Transcranial Magnetic Stimulation in Tourette Syndrome: A Historical Perspective, Its Current Use and the Influence of Comorbidities in Treatment Response

Marco Grados, Rachel Huselid, Laura Duque-Serrano, Marco Grados, Rachel Huselid, Laura Duque-Serrano

Abstract

Background: Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder consisting of impairing motor and vocal tics which often persists adolescent and adult years. In this older refractory group, standard treatments such as pharmacotherapy and psychotherapeutic interventions may only have limited effects. Based on electrical cortical dysregulation in individuals with TS, a novel approach has employed brain stimulation strategies to modulate the putative aberrant neural electrical activity in pathways that may underlie tics, such as insula-supplementary motor area (SMA) connectivity.

Methods: This review will examine all published clinical trials employing transcranial magnetic stimulation (TMS) to ameliorate tics, and discuss a framework for the pathophysiology of TS in relation to electrical brain activity. A framework for future research in tic disorders using TMS and imaging targeting neuroplasticity will be discussed.

Results: Therapeutic electrical brain activity modulation with TMS has been carried out in stroke neuro-rehabilitation and neuropsychiatry, including trials in TS. Eleven trials document the use of TMS in TS targeting several brain areas, a positive effect is seen for those trials targeting the SMA. In particular, it appears that younger individuals with concurrent attention-deficit hyperactivity disorder (ADHD) benefit the most.

Conclusions: TMS can be used as an effective tool to explore the psychophysiology of TS and potentially provide a therapeutic option. Ultimately, translational research using TMS in TS needs to explore connectivity differences pre- and post-treatment in individuals with TS that are linked to improvement in tic symptoms, with an emphasis on approaches using functional neuroimaging as well as other probes of neuroplasticity.

Keywords: insula; supplementary motor area; tourette syndrome; transcranial magnetic stimulation.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. De la Tourette G.G. Étude sur une affection nerveuse caractérisée par de l’incoordination motrice accompagnée d’écholalie et de coprolalie (jumping, latah, myriachit) Archives de Neurologie. 1885;9:158–200.
    1. Pauls D.L., Cohen D.J., Heimbuch R., Detlor J., Kidd K.K. Familial pattern and transmission of gilles de la tourette syndrome and multiple tics. Arch. Gen. Psychiatry. 1981;38:1091–1093. doi: 10.1001/archpsyc.1981.01780350025002.
    1. Groth C., Mol Debes N., Rask C.U., Lange T., Skov L. Course of tourette syndrome and comorbidities in a large prospective clinical study. J. Am. Acad. Child Adolesc. Psychiatry. 2017;56:304–312. doi: 10.1016/j.jaac.2017.01.010.
    1. Robertson M.M. The gilles de la tourette syndrome: The current status. Br. J. Psychiatry J. Ment. Sci. 1989;154:147–169. doi: 10.1192/bjp.154.2.147.
    1. Comings D.E., Comings B.G. Ts, learning, and speech problems. J. Am. Acad. Child Adolesc. Psychiatry. 1994;33:429–430. doi: 10.1097/00004583-199403000-00023.
    1. Grados M.A., Mathews C.A. Latent class analysis of gilles de la tourette syndrome using comorbidities: Clinical and genetic implications. Biol. Psychiatry. 2008;64:219–225. doi: 10.1016/j.biopsych.2008.01.019.
    1. Mathews C.A., Grados M.A. Familiality of tourette syndrome, obsessive-compulsive disorder, and attention-deficit/hyperactivity disorder: Heritability analysis in a large sib-pair sample. J. Am. Acad. Child Adolesc. Psychiatry. 2011;50:46–54. doi: 10.1016/j.jaac.2010.10.004.
    1. Comings D.E. A controlled study of tourette syndrome. Vii. Summary: A common genetic disorder causing disinhibition of the limbic system. Am. J. Hum. Genet. 1987;41:839–866.
    1. Nag A., Bochukova E.G., Kremeyer B., Campbell D.D., Muller H., Valencia-Duarte A.V., Cardona J., Rivas I.C., Mesa S.C., Cuartas M., et al. Cnv analysis in tourette syndrome implicates large genomic rearrangements in col8a1 and nrxn1. PLoS ONE. 2013;8:e59061. doi: 10.1371/journal.pone.0059061.
