resistant human ovarian cancer cell line. Cancer Chemother Pharmacol. 1994;34:183–90. doi: 10.1007/BF00685075.
    1. Alpsoy A, Yasa S, Gunduz U. Etoposide resistance in MCF-7 breast cancer cell line is marked by multiple mechanisms. Biomed Pharmacother. 2014;68:351–5. doi: 10.1016/j.biopha.2013.09.007.
    1. Solazzo M, Fantappiè O, D’Amico M, Sassoli C, Tani A, et al. Mitochondrial expression and functional activity of breast cancer resistance protein in different multiple drug-resistant cell lines. Cancer Res. 2009;69:7235–42. doi: 10.1158/0008-5472.CAN-08-4315.
    1. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12. doi: 10.1126/science.281.5381.1309.
    1. Wang X, Green DR, Reed JC. The expanding role of mitochondria in apoptosis. Genes Dev. 1998;281:1309–12.
    1. Liu R, Page C, Beidler DR, Wicha MS, Núñez G. Overexpression of Bcl-xL promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model. Am J Pathol. 1999;155:1861–7. doi: 10.1016/S0002-9440(10)65505-8.
    1. Tu Y, Xu FH, Liu J, Vescio R, Berenson J, et al. Upregulated expression of BCL-2 in multiple myeloma cells induced by exposure to doxorubicin, etoposide, and hydrogen peroxide. Blood. 1996;88:1805–12.
    1. Kutuk O, Letai A. Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737. Cancer Res. 2008;68:7985–94. doi: 10.1158/0008-5472.CAN-08-1418.
    1. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:1126–32. doi: 10.1158/1078-0432.CCR-08-0144.
    1. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37. doi: 10.1038/sj.onc.1210220.
    1. Sartorius UA, Krammer PH. Upregulation of bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int J Cancer. 2002;97:584–92. doi: 10.1002/ijc.10096.
    1. Real PJ, Sierra A, Juan Ad, Segovia JC, Lopez-Vega JM, et al. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene. 2002;21:7611. doi: 10.1038/sj.onc.1206004.
    1. Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, et al. Elevated levels of apoptosis regulator proteins P53 and BCL-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J Urology. 1996;156:1511–6. doi: 10.1016/S0022-5347(01)65641-6.
    1. Cho HJ, Kim JK, Kim KD, Yoon HK, Cho MY, et al. Upregulation of Bcl-2 is associated with cisplatin-resistance via inhibition of Bax translocation in human bladder cancer cells. Cancer Lett. 2006;237:56–66. doi: 10.1016/j.canlet.2005.05.039.
    1. Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 2000;60:6101–10.
    1. Biswas G, Guha M, Avadhani NG. Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene. 2005;354:132–9. doi: 10.1016/j.gene.2005.03.028.
    1. Colié S, van Veldhoven PP, Kedjouar B, Bedia C, Albinet V, et al. Disruption of Sphingosine 1-Phosphate Lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res. 2009;69:9346–53. doi: 10.1158/0008-5472.CAN-09-2198.
    1. Renault TT, Elkholi R, Bharti A, Chipuk JE. B cell lymphoma-2 (BCL-2) homology domain 3 (BH3) mimetics demonstrate differential activities dependent upon the functional repertoire of pro- and anti-apoptotic BCL-2 family proteins. J Biol Chem. 2014;289:26481–91. doi: 10.1074/jbc.M114.569632.
    1. Vogler M, Dinsdale D, Dyer MJS, Cohen GM. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ. 2009;16:360. doi: 10.1038/cdd.2008.137.
    1. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8. doi: 10.1158/0008-5472.CAN-07-5836.
    1. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81. doi: 10.1038/nature03579.
    1. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120:142–56. doi: 10.1172/JCI38942.
    1. Steele TM, Talbott GC, Sam A, Tepper CG, Ghosh PM, et al. Obatoclax, a BH3 mimetic, enhances cisplatin-induced apoptosis and decreases the clonogenicity of muscle invasive bladder cancer cells via mechanisms that involve the inhibition of pro-survival molecules as well as cell cycle regulators. Int J Mol Sci. 2019;20:1285. doi: 10.3390/ijms20061285.
    1. Luca A de, Fiorillo M, Peiris-Pagès M, Ozsvari B, Smith DL, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget. 2015;6:14777–95. doi: 10.18632/oncotarget.4401.
