Instantaneous Wave-Free Ratio for the Assessment of Intermediate Left Main Coronary Artery Stenosis: Correlations With Fractional Flow Reserve/Intravascular Ultrasound and Prognostic Implications: The iLITRO-EPIC07 Study

Oriol Rodriguez-Leor, José María de la Torre Hernández, Tamara García-Camarero, Bruno García Del Blanco, Ramón López-Palop, Eduard Fernández-Nofrerías, Carlos Cuellas Ramón, Marcelo Jiménez-Kockar, Jesús Jiménez-Mazuecos, Francisco Fernández Salinas, Josep Gómez-Lara, Salvatore Brugaletta, Fernando Alfonso, Ricardo Palma, Antonio E Gómez-Menchero, Raúl Millán, David Tejada Ponce, José Antonio Linares Vicente, Soledad Ojeda, Eduardo Pinar, Estefanía Fernández-Pelegrina, Francisco J Morales-Ponce, Ana Belén Cid-Álvarez, Juan Carlos Rama-Merchan, Eduardo Molina Navarro, Javier Escaned, Armando Pérez de Prado, Oriol Rodriguez-Leor, José María de la Torre Hernández, Tamara García-Camarero, Bruno García Del Blanco, Ramón López-Palop, Eduard Fernández-Nofrerías, Carlos Cuellas Ramón, Marcelo Jiménez-Kockar, Jesús Jiménez-Mazuecos, Francisco Fernández Salinas, Josep Gómez-Lara, Salvatore Brugaletta, Fernando Alfonso, Ricardo Palma, Antonio E Gómez-Menchero, Raúl Millán, David Tejada Ponce, José Antonio Linares Vicente, Soledad Ojeda, Eduardo Pinar, Estefanía Fernández-Pelegrina, Francisco J Morales-Ponce, Ana Belén Cid-Álvarez, Juan Carlos Rama-Merchan, Eduardo Molina Navarro, Javier Escaned, Armando Pérez de Prado

Abstract

Background: There is little information available on agreement between fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) in left main coronary artery (LMCA) intermediate stenosis. Besides, several meta-analyses support the use of FFR to guide LMCA revascularization, but limited information is available on iFR in this setting. Our aims were to establish the concordance between FFR and iFR in intermediate LMCA lesions, to evaluate with intravascular ultrasound (IVUS) in cases of FFR/iFR discordance, and to prospectively validate the safety of deferring revascularization based on a hybrid decision-making strategy combining iFR and IVUS.

Methods: Prospective, observational, multicenter registry with 300 consecutive patients with intermediate LMCA stenosis who underwent FFR and iFR and, in case of discordance, IVUS and minimal lumen area measurements. Primary clinical end point was a composite of cardiovascular death, LMCA lesion-related nonfatal myocardial infarction, or unplanned LMCA revascularization.

Results: FFR and iFR had an agreement of 80% (both positive in 67 and both negative in 167 patients); in case of disagreement (31 FFR+/iFR- and 29 FFR-/iFR+) minimal lumen area was ≥6 mm2 in 8.7% of patients with FFR+ and 14.6% with iFR+. Among the 300 patients, 105 (35%) underwent revascularization and 181 (60%) were deferred according to iFR and IVUS. At a median follow-up of 20 months, major adverse cardiac events incidence was 8.3% in the defer group and 13.3% in the revascularization group (hazard ratio, 0.71 [95% CI 0.30-1.72]; P=0.45).

Conclusions: In patients with intermediate LMCA stenosis, a physiology-guided treatment decision is feasible either with FFR or iFR with moderate concordance between both indices. In case of disagreement, the use of IVUS may be useful to indicate revascularization. Deferral of revascularization based on iFR appears to be safe in terms of major adverse cardiac events.

Registration: URL: https://www.

Clinicaltrials: gov; Unique identifier: NCT03767621.

Keywords: coronary artery disease; left main coronary artery disease; ultrasound imaging.

