Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients

Nathalie M M Benda, Joost P H Seeger, Guus G C F Stevens, Bregina T P Hijmans-Kersten, Arie P J van Dijk, Louise Bellersen, Evert J P Lamfers, Maria T E Hopman, Dick H J Thijssen, Nathalie M M Benda, Joost P H Seeger, Guus G C F Stevens, Bregina T P Hijmans-Kersten, Arie P J van Dijk, Louise Bellersen, Evert J P Lamfers, Maria T E Hopman, Dick H J Thijssen

Abstract

Introduction: Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT.

Methods: Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload-alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60-75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)).

Results: Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.).

Conclusion: Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III.

Trial registration: Nederlands Trial Register NTR3671.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Flow-chart of the inclusion of…
Fig 1. Flow-chart of the inclusion of subjects.

References

    1. McCullough PA, Philbin EF, Spertus JA, Kaatz S, Sandberg KR, Weaver WD, et al. (2002) Confirmation of a heart failure epidemic: findings from the Resource Utilization Among Congestive Heart Failure (REACH) study. J Am Coll Cardiol 39: 60–69.
    1. Bleumink GS, Knetsch AM, Sturkenboom MC, Straus SM, Hofman A, Deckers JW, et al. (2004) Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J 25: 1614–1619.
    1. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, et al. (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347: 1397–1402.
    1. Zarrinkoub R, Wettermark B, Wandell P, Mejhert M, Szulkin R, Ljunggren G, et al. (2013) The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail 15: 995–1002. 10.1093/eurjhf/hft064
    1. Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Peberdy MA, et al. (2013) A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev 18: 79–94. 10.1007/s10741-012-9332-0
    1. Myers J, Gullestad L, Vagelos R, Do D, Bellin D, Ross H, et al. (1998) Clinical, hemodynamic, and cardiopulmonary exercise test determinants of survival in patients referred for evaluation of heart failure. Ann Intern Med 129: 286–293.
    1. van Tol BA, Huijsmans RJ, Kroon DW, Schothorst M, Kwakkel G (2006) Effects of exercise training on cardiac performance, exercise capacity and quality of life in patients with heart failure: a meta-analysis. Eur J Heart Fail 8: 841–850.
    1. Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM (2007) A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol 49: 2329–2336.
    1. Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, et al. (2000) Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral L-arginine supplementation. J Am Coll Cardiol 35: 706–713.
    1. Linke A, Schoene N, Gielen S, Hofer J, Erbs S, Schuler G, et al. (2001) Endothelial dysfunction in patients with chronic heart failure: systemic effects of lower-limb exercise training. J Am Coll Cardiol 37: 392–397.
    1. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, et al. (2015) Exercise and the Cardiovascular System: Clinical Science and Cardiovascular Outcomes. Circ Res 117: 207–219. 10.1161/CIRCRESAHA.117.305205
    1. Piepoli MF, Conraads V, Corra U, Dickstein K, Francis DP, Jaarsma T, et al. (2011) Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail 13: 347–357. 10.1093/eurjhf/hfr017
    1. Arena R, Myers J, Forman DE, Lavie CJ, Guazzi M (2013) Should high-intensity-aerobic interval training become the clinical standard in heart failure? Heart Fail Rev 18: 95–105. 10.1007/s10741-012-9333-z
    1. Ismail H, McFarlane JR, Nojoumian AH, Dieberg G, Smart NA (2013) Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure: a systematic review and meta-analysis. JACC Heart Fail 1: 514–522. 10.1016/j.jchf.2013.08.006
    1. Norton K, Norton L, Sadgrove D (2010) Position statement on physical activity and exercise intensity terminology. J Sci Med Sport 13: 496–502. 10.1016/j.jsams.2009.09.008
    1. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115: 3086–3094.
