Comprehensive evaluation of stool-based diagnostic methods and benzimidazole resistance markers to assess drug efficacy and detect the emergence of anthelmintic resistance: A Starworms study protocol

Johnny Vlaminck, Piet Cools, Marco Albonico, Shaali Ame, Mio Ayana, Jeffrey Bethony, Giuseppe Cringoli, Daniel Dana, Jennifer Keiser, Maria P Maurelli, Antonio Montresor, Zeleke Mekonnen, Greg Mirams, Rodrigo Corrêa-Oliveira, Roger Prichard, Nour Rashwan, Laura Rinaldi, Somphou Sayasone, Eurion Thomas, Jaco J Verweij, Jozef Vercruysse, Bruno Levecke, Johnny Vlaminck, Piet Cools, Marco Albonico, Shaali Ame, Mio Ayana, Jeffrey Bethony, Giuseppe Cringoli, Daniel Dana, Jennifer Keiser, Maria P Maurelli, Antonio Montresor, Zeleke Mekonnen, Greg Mirams, Rodrigo Corrêa-Oliveira, Roger Prichard, Nour Rashwan, Laura Rinaldi, Somphou Sayasone, Eurion Thomas, Jaco J Verweij, Jozef Vercruysse, Bruno Levecke

Abstract

Background: To work towards reaching the WHO goal of eliminating soil-transmitted helminth (STH) infections as a public health problem, the total number of children receiving anthelmintic drugs has strongly increased over the past few years. However, as drug pressure levels rise, the development of anthelmintic drug resistance (AR) is more and more likely to appear. Currently, any global surveillance system to monitor drug efficacy and the emergence of possible AR is lacking. Consequently, it remains unclear to what extent the efficacy of drugs may have dropped and whether AR is already present. The overall aim of this study is to recommend the best diagnostic methods to monitor drug efficacy and molecular markers to assess the emergence of AR in STH control programs.

Methods: A series of drug efficacy trials will be performed in four STH endemic countries with varying drug pressure (Ethiopia and Brazil: low drug pressure, Lao PDR: moderate drug pressure and Tanzania: high drug pressure). These trials are designed to assess the efficacy of a single oral dose of 400 mg albendazole (ALB) against STH infections in school-aged children (SAC) by microscopic (duplicate Kato-Katz thick smear, Mini-FLOTAC and FECPAKG2) and molecular stool-based diagnostic methods (quantitative PCR (qPCR)). Data will be collected on the cost of the materials used, as well as the time required to prepare and examine stool samples for the different diagnostic methods. Following qPCR, DNA samples will also be submitted for pyrosequencing to assess the presence and prevalence of single nucleotide polymorphisms (SNPs) in the β-tubulin gene. These SNPs are known to be linked to AR in animal STHs.

Discussion: The results obtained by these trials will provide robust evidence regarding the cost-efficiency and diagnostic performance of the different stool-based diagnostic methods for the assessment of drug efficacy in control programs. The assessment of associations between the frequency of SNPs in the β-tubulin gene and the history of drug pressure and drug efficacy will allow the validation of these SNPs as a marker for AR in human STHs.

Trial registration: The trial was retrospectively registered the 7th of March 2018 on Clinicaltrials.gov (ID: NCT03465488).

Conflict of interest statement

The Mini-FLOTAC apparatus has been developed and is patented by GC, but the patent will be handed over to the University of Naples Federico II. The FECPAKG2 technology was developed and patented by Techion Group Ltd, of which GM and ET are employees. These affiliations however did not play any role in the preparation and submission of this study protocol. All other authors declare that they have no competing interests.

Figures

Fig 1. A schematic overview of the…
Fig 1. A schematic overview of the different steps of the field trials.