Figures

Figure 1.
Figure 1.
Patient classification according to the concordance between fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) as well as intravascular ultrasound (IVUS) significance. FFR and iFR were measured from left anterior descending coronary artery (LAD) in 291 patients and from left circumflex coronary artery (LCX) in 257 patients. There were 3 patients with measurements from LCX but not from the LAD, and 6 patients only with iFR measurement. LMCA indicates left main coronary artery; and MLA, minimal lumen area.
Figure 2.
Figure 2.
Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) correlation, receiver operating curve and values distribution when measured from left anterior descending coronary artery (LAD) and left circumflex coronary artery (LCX). A, Measurements from LAD; (B) measurements from LCX. LMCA indicates left main coronary artery.
Figure 3.
Figure 3.
Concordance between fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) according to a minimal lumen area (MLA) cutoff of 6 mm2 in patients with intravascular ultrasound (IVUS) evaluation. This analysis was performed in 188 patients with MLA, FFR, and iFR measurements (in 6 patients with IVUS study only iFR was measured). LMCA indicates left main coronary artery.
Figure 4.
Figure 4.
Treatment decision according to instantaneous wave-free ratio (iFR), fractional flow reserve (FFR), and minimal lumen area (MLA) values. In patients with discordant FFR and iFR, protocol recommended to perform intravascular ultrasound (IVUS) and decide revascularization if MLA2, but local heart team had the final decision. LMCA indicates left main coronary artery.
Figure 5.
Figure 5.
Major adverse cardiac events (MACE) in follow-up. Kaplan-Meier event-free curves showing major cardiac events in the 2 groups. There was no difference between the deferred according to protocol recommendation and revascularized groups. HR indicates hazard ratio; and LMCA, left main coronary artery.

