Neutrophil Extracellular Traps and Microcrystals

Balázs Rada, Balázs Rada

Abstract

Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1-100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

Conflict of interest statement

The author has no conflict of interests to report.

Figures

Figure 1
Figure 1
Neutrophil extracellular traps. (a) This fluorescent image depicts NETs released from human PMNs following CPPD crystal stimulation (50 μg/mL, 3 hrs, unpublished data). PMN DNA was stained by DAPI and the color was artificially turned into white for better visibility. (b) Scheme demonstrating different types of microcrystals that were documented to release DNA from PMNs.
Figure 2
Figure 2
The proposed role of PMNs in the immunopathogenesis of gout. Phase (1) shows the deposition of needle-shaped MSU crystals. Phase (2) depicts PMNs phagocytosing crystals and releasing chemoattractants and NETs. Phase (3) shows the formation of aggregated NETs (aggNET) that provide the structural basis of gouty tophi and contain high concentration of PMN proteases degrading PMN chemoattractants.
Figure 3
Figure 3
PMNs release extracellular DNA in response to Alhydrogel in vitro. Human PMNs seeded on a 96-well black microplate were incubated for 30 minutes in the presence or absence of 10 μM DPI prior stimulation with increasing doses of commercially available Alhydrogel (InvivoGen, cat#: vac-alu-50) or 100 nM PMA. Increase in fluorescence due to extracellular DNA (ecDNA) release was measured in presence of 10 μM Sytox Orange DNA-binding dye for 5 hours with a microplate fluorimeter. DNA release is presented as either relative fluorescence units (RFU) or percentage of maximal DNA released achieved by saponin treatment [4, 20]. (a) Summary of three independent experiments using PMNs obtained from independent human donors. Mean +/− SEM. (b) Representative kinetics of fluorescence results (n = 3). Ut, untreated; PMA, phorbol myristate acetate.

References

    1. Brinkmann V., Reichard U., Goosmann C., et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. doi: 10.1126/science.1092385.
    1. Fuchs T. A., Abed U., Goosmann C., et al. Novel cell death program leads to neutrophil extracellular traps. Journal of Cell Biology. 2007;176(2):231–241. doi: 10.1083/jcb.200606027.
    1. Yoo D.-G., Floyd M., Winn M., Moskowitz S. M., Rada B. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes. Immunology Letters. 2014;160(2):186–194. doi: 10.1016/j.imlet.2014.03.003.
    1. Sil P., Yoo D.-G., Floyd M., Gingerich A., Rada B. High throughput measurement of extracellular DNA release and quantitative NET formation in human neutrophils in vitro. Journal of Visualized Experiments. 2016;2016(112) doi: 10.3791/52779.e52779
    1. von Köckritz-Blickwede M., Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. Journal of Molecular Medicine. 2009;87(8):775–783. doi: 10.1007/s00109-009-0481-0.
    1. Von Köckritz-Blickwede M., Goldmann O., Thulin P., et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood. 2008;111(6):3070–3080. doi: 10.1182/blood-2007-07-104018.
    1. Schorn C., Janko C., Latzko M., Chaurio R., Schett G., Herrmann M. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Frontiers in Immunology. 2012;3, article no. 277 doi: 10.3389/fimmu.2012.00277.
    1. Metzler K. D., Goosmann C., Lubojemska A., Zychlinsky A., Papayannopoulos V. Myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports. 2014;8(3):883–896. doi: 10.1016/j.celrep.2014.06.044.
    1. Papayannopoulos V., Metzler K. D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. Journal of Cell Biology. 2010;191(3):677–691. doi: 10.1083/jcb.201006052.
    1. Wang Y., Li M., Stadler S., et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. Journal of Cell Biology. 2009;184(2):205–213. doi: 10.1083/jcb.200806072.
    1. Li P., Li M., Lindberg M. R., Kennett M. J., Xiong N., Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. Journal of Experimental Medicine. 2010;207(9):1853–1862. doi: 10.1084/jem.20100239.
    1. Leshner M., Wang S., Lewis C., et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Frontiers in Immunology. 2012;3, article 307 doi: 10.3389/fimmu.2012.00307.
    1. Martinod K., Demers M., Fuchs T. A., et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(21):8674–8679. doi: 10.1073/pnas.1301059110.
    1. Parker H., Dragunow M., Hampton M. B., Kettle A. J., Winterbourn C. C. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology. 2012;92(4):841–849. doi: 10.1189/jlb.1211601.
    1. Parker H., Winterbourn C. C. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Frontiers in Immunology. 2012;3, article 424 doi: 10.3389/fimmu.2012.00424.
    1. Douda D. N., Khan M. A., Grasemann H., Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(9):2817–2822. doi: 10.1073/pnas.1414055112.
    1. Sørensen O. E., Borregaard N. Neutrophil extracellular traps—the dark side of neutrophils. Journal of Clinical Investigation. 2016;126(5):1612–1620. doi: 10.1172/jci84538.
    1. Vorobjeva N. V., Pinegin B. V. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Moscow) 2014;79(12):1286–1296. doi: 10.1134/s0006297914120025.
    1. Schauer C., Janko C., Munoz L. E., et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nature medicine. 2014;20(5):511–517. doi: 10.1038/nm.3547.
    1. Yoo D.-G., Winn M., Pang L., et al. Release of cystic fibrosis airway inflammatory markers from pseudomonas aeruginosa-stimulated human neutrophils involves NADPH oxidase-dependent extracellular DNA trap formation. Journal of Immunology. 2014;192(10):4728–4738. doi: 10.4049/jimmunol.1301589.
    1. Kuo C.-F., Grainge M. J., Zhang W., Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nature Reviews Rheumatology. 2015;11(11):649–662. doi: 10.1038/nrrheum.2015.91.
    1. Rosenthal A. K., Mandel N. Identification of crystals in synovial fluids and joint tissues. Current Rheumatology Reports. 2001;3(1):11–16. doi: 10.1007/s11926-001-0045-y.
    1. Sil P., Hayes C. P., Reaves B. J., et al. P2Y6 receptor antagonist MRS2578 inhibits neutrophil activation and aggregated neutrophil extracellular trap formation induced by gout-associated monosodium urate crystals. The Journal of Immunology. 2016;198(1):428–442. doi: 10.4049/jimmunol.1600766.
    1. Martinon F. Update on biology: uric acid and the activation of immune and inflammatory cells. Current Rheumatology Reports. 2010;12(2):135–141. doi: 10.1007/s11926-010-0092-3.
    1. Mitroulis I., Kambas K., Chrysanthopoulou A., et al. Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS ONE. 2011;6(12) doi: 10.1371/journal.pone.0029318.e29318
    1. Schorn C., Janko C., Krenn V., et al. Bonding the foe—NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals. Frontiers in Immunology. 2012;3, article no. 376 doi: 10.3389/fimmu.2012.00376.
    1. Desai J., Kumar S. V., Mulay S. R., et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. European Journal of Immunology. 2016;46(1):223–229. doi: 10.1002/eji.201545605.
    1. Sil P., Wicklum H., Surell C., Rada B. Macrophage-derived IL-1β enhances monosodium urate crystal-triggered NET formation. Inflammation Research. 2017;66(3):227–237. doi: 10.1007/s00011-016-1008-0.
    1. Pang L., Hayes C. P., Buac K., Yoo D.-G., Rada B. Pseudogout-associated inflammatory calcium pyrophosphate dihydrate microcrystals induce formation of neutrophil extracellular traps. Journal of Immunology. 2013;190(12):6488–6500. doi: 10.4049/jimmunol.1203215.
    1. Warnatsch A., Ioannou M., Wang Q., Papayannopoulos V. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316–320. doi: 10.1126/science.aaa8064.
    1. Brinkmann V., Goosmann C., Kühn L. I., Zychlinsky A. Automatic quantification of in vitro NET formation. Frontiers in Immunology. 2012;3, article no. 413 doi: 10.3389/fimmu.2012.00413.
    1. Metzler K. D., Fuchs T. A., Nauseef W. M., et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–959. doi: 10.1182/blood-2010-06-290171.
    1. Gaudry M., Roberge C. J., De Medicis R., Lussier A., Poubelle P. E., Naccache P. H. Crystal-induced neutrophil activation. III. Inflammatory microcrystals induce a distinct pattern of tyrosine phosphorylation in human neutrophils. Journal of Clinical Investigation. 1993;91(4):1649–1655. doi: 10.1172/JCI116373.