    1. Wong D.F., Brasic J.R., Singer H.S., Schretlen D.J., Kuwabara H., Zhou Y., Nandi A., Maris M.A., Alexander M., Ye W., et al. Mechanisms of dopaminergic and serotonergic neurotransmission in tourette syndrome: Clues from an in vivo neurochemistry study with pet. Neuropsychopharmacology. 2008;33:1239–1251. doi: 10.1038/sj.npp.1301528.
    1. Church J.A., Fair D.A., Dosenbach N.U., Cohen A.L., Miezin F.M., Petersen S.E., Schlaggar B.L. Control networks in paediatric tourette syndrome show immature and anomalous patterns of functional connectivity. Brain. 2009;132:225–238. doi: 10.1093/brain/awn223.
    1. Scahill L.D., Leckman J.F., Marek K.L. Sensory phenomena in tourette’s syndrome. Adv. Neurol. 1995;65:273–280.
    1. Craig A.D. Interoception: The sense of the physiological condition of the body. Curr. Opin. Neurobiol. 2003;13:500–505. doi: 10.1016/S0959-4388(03)00090-4.
    1. Neuner I., Werner C.J., Arrubla J., Stocker T., Ehlen C., Wegener H.P., Schneider F., Shah N.J. Imaging the where and when of tic generation and resting state networks in adult tourette patients. Front. Hum. Neurosci. 2014;8:362. doi: 10.3389/fnhum.2014.00362.
    1. Tinaz S., Malone P., Hallett M., Horovitz S.G. Role of the right dorsal anterior insula in the urge to tic in tourette syndrome. Mov. Disord. 2015;30:1190–1197. doi: 10.1002/mds.26230.
    1. Strigo I.A., Craig A.D. Interoception, homeostatic emotions and sympathovagal balance. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016;371 doi: 10.1098/rstb.2016.0010.
    1. Orth M., Kirby R., Richardson M.P., Snijders A.H., Rothwell J.C., Trimble M.R., Robertson M.M., Munchau A. Subthreshold rtms over pre-motor cortex has no effect on tics in patients with gilles de la tourette syndrome. Clin. Neurophysiol. 2005;116:764–768. doi: 10.1016/j.clinph.2004.10.003.
    1. Mantovani A., Lisanby S.H., Pieraccini F., Ulivelli M., Castrogiovanni P., Rossi S. Repetitive transcranial magnetic stimulation (rtms) in the treatment of obsessive-compulsive disorder (ocd) and tourette’s syndrome (ts) Int. J. Neuropsychopharmacol. 2006;9:95–100. doi: 10.1017/S1461145705005729.
    1. Biot J.-B., Savart F. Note sur le magnetisme de la pile de volta. Ann. Chim. Phys. 1820;15:222–223.
    1. Faraday M. Experimental researches in electricity. Philos. Trans. R. Soc. Lond. 1832;122:125–162. doi: 10.1098/rstl.1832.0006.
    1. George M.S., Wassermann E.M., Post R.M. Transcranial magnetic stimulation: A neuropsychiatric tool for the 21st century. J. Neuropsychiatry Clin. Neurosci. 1996;8:373–382.
    1. Pascual-Leone A., Gates J.R., Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology. 1991;41:697–702. doi: 10.1212/WNL.41.5.697.
    1. Pascual-Leone A., Grafman J., Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science. 1994;263:1287–1289. doi: 10.1126/science.8122113.
    1. Viachos A., Muller-Dahlhaus F., Rosskopp J., Lenz M., Ziemann U., Deller T. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J. Neurosci. 2012;32:17514–17523. doi: 10.1523/JNEUROSCI.0409-12.2012.
    1. Lenz M., Vlachos A. Releasing the cortical brake by non-invasive electromagnetic stimulation? Rtms induces ltd of gabaergic neurotransmission. Front. Neural Circuits. 2016;10:96. doi: 10.3389/fncir.2016.00096.
    1. Barker A.T., Jalinous R., Freeston I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–1107. doi: 10.1016/S0140-6736(85)92413-4.