References

    1. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014; 7(1):37.
    1. Hay S, Abajobir A, Abate K, Abbafati C, Abbas K, Abd-Allah F, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017; 390(10100):1260–1344. 10.1016/S0140-6736(17)32130-X
    1. World Health Organization; Helminth control in school-age children: a guide for managers of control programmes. Geneva, Switzerland, 2011.
    1. Gyapong JO, Owusu IO, da-Costa Vroom FB, Mensah EO, Gyapong M. Elimination of lymphatic filariasis: current perspectives on mass drug administration. Res Rep Trop Med. 2018; 9:25–33. 10.2147/RRTM.S125204
    1. Fischer PU, King CL, Jacobson JA, Weil GJ. Potential Value of Triple Drug Therapy with Ivermectin, Diethylcarbamazine, and Albendazole (IDA) to Accelerate Elimination of Lymphatic Filariasis and Onchocerciasis in Africa. PLoS Negl Trop Dis. 2017; 11(1):e0005163 10.1371/journal.pntd.0005163
    1. World Health Organization; Crossing the billion. Lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiasis and trachoma: preventive chemotherapy for neglected tropical diseases. Geneva, Switzerland, 2017.
    1. Montresor A, Trouleau W, Mupfasoni D, Bangert M, Joseph SA, Mikhailov A, Fitzpatrick C. Preventive chemotherapy to control soil-transmitted helminthiasis averted more than 500,000 DALYs in 2015. Trans R Soc Trop Med Hyg. 2017; 111(10):457–463. 10.1093/trstmh/trx082
    1. World Health Organization. Soil-transmitted helminthiases: eliminating soil-transmitted helminthiases as a public healt problem in children: progress report 2001–2010 and strategic plan 2011–2020. Geneva, Switzerland, 2012.
    1. van Wyk JA. Refugia—overlooked as perhaps the most potent factor concerning the development of anthelmintic resistance. J Vet Res. 2001;68(1):55–67.
    1. Geerts S, Gryseels B. Anthelmintic resistance in human helminths: a review. Trop Med Int Health. 2001:6(11):915–921.
    1. Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC. Drug resistance in veterinary helminths. Trends Parasitol. 2004; 20(10):469–476. 10.1016/j.pt.2004.07.010
    1. Kaplan RM. Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol. 2004; 20(10):477–481. 10.1016/j.pt.2004.08.001
    1. Levecke B, Montresor A, Albonico M, Ame SM, Behnke JM, Bethony JM, Noumedem CD, Engels D, Guillard B, Kotze AC et al. Assessment of anthelmintic efficacy of mebendazole in school children in six countries where soil-transmitted helminths are endemic. PLoS Negl Trop Dis. 2014; 8(10):e3204 10.1371/journal.pntd.0003204
    1. Keiser J, Utzinger J. Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA. 2008; 299(16):1937–1948. 10.1001/jama.299.16.1937
    1. Vercruysse J, Behnke JM, Albonico M, Ame SM, Angebault C, Bethony JM, Engels D, Guillard B, Nguyen TV, Kang G et al. Assessment of the anthelmintic efficacy of albendazole in school children in seven countries where soil-transmitted helminths are endemic. PLoS Negl Trop Dis. 2011; 5(3):e948 10.1371/journal.pntd.0000948
    1. Moser W, Schindler C, Keiser J. Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis. BMJ. 2017; 358:j4307 10.1136/bmj.j4307
    1. Clarke NE, Clements ACA, Amaral S, Richardson A, McCarthy JS, McGown J, Bryan S, Gray DJ, Nery SV. (S)WASH-D for Worms: A pilot study investigating the differential impact of school- versus community-based integrated control programs for soil-transmitted helminths. PLoS Negl Trop Dis. 2018; 12(5):e0006389 10.1371/journal.pntd.0006389
    1. Asbjornsdottir KH, Ajjampur SSR, Anderson RM, Bailey R, Gardiner I, Halliday KE, Ibikounle M, Kalua K, Kang G, Littlewood DTJ et al. Assessing the feasibility of interrupting the transmission of soil-transmitted helminths through mass drug administration: The DeWorm3 cluster randomized trial protocol. PLoS Negl Trop Dis. 2018; 12(1):e0006166 10.1371/journal.pntd.0006166