    1. Fu TC, Wang CH, Lin PS, Hsu CC, Cherng WJ, Huang SC, et al. (2013) Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol 167: 41–50. 10.1016/j.ijcard.2011.11.086
    1. Iellamo F, Caminiti G, Sposato B, Vitale C, Massaro M, Rosano G, et al. (2014) Effect of High-Intensity interval training versus moderate continuous training on 24-h blood pressure profile and insulin resistance in patients with chronic heart failure. Intern Emerg Med 9: 547–552. 10.1007/s11739-013-0980-4
    1. Iellamo F, Manzi V, Caminiti G, Vitale C, Castagna C, Massaro M, et al. (2013) Matched dose interval and continuous exercise training induce similar cardiorespiratory and metabolic adaptations in patients with heart failure. Int J Cardiol 167: 2561–2565. 10.1016/j.ijcard.2012.06.057
    1. Dimopoulos S, Anastasiou-Nana M, Sakellariou D, Drakos S, Kapsimalakou S, Maroulidis G, et al. (2006) Effects of exercise rehabilitation program on heart rate recovery in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 13: 67–73.
    1. Roditis P, Dimopoulos S, Sakellariou D, Sarafoglou S, Kaldara E, Venetsanakos J, et al. (2007) The effects of exercise training on the kinetics of oxygen uptake in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 14: 304–311.
    1. Koufaki P, Mercer TH, George KP, Nolan J (2014) Low-volume high-intensity interval training vs continuous aerobic cycling in patients with chronic heart failure: a pragmatic randomised clinical trial of feasibility and effectiveness. J Rehabil Med 46: 348–356. 10.2340/16501977-1278
    1. Belardinelli R, Georgiou D, Cianci G, Purcaro A (2012) 10-year exercise training in chronic heart failure: a randomized controlled trial. J Am Coll Cardiol 60: 1521–1528. 10.1016/j.jacc.2012.06.036
    1. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. (2013) Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 128: 873–934. 10.1161/CIR.0b013e31829b5b44
    1. Durnin JV, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32: 77–97.
    1. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985) 60: 2020–2027.
    1. Wasserman K, Hansen JE, Sue DV, Whipp BJ (1987) Principles of exercise testing and interpretation Philadelphia: Lea & Febiger.
    1. Witte KK, Cleland JG, Clark AL (2006) Chronic heart failure, chronotropic incompetence, and the effects of beta blockade. Heart 92: 481–486.
    1. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. (2011) Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol 300: H2–12. 10.1152/ajpheart.00471.2010
    1. Naylor LH, Weisbrod CJ, O'Driscoll G, Green DJ (2005) Measuring peripheral resistance and conduit arterial structure in humans using Doppler ultrasound. J Appl Physiol (1985) 98: 2311–2315.
    1. Schreuder TH, Nyakayiru J, Houben J, Thijssen DH, Hopman MT (2014) Impact of hypoxic versus normoxic training on physical fitness and vasculature in diabetes. High Alt Med Biol 15: 349–355. 10.1089/ham.2013.1144
    1. de Groot E, Hovingh GK, Wiegman A, Duriez P, Smit AJ, Fruchart JC, et al. (2004) Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation 109: III33–38.
    1. Echocardiography ASo Guidelines of the American Society of Echocardiography.
    1. Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30: 473–483.
    1. Hobbs FD, Kenkre JE, Roalfe AK, Davis RC, Hare R, Davies MK (2002) Impact of heart failure and left ventricular systolic dysfunction on quality of life: a cross-sectional study comparing common chronic cardiac and medical disorders and a representative adult population. Eur Heart J 23: 1867–1876.
    1. Rector TS, Cohn JN (1992) Assessment of patient outcome with the Minnesota Living with Heart Failure questionnaire: reliability and validity during a randomized, double-blind, placebo-controlled trial of pimobendan. Pimobendan Multicenter Research Group. Am Heart J 124: 1017–1025.
    1. Borg G, Hassmen P, Lagerstrom M (1987) Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol 56: 679–685.
    1. Atkinson G, Batterham AM (2013) Allometric scaling of diameter change in the original flow-mediated dilation protocol. Atherosclerosis 226: 425–427. 10.1016/j.atherosclerosis.2012.11.027