    1. Salem AF, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle. 2012;11:4174–80. doi: 10.4161/cc.22376.
    1. Carracedo A, Weiss D, Leliaert AK, Bhasin M, Boer VCJ de, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest. 2012;122:3088–100. doi: 10.1172/JCI62129.
    1. Martinez-Outschoorn UE, Pavlides S, Sotgia F, Lisanti MP. Mitochondrial biogenesis drives tumor cell proliferation. Am J Pathol. 2011;178:1949–52. doi: 10.1016/j.ajpath.2011.03.002.
    1. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23:302–15. doi: 10.1016/j.ccr.2013.02.003.
    1. Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829–39. doi: 10.1016/s0092-8674(00)81410-5.
    1. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1:361–70. doi: 10.1016/j.cmet.2005.05.004.
    1. Tan Z, Luo X, Xiao L, Tang M, Bode AM, et al. The role of PGC1α in cancer metabolism and its therapeutic implications. Mol Cancer Ther. 2016;15:774–82. doi: 10.1158/1535-7163.MCT-15-0621.
    1. Shin SW, Yun SH, Park ES, Jeong JS, Kwak JY, et al. Overexpression of PGC-1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein. Int J Oncol. 2015;46:1328–42. doi: 10.3892/ijo.2015.2834.
    1. Bhalla K, Hwang BJ, Dewi RE, Ou L, Twaddel W, et al. PGC1α promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res. 2011;71:6888–98. doi: 10.1158/0008-5472.CAN-11-1011.
    1. Srivastava S, Barrett JN, Moraes CT. PGC-1alpha/beta upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations. Hum Mol Genet. 2007;16:993–1005. doi: 10.1093/hmg/ddm045.
    1. Kim B, Jung JW, Jung J, Han Y, Suh DH, et al. PGC1α induced by reactive oxygen species contributes to chemoresistance of ovarian cancer cells. Oncotarget. 2017;8:60299–311. doi: 10.18632/oncotarget.19140.
    1. Gopal YNV, Rizos H, Chen G, Deng W, Frederick DT, et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res. 2014;74:7037–47. doi: 10.1158/0008-5472.CAN-14-1392.
    1. Gabrielson M, Björklund M, Carlson J, Shoshan M. Expression of mitochondrial regulators PGC1α and TFAM as putative markers of subtype and chemoresistance in epithelial ovarian carcinoma. PLoS One. 2014;9:e107109. doi: 10.1371/journal.pone.0107109.
    1. Luo C, Widlund HR, Puigserver P. PGC-1 coactivators: shepherding the mitochondrial biogenesis of tumors. Trends Cancer. 2016;2:619–31. doi: 10.1016/j.trecan.2016.09.006.
    1. Yun CW, Han YS, Lee SH. PGC-1α controls mitochondrial biogenesis in drug-resistant colorectal cancer cells by regulating endoplasmic reticulum stress. Int J Mol Sci. 2019;20:1707. doi: 10.3390/ijms20071707.
    1. Douarre C, Sourbier C, Dalla Rosa I, Brata Das B, Redon CE, et al. Mitochondrial Topoisomerase I is critical for mitochondrial integrity and cellular energy metabolism. PLoS One. 2012;7:e41094. doi: 10.1371/journal.pone.0041094.
    1. Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, et al. Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene. 2004;23:7018. doi: 10.1038/sj.onc.1207936.
    1. Fu X, Wan S, Lyu YL, Liu LF, Qi H. Etoposide Induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One. 2008;3:e2009. doi: 10.1371/journal.pone.0002009.
    1. Farnie G, Sotgia F, Lisanti MP. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 2015;6:30472–86. doi: 10.18632/oncotarget.5401.
    1. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23:302–15. doi: 10.1016/j.ccr.2013.02.003.
    1. Lamb R, Bonuccelli G, Ozsvári B, Peiris-Pagès M, Fiorillo M, et al. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: understanding WNT/FGF-driven anabolic signaling. Oncotarget. 2015;6:30453–71. doi: 10.18632/oncotarget.5852.
    1. Rose PG, Mossbruger K, Fusco N, Smrekar M, Eaton S, et al. Gemcitabine reverses cisplatin resistance: demonstration of activity in platinum- and multidrug-resistant ovarian and peritoneal carcinoma. Gynecol Oncol. 2003;88:17–21. doi: 10.1006/gyno.2002.6850.
    1. Rudin CM, Yang Z, Schumaker LM, VanderWeele DJ, Newkirk K, et al. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res. 2003;63:312–8.

Source: PubMed

3
Abonneren