    1. Naccache P. H., Bourgoin S., Plante E., et al. Crystal-induced neutrophil activation. II. Evidence for the activation of a phosphatidylcholine-specific phospholipase D. Arthritis and Rheumatism. 1993;36(1):117–125. doi: 10.1002/art.1780360119.
    1. Abramson S., Hoffstein S. T., Weissmann G. Superoxide anion generation by human neutrophils exposed to monosodium urate. Effect of protein adsorption and complement activation. Arthritis and Rheumatism. 1982;25(2):174–180. doi: 10.1002/art.1780250210.
    1. Maueröder C., Kienhöfer D., Hahn J., et al. How neutrophil extracellular traps orchestrate the local immune response in gout. Journal of Molecular Medicine. 2015;93(7):727–734. doi: 10.1007/s00109-015-1295-x.
    1. Chhana A., Dalbeth N. The gouty tophus: a review. Current Rheumatology Reports. 2015;17(3) doi: 10.1007/s11926-014-0492-x.
    1. Reber L. L., Gaudenzio N., Starkl P., Galli S. J. Neutrophils are not required for resolution of acute gouty arthritis in mice. Nature Medicine. 2016;22(12):1382–1384. doi: 10.1038/nm.4216.
    1. Reinwald C., Schauer C., Csepregi J. Z., et al. Reply to ‘Neutrophils are not required for resolution of acute gouty arthritis in mice’. Nature Medicine. 2016;22(12):1384–1386. doi: 10.1038/nm.4217.
    1. Arai Y., Nishinaka Y., Arai T., et al. Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation. Biochemical and Biophysical Research Communications. 2014;443(2):556–561. doi: 10.1016/j.bbrc.2013.12.007.
    1. Remijsen Q., Vanden Berghe T., Wirawan E., et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research. 2011;21(2):290–304. doi: 10.1038/cr.2010.150.
    1. Sharma A., Simonson T. J., Jondle C. N., Mishra B. B., Sharma J. Mincle regulates autophagy to control neutrophil extracellular trap formation. The Journal of Infectious Diseases. 2017 doi: 10.1093/infdis/jix072.
    1. Amini P., Stojkov D., Wang X., et al. NET formation can occur independently of RIPK3 and MLKL signaling. European Journal of Immunology. 2016;46(1):178–184. doi: 10.1002/eji.201545615.
    1. Pieterse E., Jeremic I., Czegley C., et al. Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Scientific Reports. 2016;6:p. 38229. doi: 10.1038/srep38229.
    1. Liu-Bryan R., Lioté F. Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Joint Bone Spine. 2005;72(4):295–302. doi: 10.1016/j.jbspin.2004.12.010.
    1. Busso N., Ea H.-K. The mechanisms of inflammation in gout and pseudogout (CPP-induced arthritis) Reumatismo. 2011;63(4):230–237.
    1. Hakkim A., Fuchs T. A., Martinez N. E., et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nature Chemical Biology. 2011;7(2):75–77. doi: 10.1038/nchembio.496.
    1. Exley C., Siesjö P., Eriksson H. The immunobiology of aluminium adjuvants: how do they really work? Trends in Immunology. 2010;31(3):103–109. doi: 10.1016/j.it.2009.12.009.
    1. Lambrecht B. N., Kool M., Willart M. A., Hammad H. Mechanism of action of clinically approved adjuvants. Current Opinion in Immunology. 2009;21(1):23–29. doi: 10.1016/j.coi.2009.01.004.
    1. Yang C.-W., Strong B. S. I., Miller M. J., Unanue E. R. Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. Journal of Immunology. 2010;185(5):2927–2934. doi: 10.4049/jimmunol.1001289.
    1. Oleszycka E., Moran H. B. T., Tynan G. A., et al. IL-1α and inflammasome-independent IL-1β promote neutrophil infiltration following alum vaccination. The FEBS Journal. 2016;283(1):9–24. doi: 10.1111/febs.13546.
    1. Nakayama T. An inflammatory response is essential for the development of adaptive immunity-immunogenicity and immunotoxicity. Vaccine. 2016;34(47):5815–5818. doi: 10.1016/j.vaccine.2016.08.051.
    1. Munks M. W., McKee A. S., MacLeod M. K., et al. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood. 2010;116(24):5191–5199. doi: 10.1182/blood-2010-03-275529.
    1. Drechsler M., Megens R. T. A., van Zandvoort M., Weber C., Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation. 2010;122(18):1837–1845. doi: 10.1161/circulationaha.110.961714.
    1. Döring Y., Drechsler M., Wantha S., et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circulation Research. 2012;110(8):1052–1056. doi: 10.1161/CIRCRESAHA.112.265868.
    1. Cohen Tervaert J. W., Stegeman C. A., Kallenberg C. G. M. Silicon exposure and vasculitis. Current Opinion in Rheumatology. 1998;10(1):12–17. doi: 10.1097/00002281-199801000-00003.
    1. Hnizdo E., Vallyathan V. Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence. Occupational and Environmental Medicine. 2003;60(4):237–243. doi: 10.1136/oem.60.4.237.
    1. Dostert C., Pétrilli V., Van Bruggen R., Steele C., Mossman B. T., Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–677. doi: 10.1126/science.1156995.
    1. Kessenbrock K., Krumbholz M., Schönermarck U., et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nature Medicine. 2009;15(6):623–625. doi: 10.1038/nm.1959.
    1. Yoshida M., Sasaki M., Sugisaki K., Yamaguchi Y., Yamada M. Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clinical Kidney Journal. 2013;6(3):308–312. doi: 10.1093/ckj/sft048.
    1. van Berlo D., Wessels A., Boots A. W., et al. Neutrophil-derived ROS contribute to oxidative DNA damage induction by quartz particles. Free Radical Biology and Medicine. 2010;49(11):1685–1693. doi: 10.1016/j.freeradbiomed.2010.08.031.
    1. Lo Re S., Dumoutier L., Couillin I., et al. IL-17A-producing γδ T and Th17 lymphocytes mediate lung inflammation but not fibrosis in experimental silicosis. Journal of Immunology. 2010;184(11):6367–6377. doi: 10.4049/jimmunol.0900459.
    1. Borges V. M., Lopes M. F., Falcão H., et al. Apoptosis underlies immunopathogenic mechanisms in acute silicosis. American Journal of Respiratory Cell and Molecular Biology. 2002;27(1):78–84. doi: 10.1165/ajrcmb.27.1.4717.
    1. Zhai R., Ge X., Li H., Tang Z., Liao R., Kleinjans J. Differences in cellular and inflammatory cytokine profiles in the bronchoalveolar lavage fluid in bagassosis and silicosis. American Journal of Industrial Medicine. 2004;46(4):338–344. doi: 10.1002/ajim.20051.

Source: PubMed

3
Abonneren