    1. O'Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301: 1439–1450. 10.1001/jama.2009.454
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43: 1334–1359. 10.1249/MSS.0b013e318213fefb
    1. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. (1999) Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985) 87: 1003–1008.
    1. Kemps HM, Schep G, de Vries WR, Schmikli SL, Zonderland ML, Thijssen EJ, et al. (2008) Predicting effects of exercise training in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 102: 1073–1078. 10.1016/j.amjcard.2008.05.054
    1. Meyer K, Gornandt L, Schwaibold M, Westbrook S, Hajric R, Peters K, et al. (1997) Predictors of response to exercise training in severe chronic congestive heart failure. Am J Cardiol 80: 56–60.
    1. Schmid JP, Zurek M, Saner H (2013) Chronotropic incompetence predicts impaired response to exercise training in heart failure patients with sinus rhythm. Eur J Prev Cardiol 20: 585–592. 10.1177/2047487312444368
    1. Smart NA, Dieberg G, Giallauria F (2013) Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis. Int J Cardiol 166: 352–358. 10.1016/j.ijcard.2011.10.075
    1. Haykowsky MJ, Timmons MP, Kruger C, McNeely M, Taylor DA, Clark AM (2013) Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol 111: 1466–1469. 10.1016/j.amjcard.2013.01.303
    1. Lavie CJ, Arena R, Earnest CP (2013) High-intensity interval training in patients with cardiovascular diseases and heart transplantation. J Heart Lung Transplant 32: 1056–1058. 10.1016/j.healun.2013.08.001
    1. Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med 43: 313–338. 10.1007/s40279-013-0029-x
    1. Koukoui F, Desmoulin F, Lairy G, Bleinc D, Boursiquot L, Galinier M, et al. (2015) Benefits of cardiac rehabilitation in heart failure patients according to etiology: INCARD French study. Medicine (Baltimore) 94: e544.
    1. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS (2015) The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 45: 679–692. 10.1007/s40279-015-0321-z
    1. Green DJ, Eijsvogels T, Bouts YM, Maiorana AJ, Naylor LH, Scholten RR, et al. (2014) Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors. J Appl Physiol (1985) 117: 345–352.
    1. Skaug EA, Aspenes ST, Oldervoll L, Morkedal B, Vatten L, Wisloff U, et al. (2013) Age and gender differences of endothelial function in 4739 healthy adults: the HUNT3 Fitness Study. Eur J Prev Cardiol 20: 531–540. 10.1177/2047487312444234
    1. Briasoulis A, Tousoulis D, Androulakis ES, Papageorgiou N, Latsios G, Stefanadis C (2012) Endothelial dysfunction and atherosclerosis: focus on novel therapeutic approaches. Recent Pat Cardiovasc Drug Discov 7: 21–32.
    1. Benda NM, Seeger JP, van Lier DP, Bellersen L, van Dijk AP, Hopman MT, et al. (2015) Heart failure patients demonstrate impaired changes in brachial artery blood flow and shear rate pattern during moderate-intensity cycle exercise. Exp Physiol.
    1. Taylor RS, Sagar VA, Davies EJ, Briscoe S, Coats AJ, Dalal H, et al. (2014) Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev 4: Cd003331 10.1002/14651858.CD003331.pub4
    1. Nilsson BB, Westheim A, Risberg MA (2008) Effects of group-based high-intensity aerobic interval training in patients with chronic heart failure. Am J Cardiol 102: 1361–1365. 10.1016/j.amjcard.2008.07.016
    1. Aksoy S, Findikoglu G, Ardic F, Rota S, Dursunoglu D (2015) Effect of 10-Week Supervised Moderate-Intensity Intermittent vs. Continuous Aerobic Exercise Programs on Vascular Adhesion Molecules in Patients with Heart Failure. Am J Phys Med Rehabil.
    1. Chrysohoou C, Tsitsinakis G, Vogiatzis I, Cherouveim E, Antoniou C, Tsiantilas A, et al. (2014) High intensity, interval exercise improves quality of life of patients with chronic heart failure: a randomized controlled trial. QJM 107: 25–32. 10.1093/qjmed/hct194
    1. Swank AM, Horton J, Fleg JL, Fonarow GC, Keteyian S, Goldberg L, et al. (2012) Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail 5: 579–585.
    1. Barbour KA, Miller NH (2008) Adherence to exercise training in heart failure: a review. Heart Fail Rev 13: 81–89.

Source: PubMed

3
Abonneren