    1. Bunse T., Wobrock T., Strube W., Padberg F., Palm U., Falkai P., Hasan A. Motor cortical excitability assessed by transcranial magnetic stimulation in psychiatric disorders: A systematic review. Brain Stimul. 2014;7:158–169. doi: 10.1016/j.brs.2013.08.009.
    1. Peters S.K., Dunlop K., Downar J. Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Front. Syst. Neurosci. 2016;10:104. doi: 10.3389/fnsys.2016.00104.
    1. Haber S.N. The primate basal ganglia: Parallel and integrative networks. J. Chem. Neuroanat. 2003;26:317–330. doi: 10.1016/j.jchemneu.2003.10.003.
    1. Smith Y., Bevan M.D., Shink E., Bolam J.P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience. 1998;86:353–387.
    1. Mink J.W. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol. 1996;50:381–425. doi: 10.1016/S0301-0082(96)00042-1.
    1. Cheon K.A., Ryu Y.H., Namkoong K., Kim C.H., Kim J.J., Lee J.D. Dopamine transporter density of the basal ganglia assessed with [123i]ipt spect in drug-naive children with tourette’s disorder. Psychiatry Res. 2004;130:85–95. doi: 10.1016/j.pscychresns.2003.06.001.
    1. Serra-Mestres J., Ring H.A., Costa D.C., Gacinovic S., Walker Z., Lees A.J., Robertson M.M., Trimble M.R. Dopamine transporter binding in gilles de la tourette syndrome: A [123i]fp-cit/spect study. Acta Psychiatr. Scand. 2004;109:140–146. doi: 10.1111/j.0001-690X.2004.00214.x.
    1. Ernst M., Zametkin A.J., Jons P.H., Matochik J.A., Pascualvaca D., Cohen R.M. High presynaptic dopaminergic activity in children with tourette’s disorder. J. Am. Acad. Child Adolesc. Psychiatry. 1999;38:86–94. doi: 10.1097/00004583-199901000-00024.
    1. Singer H.S., Szymanski S., Giuliano J., Yokoi F., Dogan A.S., Brasic J.R., Zhou Y., Grace A.A., Wong D.F. Elevated intrasynaptic dopamine release in tourette’s syndrome measured by pet. Am. J. Psychiatry. 2002;159:1329–1336. doi: 10.1176/appi.ajp.159.8.1329.
    1. Albin R.L., Koeppe R.A., Bohnen N.I., Nichols T.E., Meyer P., Wernette K., Minoshima S., Kilbourn M.R., Frey K.A. Increased ventral striatal monoaminergic innervation in tourette syndrome. Neurology. 2003;61:310–315. doi: 10.1212/01.WNL.0000076181.39162.FC.
    1. Singer H.S., Morris C., Grados M. Glutamatergic modulatory therapy for tourette syndrome. Med. Hypotheses. 2010;74:862–867. doi: 10.1016/j.mehy.2009.11.028.
    1. Floresco S.B., Todd C.L., Grace A.A. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J. Neurosci. 2001;21:4915–4922. doi: 10.1523/JNEUROSCI.21-13-04915.2001.
    1. Nordstrom E.J., Bittner K.C., McGrath M.J., Parks C.R., 3rd, Burton F.H. “Hyperglutamatergic cortico-striato-thalamo-cortical circuit” breaker drugs alleviate tics in a transgenic circuit model of tourettes syndrome. Brain Res. 2015;1629:38–53. doi: 10.1016/j.brainres.2015.09.032.
    1. Anderson G.M., Pollak E.S., Chatterjee D., Leckman J.F., Riddle M.A., Cohen D.J. Postmortem analysis of subcortical monoamines and amino acids in tourette syndrome. Adv. Neurol. 1992;58:123–133.
    1. De Leeuw C., Goudriaan A., Smit A.B., Yu D., Mathews C.A., Scharf J.M., Verheijen M.H., Posthuma D. Involvement of astrocyte metabolic coupling in tourette syndrome pathogenesis. Eur. J. Hum. Genet. 2015;23:1519–1522. doi: 10.1038/ejhg.2015.22.