References

    1. Cameron A, Kemp HG, Fisher LD, Gosselin A, Judkins MP, Kennedy JW, Lesperance J, Mudd JD, Ryan TJ, Silverman JF, et al. . Left main coronary artery stenosis: angiographic determination. Circulation. 1983;68:484–489. doi: 10.1161/01.cir.68.3.484
    1. Fisher LD, Judkins MP, Lesperance J, Cameron A, Swaye P, Ryan T, Maynard C, Bourassa M, Kennedy JW, Gosselin A, et al. . Reproducibility of coronary arteriographic reading in the coronary artery study (CASS). Cathet Cardiovasc Diagn. 1982;8:565–575. doi: 10.1002/ccd.1810080605
    1. Lindstaedt M, Spiecker M, Perings C, Lawo T, Yazar A, Holland-Letz T, Muegge A, Bojara W, Germins A. How good are experienced interventional cardiologist at predicting the functional significance of intermediate or equivocal left main coronary stenosis?. Int J Cardiol. 2007;120:254–261. doi: 10.1016/j.ijcard.2006.11.220
    1. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, et al. . 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2018;40:87–165. doi: 10.1093/eurheartj/ehy394
    1. De la Torre Hernandez JM, Hernandez F, Alfonso F, Rumoroso JR, Lopez-Palop R, Sadaba M, Carrillo P, Rondan J, Lozano I, Tuiz Nodar JM, et al. . Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions. Results from the multicenter LITRO study. J Am Coll Cardiol. 2011;58:351–358. doi: 10.1016/j.jacc.2011.02.064
    1. Mallidi J, Atreya AR, Cook J, Garb J, Jeremias A, Klein LW, Lofti A. Long-term outcomes following fractional flow reserve-guided treatment of angiographically ambiguous left main coronary artery disease: a meta-analysis of prospective cohort studies. Cathet Cardiovasc Interv. 2015;86:12–18. doi: 10.1002/ccd.25894
    1. Cerrato E, Echevarria-Pinto M, D’Ascenzo F, Gonzalo N, Quadri G, Quirós A, de la Torre Hernandez JM, Tomassini F, Barbero U, Nombela-Franco L, et al. . Safety of intermediate left main stenosis revascularization deferral based on fractional flow reserve and intravascular ultrasound. A systematic review and meta-regression including 908 deferred left main stenosis from 12 studies. Int J Cardiol. 2018;271:42–48. doi: 10.1016/j.ijcard.2018.04.032
    1. Warisawa T, Cook CM, Rajkumar C, Howard JP, Seligman H, Ahmad Y, El Hajj S, Doi S, Nakajima A, Nakayama M, et al. . Safety of revascularization deferral of left main stenosis based on instantaneous wave-free ratio evaluation. JACC Cardiovasc Interv. 2020;13:1655–1664. doi: 10.1016/j.jcin.2020.02.035
    1. Kobayashi Y, Johnson NP, Berry C, De Bruyne B, Gould KL, Jeremias A, Oldroyd KG, Piljs N, Fearon WF. The influence of lesion location on the diagnostic accuracy of adenosine-free coronary pressure wire measurements. JACC Cardiovasc Interv. 2016;9:2390–2399. doi: 10.1016/j.jcin.2016.08.041
    1. Dérimay F, Johnson NP, Zimmermann FM, Adjedj J, Witt N, Hennigan B, Koo BK, Barbato E, Esposito G, Trimarco B, et al. . Predictive factors of discordance between instantaneous wave-free ratio and fractional flow reserve. Cathet Cardiovasc Interv. 2019;94:356–363. doi: 10.1002/ccd.28116
    1. Rodriguez-Leor O, de la Torre Hernandez JM, Garcia-Camarero T, Lopez-Palop R, Garcia del Blanco B, Carrillo X, Portero-Portaz JJ, Jimenez-Kockar M, Gomez-Lara J, Ojeda S, et al. . Rationale and design of the concordance study between FFR and iFR for the assessment of lesions in the left main coronary artery. The iLITRO-EPIC07 trial. REC Interv Cardiol. 2022;4:19–26. doi: 10.24875/RECIC.M21000223
    1. Warisawa T, Cook CM, Seligman H, Howard JP, Ahmad Y, Rajkumar C, Doi S, Nakayama M, Tanigaki T, Omori H, et al. . Per-vessel level analysis of fractional flow reserve and instantaneous wave-free ratio discordance. Circ J. 2020;84:1034–1038. doi: 10.1253/circj.CJ-19-0785
    1. Daniels DV, van’t Veer M, Pijls NH, van der Horst A, Yong AS, De Bruyne B, Fearon WF. The impact of downstream coronary stenosis on FFR assessment of intermediate left main disease. JACC Cardiovasc Interv. 2012;5:1021–1025. doi: 10.1016/j.jcin.2012.07.005
    1. Jeremias A, Maehara A, Génereux P, Asrress KN, Berry C, De Bruyne B, Davies JE, Escaned J, Fearon WF, Gould KL, et al. . Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study. J Am Coll Cardiol. 2014;63:1253–1261. doi: 10.1016/j.jacc.2013.09.060
    1. Davies JE, Dehbi HM, Al-Lamee R, Petraco R, Nijjer SS, Bhindi R, Lehman SJ, Walters D, Sapontis J, Janssens L, et al. . Use of instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med. 2017;376:1824–1834. doi: 10.1056/NEJMoa1700445
    1. Götberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, Olsson SE, Öhagen P, Olsson H, Omerovic E, et al. . Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med. 2017;376:1813–1823. doi: 10.1056/NEJMoa1616540
    1. Lee SH, Choi KH, Lee JM, Hwang D, Rhee TM, Park J, Kim HK, Cho YK, Yoon HJ, Park J, et al. . Physiologic characteristics and clinical outcomes of patients with discordance between FFR and iFR. J Am Coll Cardiol. 2019;12:2018–2031. doi: 10.1016/j.jcin.2019.06.044
    1. Lee JM, Shin ES, Nam CH, Doh JH, Hwang D, Park J, Kim KJ, Zhang J, Ahn C, Koo BK. Clinical outcomes according to fractional flow reserve or instantaneous wave-free ration in deferred lesions. JACC Cardiovasc Interv. 2017;24:2502–2510. doi: 10.1016/j.jcin.2017.07.019
    1. Cook CM, Jeremias A, Petraco R, Sen S, Nijjer S, Shun-Shin MJ, Ahmad Y, de Waard G, van de Hoef T, Echevarria-Pinto M, et al. . Fractional flow reserve/instantaneous wave-free ratio discordance in angiographically intermediate coronary stenoses. JACC Cardiovasc Interv. 2017;19:2514–2524. doi: 10.1016/j.jcin.2017.09.021
    1. Nijjer SS, Sen S, Petraco R, Mayet J, Francis DP, Davies JE. The instantaneous wave-free ration pullback: a novel innovation using baseline physiology to optimize coronary angioplasty in tandem lesions. Cardiovasc Revasc Med. 2015;16:167–171. doi: 10.1016/j.carrev.2015.01.006
    1. Kikuta Y, Cook CM, Sharp ASP, Salinas P, Kawase Y, Shiono Y, Giavarini A, Nakayama M, De Rosa S, Sen S, et al. . Pre-angioplasty instantaneous wave-free ratio pullback predicts hemodynamic outcomes in humans with coronary artery disease: primary results of the International Multicenter iFR GRADIENT Registry. JACC Cardiovac Interv. 2018;11:757–767. doi: 10.1016/j.jcin.2018.03.005
    1. Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA. Correlations between fractional flow reserve and intravascular ultrasound un patients with ambiguous left main coronary stenosis. Circulation. 2004;110:2831–2836. doi: 10.1161/01.CIR.0000146338.62813.E7
    1. Park SJ, Ahn JM, Kang SJ, