Effect of norepinephrine dosage on mortality in patients with septic shock

Hitoshi Yamamura, Yu Kawazoe, Kyohei Miyamoto, Tomonori Yamamoto, Yoshinori Ohta, Takeshi Morimoto, Hitoshi Yamamura, Yu Kawazoe, Kyohei Miyamoto, Tomonori Yamamoto, Yoshinori Ohta, Takeshi Morimoto

Abstract

Background: Use of high-dose norepinephrine is thought to have an immunosuppressive action that increases mortality. This study aimed to evaluate the correlation between norepinephrine dosage and prognosis of patients with septic shock.

Methods: This study was a nested cohort of the DExmedetomidine for Sepsis in Intensive Care Unit Randomized Evaluation (DESIRE) trial. We evaluated 112 patients with septic shock and an initial Sequential Organ Failure Assessment Cardiovascular (SOFA-C) category score > 2 and initial lactate level > 2 mmol/L. We divided the patients into two groups according to the norepinephrine dosage administered over the initial 7 days: high dose (≥ 416 μg/kg/week) (H group, n = 56) and low dose (< 416 μg/kg/week) (L group, n = 56). The primary outcome of interest was 28-day mortality. Secondary outcomes were ventilator-free days, initial 24-h infusion volume, initial 24- to 48-h infusion volume, and the need for renal replacement therapy. For comparisons between the H group and L group, we used the chi-square test or Fisher's exact test for categorical variables and the t test or Wilcoxon rank sum test for continuous variables. For time-to-event outcomes, Cox proportional hazards models were used. Kaplan-Meier survival curves were created for graphical representation.

Results: Patient characteristics appeared to be similar between the two groups except for the SOFA-C score and fibrinogen degradation product level. The cumulative incidence of death at 28 days was 29.9% (16 patients) in the L group and 29.7% (15 patients) in the H group (p = 0.99). The median number of 28-day ventilator-free days was 20 (0, 25) in the L group and 16 (0, 22) in the H group (p < 0.05). Initial infusion volume at 0-24 h in the H group was significantly higher than that in the L group (p = 0.004). Infusion volume at 24-48 h in the H group was also significantly higher than that in the L group (p = 0.03).

Conclusions: No statistically significant difference was observed in 28-day mortality between patients with septic shock treated with high-dose norepinephrine compared with those treated with low-dose norepinephrine. However, the number of ventilator-free days in the L group was higher than that in the H group.

Trial registration: clinicaltrials.gov Identifier: NCT01760967 Date of trial registration: January 4, 2013.

Keywords: Norepinephrine; Septic shock; Ventilator-free days.

Conflict of interest statement

This study was approved by the institutional review boards of Wakayama Medical University and each participating institution. All patients provided necessary consent to participate in this study.No individual personal data are included in the study. All patients provided necessary consent to participate in this study.Dr. Yamamura reports receipt of lecture fees from Hospira Japan, Nipro, and Asahi Kasei and educational consulting fees from Toray Industries, CSL Behring, Teijin Pharma, and Nihon Pharmaceutical. Dr. Kawazoe reports receipt of lecture fees from Hospira Japan and Pfizer Japan and a scholarship from Hospira Japan. Dr. Miyamoto reports receipt of lecture fees from Becton Dickinson and Pfizer Japan. Dr. Morimoto reports receipt of lecture fees from AbbVie, AstraZeneca, Daiichi-Sankyo, Kowa, Kyorin, Mitsubishi-Tanabe, and Pfizer Japan and consulting fees from Asahi Kasei and Boston Scientific. Dr. Tomonori Yamamoto and Dr.Yoshinori Ohta, have no competing interests. The other authors declare no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow of participants in the norepinephrine dosage for septic shock study
Fig. 2
Fig. 2
Twenty-eight-day mortality between the high-dose group and low-dose group
Fig. 3
Fig. 3
Ventilator-free days between the high-dose group and low-dose group. p = 0.03; by Wilcoxon
Fig. 4
Fig. 4
Dose of norepinephrine on each day. *p < 0.05 vs L group at each day