    1. Adamczyk A., Gause C.D., Sattler R., Vidensky S., Rothstein J.D., Singer H., Wang T. Genetic and functional studies of a missense variant in a glutamate transporter, slc1a3, in tourette syndrome. Psychiatr. Genet. 2011;21:90–97. doi: 10.1097/YPG.0b013e328341a307.
    1. Lemmon M.E., Grados M., Kline T., Thompson C.B., Ali S.F., Singer H.S. Efficacy of glutamate modulators in tic suppression: A double-blind, randomized control trial of d-serine and riluzole in tourette syndrome. Pediatr. Neurol. 2015;52:629–634. doi: 10.1016/j.pediatrneurol.2015.02.002.
    1. Kanaan A.S., Gerasch S., Garcia-Garcia I., Lampe L., Pampel A., Anwander A., Near J., Moller H.E., Muller-Vahl K. Pathological glutamatergic neurotransmission in gilles de la tourette syndrome. Brain. 2017;140:218–234. doi: 10.1093/brain/aww285.
    1. Johnson J., Tian N., Caywood M.S., Reimer R.J., Edwards R.H., Copenhagen D.R. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: Gaba and glycine precede glutamate. J. Neurosci. 2003;23:518–529. doi: 10.1523/JNEUROSCI.23-02-00518.2003.
    1. Leonzino M., Busnelli M., Antonucci F., Verderio C., Mazzanti M., Chini B. The timing of the excitatory-to-inhibitory gaba switch is regulated by the oxytocin receptor via kcc2. Cell Rep. 2016;15:96–103. doi: 10.1016/j.celrep.2016.03.013.
    1. Han B., Bellemer A., Koelle M.R. An evolutionarily conserved switch in response to gaba affects development and behavior of the locomotor circuit of caenorhabditis elegans. Genetics. 2015;199:1159–1172. doi: 10.1534/genetics.114.173963.
    1. Rakhade S.N., Jensen F.E. Epileptogenesis in the immature brain: Emerging mechanisms. Nat. Rev. Neurol. 2009;5:380–391. doi: 10.1038/nrneurol.2009.80.
    1. Selten M., van Bokhoven H., Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Reserch. 2018;7:23. doi: 10.12688/f1000research.12155.1.
    1. Furukawa M., Tsukahara T., Tomita K., Iwai H., Sonomura T., Miyawaki S., Sato T. Neonatal maternal separation delays the gaba excitatory-to-inhibitory functional switch by inhibiting kcc2 expression. Biochem. Biophys. Res. Commun. 2017;493:1243–1249. doi: 10.1016/j.bbrc.2017.09.143.
    1. Tomiyasu M., Aida N., Shibasaki J., Umeda M., Murata K., Heberlein K., Brown M.A., Shimizu E., Tsuji H., Obata T. In vivo estimation of gamma-aminobutyric acid levels in the neonatal brain. NMR Biomed. 2017;3:e3666. doi: 10.1002/nbm.3666.
    1. Kalanithi P.S., Zheng W., Kataoka Y., DiFiglia M., Grantz H., Saper C.B., Schwartz M.L., Leckman J.F., Vaccarino F.M. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with tourette syndrome. Proc. Natl. Acad. Sci. USA. 2005;102:13307–13312. doi: 10.1073/pnas.0502624102.
    1. Bode C., Richter F., Sprote C., Brigadski T., Bauer A., Fietz S., Fritschy J.M., Richter A. Altered postnatal maturation of striatal gabaergic interneurons in a phenotypic animal model of dystonia. Exp. Neurol. 2017;287:44–53. doi: 10.1016/j.expneurol.2016.10.013.
    1. Mahone E.M., Puts N.A., Edden R.A.E., Ryan M., Singer H.S. Gaba and glutamate in children with tourette syndrome: A (1)h mr spectroscopy study at 7t. Psychiatry Res. 2018;273:46–53. doi: 10.1016/j.pscychresns.2017.12.005.
    1. Puts N.A., Harris A.D., Crocetti D., Nettles C., Singer H.S., Tommerdahl M., Edden R.A., Mostofsky S.H. Reduced gabaergic inhibition and abnormal sensory symptoms in children with tourette syndrome. J. Neurophysiol. 2015;114:808–817. doi: 10.1152/jn.00060.2015.