    1. Keiser J, Utzinger J. The drugs we have and the drugs we need against major helminth infections. Adv Parasitol. 2010; 73:197–230. 10.1016/S0065-308X(10)73008-6
    1. Olliaro P, Seiler J, Kuesel A, Horton J, Clark JN, Don R, Keiser J. Potential drug development candidates for human soil-transmitted helminthiases. PLoS Negl Trop Dis. 2011; 5(6):e1138 10.1371/journal.pntd.0001138
    1. Levecke B, Anderson RM, Berkvens D, Charlier J, Devleesschauwer B, Speybroeck N, Vercruysse J, Van Aelst S. Mathematical inference on helminth egg counts in stool and its applications in mass drug administration programmes to control soil-transmitted helminthiasis in public health. Adv Parasitol. 2015; 87:193–247. 10.1016/bs.apar.2015.01.001
    1. Speich B, Knopp S, Mohammed KA, Khamis IS, Rinaldi L, Cringoli G, Rollinson D, Utzinger J: Comparative cost assessment of the Kato-Katz and FLOTAC techniques for soil-transmitted helminth diagnosis in epidemiological surveys. Parasit Vectors. 2010; 3:71 10.1186/1756-3305-3-71
    1. Albonico M, Rinaldi L, Sciascia S, Morgoglione ME, Piemonte M, Maurelli MP, Musella V, Utzinger J, Ali SM, Ame SM et al. Comparison of three copromicroscopic methods to assess albendazole efficacy against soil-transmitted helminth infections in school-aged children on Pemba Island. Trans R Soc Trop Med Hyg. 2013; 107(8):493–501. 10.1093/trstmh/trt051
    1. Speich B, Ali SM, Ame SM, Albonico M, Utzinger J, Keiser J. Quality control in the diagnosis of Trichuris trichiura and Ascaris lumbricoides using the Kato-Katz technique: experience from three randomised controlled trials. Parasit Vectors. 2015; 8:82 10.1186/s13071-015-0702-z
    1. Knopp S, Speich B, Hattendorf J, Rinaldi L, Mohammed KA, Khamis IS, Mohammed AS, Albonico M, Rollinson D, Marti H et al.: Diagnostic accuracy of Kato-Katz and FLOTAC for assessing anthelmintic drug efficacy. PLoS Negl Trop Dis. 2011; 5(4):e1036 10.1371/journal.pntd.0001036
    1. The Starworms Project Website. (2017). Accessed 17 May 2018.
    1. WHO: Assessing the efficacy of anthelminthic drugs against schistosomiasis and soil-transmitted helminthiases. In. Geneva, Switserland: World Health Organisation; 2013.
    1. World Health Organization; Assessing the efficacy of anthelminthic drugs against schistosomiasis and soil-transmitted helminthiases. Geneva, Switzerland, 2013.
    1. Diawara A, Schwenkenbecher JM, Kaplan RM, Prichard RK. Molecular and biological diagnostic tests for monitoring benzimidazole resistance in human soil-transmitted helminths. Am J Trop Med Hyg. 2013; 88(6):1052–1061. 10.4269/ajtmh.12-0484
    1. Diawara A, Halpenny CM, Churcher TS, Mwandawiro C, Kihara J, Kaplan RM, Streit TG, Idaghdour Y, Scott ME, Basanez MG et al. Association between response to albendazole treatment and beta-tubulin genotype frequencies in soil-transmitted helminths. PLoS Negl Trop Dis. 2013; 7(5):e2247 10.1371/journal.pntd.0002247
    1. Kotze AC, Steinmann P, Zhou H, Du ZW, Zhou XN. The effect of egg embryonation on field-use of a hookworm benzimidazole-sensitivity egg hatch assay in Yunnan Province, People’s Republic of China. PLoS Negl Trop Dis. 2011; 5(6):e1203 10.1371/journal.pntd.0001203
    1. Levecke B, De Wilde N, Vandenhoute E, Vercruysse J. Field validity and feasibility of four techniques for the detection of Trichuris in simians: a model for monitoring drug efficacy in public health? PLoS Negl Trop Dis. 2009; 3(1):e366 10.1371/journal.pntd.0000366
    1. The Techion Group Website. (2016). Accessed 17 May 2018.
    1. Cooke IR, Laing CJ, White LV, Wakes SJ, Sowerby SJ. Analysis of menisci formed on cones for single field of view parasite egg microscopy. J Microsc. 2015; 257(2):133–141. 10.1111/jmi.12192
    1. Jimenez B, Maya C, Velasquez G, Torner F, Arambula F, Barrios JA, Velasco M: Identification and quantification of pathogenic helminth eggs using a digital image system. Exp Parasitol. 2016; 166:164–172. 10.1016/j.exppara.2016.04.016