References

    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6.
    1. Martin C, Medam S, Antonini F, Alingrin J, Haddam M, Hammad E, et al. Norepinephrine: not too much, too long. Shock. 2015;44:305–309. doi: 10.1097/SHK.0000000000000426.
    1. Stolk RF, van der Poll T, Angus DC, van der Hoeven JG, Pickkers P, Kox M. Potentially inadvertent immunomodulation: norepinephrine use in sepsis. Am J Respir Crit Care Med. 2016;194:550–558. doi: 10.1164/rccm.201604-0862CP.
    1. Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, et al. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial. JAMA. 2017;317:1321–1328. doi: 10.1001/jama.2017.2088.
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, et al. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet. 2003;361:130–135. doi: 10.1016/S0140-6736(03)12231-3.
    1. Lyte M, Bailey MT. Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res. 1997;70:195–201. doi: 10.1006/jsre.1997.5130.
    1. Zhou M, Das P, Simms HH, Wang P. Gut-derived norepinephrine plays an important role in up-regulating IL-1beta and IL-10. Biochim Biophys Acta. 2005;1740:446–452. doi: 10.1016/j.bbadis.2004.11.005.
    1. Woiciechowsky C, Asadullah K, Nestler D, Eberhardt B, Platzer C, Schoning B, et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med. 1998;4:808–813. doi: 10.1038/nm0798-808.
    1. Tsuda Y, Kobayashi M, Herndon DN, Suzuki F. Impairment of the host’s antibacterial resistance by norepinephrine activated neutrophils. Burns. 2008;34:460–466. doi: 10.1016/j.burns.2007.07.004.
    1. Dunser MW, Ruokonen E, Pettila V, Ulmer H, Torgersen C, Schmittinger CA, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;13:R181. doi: 10.1186/cc8167.
    1. Povoa PR, Carneiro AH, Ribeiro OS, Pereira AC. Influence of vasopressor agent in septic shock mortality. Results from the Portuguese Community-Acquired Sepsis Study (SACiUCI study) Crit Care Med. 2009;37:410–416. doi: 10.1097/CCM.0b013e3181958b1c.
    1. Yoshigi M, Hu N, Keller BB. Dorsal aortic impedance in stage 24 chick embryo following acute changes in circulating blood volume. Am J Phys. 1996;270(5 Pt 2):H1597–H1606.
    1. Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–1691. doi: 10.1001/jama.2013.278477.
    1. Macchia A, Romero M, Comignani PD, Mariani J, D'Ettorre A, Prini N, et al. Previous prescription of beta-blockers is associated with reduced mortality among patients hospitalized in intensive care units for sepsis. Crit Care Med. 2012;40:2768–2772. doi: 10.1097/CCM.0b013e31825b9509.
    1. Jeschke MG, Norbury WB, Finnerty CC, Branski LK, Herndon DN. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. J Trauma. 2007;62:676–681. doi: 10.1097/TA.0b013e318031afd3.
    1. Boomer JS, To K. Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594–2605. doi: 10.1001/jama.2011.1829.
    1. Leentjens J, Kox M, van der Hoeven JG, Netea MG, Pickkers P. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? Am J Respir Crit Care Med. 2013;187:1287–1293. doi: 10.1164/rccm.201301-0036CP.
    1. Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316. doi: 10.1177/0885066609340519.
    1. Schmittinger CA, Torgersen C, Luckner G, Schroder DC, Lorenz I, Dunser MW. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;38:950–958. doi: 10.1007/s00134-012-2531-2.
    1. de Montmollin E, Aboab J, Mansart A, Annane D. Bench-to-bedside review: beta-adrenergic modulation in sepsis. Crit Care. 2009;13:230. doi: 10.1186/cc8026.

Source: PubMed

3
Abonneren