    1. Draper A., Stephenson M.C., Jackson G.M., Pepes S., Morgan P.S., Morris P.G., Jackson S.R. Increased gaba contributes to enhanced control over motor excitability in tourette syndrome. Curr. Boil. 2014;24:2343–2347. doi: 10.1016/j.cub.2014.08.038.
    1. Koos T., Tepper J.M. Inhibitory control of neostriatal projection neurons by gabaergic interneurons. Nat. Neurosci. 1999;2:467–472. doi: 10.1038/8138.
    1. Jackson G.M., Draper A., Dyke K., Pepes S.E., Jackson S.R. Inhibition, disinhibition, and the control of action in tourette syndrome. Trends Cognit. Sci. 2015;19:655–665. doi: 10.1016/j.tics.2015.08.006.
    1. Rothwell J.C., Day B.L., Thompson P.D., Kujirai T. Short latency intracortical inhibition: One of the most popular tools in human motor neurophysiology. J. Physiol. 2009;587:11–12. doi: 10.1113/jphysiol.2008.162461.
    1. Gilbert D.L., Bansal A.S., Sethuraman G., Sallee F.R., Zhang J., Lipps T., Wassermann E.M. Association of cortical disinhibition with tic, adhd, and ocd severity in tourette syndrome. Mov. Disord. 2004;19:416–425. doi: 10.1002/mds.20044.
    1. Gilbert D.L., Sallee F.R., Zhang J., Lipps T.D., Wassermann E.M. Transcranial magnetic stimulation-evoked cortical inhibition: A consistent marker of attention-deficit/hyperactivity disorder scores in tourette syndrome. Biol. Psychiatry. 2005;57:1597–1600. doi: 10.1016/j.biopsych.2005.02.022.
    1. Ziemann U., Paulus W., Rothenberger A. Decreased motor inhibition in tourette’s disorder: Evidence from transcranial magnetic stimulation. Am. J. Psychiatry. 1997;154:1277–1284.
    1. Draper A., Jude L., Jackson G.M., Jackson S.R. Motor excitability during movement preparation in tourette syndrome. J. Neuropsychol. 2015;9:33–44. doi: 10.1111/jnp.12033.
    1. Brandt V.C., Niessen E., Ganos C., Kahl U., Baumer T., Munchau A. Altered synaptic plasticity in tourette’s syndrome and its relationship to motor skill learning. PLoS ONE. 2014;9:e98417. doi: 10.1371/journal.pone.0098417.
    1. Martín-Rodríguez J.F., Ruiz-Rodríguez M.A., Palomar F.J., Cáceres-Redondo M.T., Vargas L., Porcacchia P., Gómez-Crespo M., Huertas-Fernández I., Carrillo F., Madruga-Garrido M., et al. Aberrant cortical associative plasticity associated with severe adult tourette syndrome. Mov. Disord. 2015;30:431–435. doi: 10.1002/mds.26151.
    1. Suppa A., Marsili L., Di Stasio F., Berardelli I., Roselli V., Pasquini M., Cardona F., Berardelli A. Cortical and brainstem plasticity in tourette syndrome and obsessive-compulsive disorder. Mov. Disord. 2014;29:1523–1531. doi: 10.1002/mds.25960.
    1. Orth M., Rothwell J.C. Motor cortex excitability and comorbidity in gilles de la tourette syndrome. J. Neurol. Neurosurg. Psychiatry. 2009;80:29–34. doi: 10.1136/jnnp.2008.149484.
    1. Orth M., Munchau A., Rothwell J.C. Corticospinal system excitability at rest is associated with tic severity in tourette syndrome. Biol. Psychiatry. 2008;64:248–251. doi: 10.1016/j.biopsych.2007.12.009.
    1. Heise C.A., Wanschura V., Albrecht B., Uebel H., Roessner V., Himpel S., Paulus W., Rothenberger A., Tergau F. Voluntary motor drive: Possible reduction in tourette syndrome. J. Neural Transm. 2008;115:857–861. doi: 10.1007/s00702-007-0010-7.
    1. Pépés S.E., Draper A., Jackson G.M., Jackson S.R. Effects of age on motor excitability measures from children and adolescents with tourette syndrome. Dev. Cognit. Neurosci. 2016;19:78–86. doi: 10.1016/j.dcn.2016.02.005.