    1. Ayana MH, Vlaminck J, Cools P, Ame S, Albonico M, Dana D, Keiser J, Manly H, Matoso LF, Mekonnen Z. et al.: Modification and optimization of the FECPAKG2 protocol for the detection and quantification of soil-transmitted helminth eggs in human stool. PLoS Negl Trop Dis. in press.
    1. Verweij JJ, Brienen EA, Ziem J, Yelifari L, Polderman AM, Van Lieshout L. Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus, and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR. Am J Trop Med Hyg. 2007; 77(4):685–690.
    1. Papaiakovou M, Pilotte N, Grant JR, Traub RJ, Llewellyn S, McCarthy JS, Krolewiecki AJ, Cimino R, Mejia R, Williams SA. A novel, species-specific, real-time PCR assay for the detection of the emerging zoonotic parasite Ancylostoma ceylanicum in human stool. PLoS Negl Trop Dis. 2017; 11(7):e0005734 10.1371/journal.pntd.0005734
    1. Pa Pa Aung W, Htoon TT, Tin HH, Sanpool O, Jongthawin J, Sadaow L, Phosuk I, Ropai R, Intapan PM, Maleewong W: First Molecular Identifications of Necator americanus and Ancylostoma ceylanicum Infecting Rural Communities in Lower Myanmar. Am J Trop Med Hyg. 2017; 96(1):214–216. 10.4269/ajtmh.16-0610
    1. Smout FA, Skerratt LF, Butler JRA, Johnson CN, Congdon BC, Thompson RCA. The hookworm Ancylostoma ceylanicum: An emerging public health risk in Australian tropical rainforests and Indigenous communities. One Health. 2017; 3:66–69. 10.1016/j.onehlt.2017.04.002
    1. Traub RJ. Ancylostoma ceylanicum, a re-emerging but neglected parasitic zoonosis. Int J Parasitol. 2013; 43(12–13):1009–1015. 10.1016/j.ijpara.2013.07.006
    1. Traub RJ, Inpankaew T, Sutthikornchai C, Sukthana Y, Thompson RC. PCR-based coprodiagnostic tools reveal dogs as reservoirs of zoonotic ancylostomiasis caused by Ancylostoma ceylanicum in temple communities in Bangkok. Vet Parasitol. 2008; 155(1–2):67–73. 10.1016/j.vetpar.2008.05.001
    1. Easton AV, Oliveira RG, O’Connell EM, Kepha S, Mwandawiro CS, Njenga SM, Kihara JH, Mwatele C, Odiere MR, Brooker SJ et al. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming. Parasit Vectors. 2016; 9:38 10.1186/s13071-016-1314-y
    1. Leathwick DM. Modelling the benefits of a new class of anthelmintic in combination. Vet Parasitol. 2012; 186(1–2):93–100. 10.1016/j.vetpar.2011.11.050
    1. Martin PJ, Anderson N, Jarrett RG. Detecting benzimidazole resistance with faecal egg count reduction tests and in vitro assays. Aust Vet J. 1989; 66(8):236–240.
    1. Von Samson-Himmelstjerna G, Blackhall WJ, McCarthy JS, Skuce PJ. Single nucleotide polymorphism (SNP) markers for benzimidazole resistance in veterinary nematodes. Parasitology. 2007; 134(Pt 8):1077–1086. 10.1017/S0031182007000054
    1. Kwa MS, Veenstra JG, Roos MH. Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in beta-tubulin isotype 1. Mol Biochem Parasitol. 1994; 63(2):299–303.
    1. Ghisi M, Kaminsky R, Maser P. Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Vet Parasitol. 2007; 144(3–4):313–320. 10.1016/j.vetpar.2006.10.003
    1. de Lourdes Mottier M, Prichard RK. Genetic analysis of a relationship between macrocyclic lactone and benzimidazole anthelmintic selection on Haemonchus contortus. Pharmacogenet Genomics. 2008; 18(2):129–140. 10.1097/FPC.0b013e3282f4711d
    1. Prichard RK. Ivermectin resistance and overview of the Consortium for Anthelmintic Resistance SNPs. Expert Opin Drug Discov. 2007; 2(s1):S41–52. 10.1517/17460441.2.S1.S41
    1. Albonico M, Wright V, Bickle Q. Molecular analysis of the beta-tubulin gene of human hookworms as a basis for possible benzimidazole resistance on Pemba Island. Mol Biochem Parasitol. 2004; 134(2):281–284. 10.1016/j.molbiopara.2003.12.008