    1. Jackson S.R., Parkinson A., Manfredi V., Millon G., Hollis C., Jackson G.M. Motor excitability is reduced prior to voluntary movements in children and adolescents with tourette syndrome. J. Neuropsychol. 2013;7:29–44. doi: 10.1111/j.1748-6653.2012.02033.x.
    1. Rapanelli M., Frick L.R., Pittenger C. The role of interneurons in autism and tourette syndrome. Trends Neurosci. 2017;40:397–407. doi: 10.1016/j.tins.2017.05.004.
    1. Huang A.Y., Yu D., Davis L.K., Sul J.H., Tsetsos F., Ramensky V., Zelaya I., Ramos E.M., Osiecki L., Chen J.A., et al. Rare copy number variants in nrxn1 and cntn6 increase risk for tourette syndrome. Neuron. 2017;94:1101–1111.e7. doi: 10.1016/j.neuron.2017.06.010.
    1. Dayan E., Censor N., Buch E.R., Sandrini M., Cohen L.G. Noninvasive brain stimulation: From physiology to network dynamics and back. Nat. Neurosci. 2013;16:838–844. doi: 10.1038/nn.3422.
    1. Hameed M.Q., Dhamne S.C., Gersner R., Kaye H.L., Oberman L.M., Pascual-Leone A., Rotenberg A. Transcranial magnetic and direct current stimulation in children. Curr. Neurol. Neurosci. Rep. 2017;17:11. doi: 10.1007/s11910-017-0719-0.
    1. Mrakic-Sposta S., Marceglia S., Mameli F., Dilena R., Tadini L., Priori A. Transcranial direct current stimulation in two patients with tourette syndrome. Mov. Disord. 2008;23:2259–2261. doi: 10.1002/mds.22292.
    1. Munchau A., Bloem B.R., Thilo K.V., Trimble M.R., Rothwell J.C., Robertson M.M. Repetitive transcranial magnetic stimulation for tourette syndrome. Neurology. 2002;59:1789–1791. doi: 10.1212/01.WNL.0000036615.25044.50.
    1. Chae J.H., Nahas Z., Wassermann E., Li X., Sethuraman G., Gilbert D., Sallee F.R., George M.S. A pilot safety study of repetitive transcranial magnetic stimulation (rtms) in tourette’s syndrome. Cognit. Behav. Neurol. 2004;17:109–117. doi: 10.1097/01.wnn.0000116253.78804.3a.
    1. Bloch Y., Arad S., Levkovitz Y. Deep tms add-on treatment for intractable tourette syndrome: A feasibility study. World J. Biol. Psychiatry. 2016;17:557–561.
    1. Kwon H.J., Lim W.S., Lim M.H., Lee S.J., Hyun J.K., Chae J.H., Paik K.C. 1-hz low frequency repetitive transcranial magnetic stimulation in children with tourette’s syndrome. Neurosci. Lett. 2011;492:1–4. doi: 10.1016/j.neulet.2011.01.007.
    1. Le K., Liu L., Sun M., Hu L., Xiao N. Transcranial magnetic stimulation at 1 hertz improves clinical symptoms in children with tourette syndrome for at least 6 months. J. Clin. Neurosci. 2013;20:257–262. doi: 10.1016/j.jocn.2012.01.049.
    1. Krishnan C., Santos L., Peterson M.D., Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015;8:76–87. doi: 10.1016/j.brs.2014.10.012.
    1. Landeros-Weisenberger A., Mantovani A., Motlagh M.G., de Alvarenga P.G., Katsovich L., Leckman J.F., Lisanby S.H. Randomized sham controlled double-blind trial of repetitive transcranial magnetic stimulation for adults with severe Tourette syndrome. Brain Stimul. 2015;8:574–581. doi: 10.1016/j.brs.2014.11.015.
    1. Loo S.K., McGough J.J., McCracken J.T., Smalley S.L. Parsing heterogeneity in attention-deficit hyperactivity disorder using eeg-based subgroups. J. Child Psychol. Psychiatry Allied Discipl. 2018;59:223–231. doi: 10.1111/jcpp.12814.

Source: PubMed

3
Abonneren