    1. Diawara A, Drake LJ, Suswillo RR, Kihara J, Bundy DA, Scott ME, Halpenny C, Stothard JR, Prichard RK. Assays to detect beta-tubulin codon 200 polymorphism in Trichuris trichiura and Ascaris lumbricoides. PLoS Negl Trop Dis. 2009, 3(3):e397 10.1371/journal.pntd.0000397
    1. Schwenkenbecher JM, Albonico M, Bickle Q, Kaplan RM: Characterization of beta-tubulin genes in hookworms and investigation of resistance-associated mutations using real-time PCR. Mol Biochem Parasitol. 2007; 156(2):167–174. 10.1016/j.molbiopara.2007.07.019
    1. Rashwan N, Scott M, Prichard R. Rapid Genotyping of beta-tubulin Polymorphisms in Trichuris trichiura and Ascaris lumbricoides. PLoS Negl Trop Dis. 2017; 11(1):e0005205 10.1371/journal.pntd.0005205
    1. Kure A, Mekonnen Z, Dana D, Bajiro M, Ayana M, Vercruysse J, Levecke B. Comparison of individual and pooled stool samples for the assessment of intensity of Schistosoma mansoni and soil-transmitted helminth infections using the Kato-Katz technique. Parasit Vectors. 2015; 8:489 10.1186/s13071-015-1101-1
    1. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ: Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006; 367(9521):1521–1532. 10.1016/S0140-6736(06)68653-4
    1. Levecke B, Behnke JM, Ajjampur SS, Albonico M, Ame SM, Charlier J, Geiger SM, Hoa NT, Kamwa Ngassam RI, Kotze AC et al. A comparison of the sensitivity and fecal egg counts of the McMaster egg counting and Kato-Katz thick smear methods for soil-transmitted helminths. PLoS Negl Trop Dis. 2011; 5(6):e1201 10.1371/journal.pntd.0001201
    1. Barda B, Albonico M, Ianniello D, Ame SM, Keiser J, Speich B, Rinaldi L, Cringoli G, Burioni R, Montresor A et al. How long can stool samples be fixed for an accurate diagnosis of soil-transmitted helminth infection using Mini-FLOTAC? PLoS Negl Trop Dis. 2015; 9(4):e0003698 10.1371/journal.pntd.0003698
    1. Bekana T, Mekonnen Z, Zeynudin A, Ayana M, Getachew M, Vercruysse J, Levecke B. Comparison of Kato-Katz thick-smear and McMaster egg counting method for the assessment of drug efficacy against soil-transmitted helminthiasis in school children in Jimma Town, Ethiopia. Trans R Soc Trop Med Hyg.2015; 109(10):669–671. 10.1093/trstmh/trv073
    1. Krauth SJ, Coulibaly JT, Knopp S, Traore M, N’Goran EK, Utzinger J. An in-depth analysis of a piece of shit: distribution of Schistosoma mansoni and hookworm eggs in human stool. PLoS Negl Trop Dis. 2012; 6(12):e1969 10.1371/journal.pntd.0001969
    1. World Health Organization. Basic laboratory methods in medical parasitology. In. Geneva, Switzerland, 1991.
    1. Cringoli G, Maurelli MP, Levecke B, Bosco A, Vercruysse J, Utzinger J, Rinaldi L. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat Protoc. 2017; 12(9):1723–1732. 10.1038/nprot.2017.067
    1. Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, Verweij JJ, Taniuchi M, Sobuz SU, Haque R et al. A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol. 2013; 51(2):472–480. 10.1128/JCM.02658-12
    1. Wiria AE, Hamid F, Wammes LJ, Prasetyani MA, Dekkers OM, May L, Kaisar MM, Verweij JJ, Guigas B, Partono F et al. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity. PLoS One. 2015; 10(6):e0127746 10.1371/journal.pone.0127746
    1. Rashwan N, Diawara A, Scott ME, Prichard RK. Isothermal diagnostic assays for the detection of soil-transmitted helminths based on the SmartAmp2 method. Parasit Vectors. 2017; 10(1):496 10.1186/s13071-017-2420-1
    1. Mekonnen Z, Meka S, Ayana M, Bogers J, Vercruysse J, Levecke B. Comparison of individual and pooled stool samples for the assessment of soil-transmitted helminth infection intensity and drug efficacy. PLoS Negl Trop Dis. 2013; 7(5):e2189 10.1371/journal.pntd.0002189
    1. Nikolay B, Brooker SJ, Pullan RL. Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard. Int J Parasitol. 2014; 44(11):765–774. 10.1016/j.ijpara.2014.05.009

Source: PubMed

3
Abonneren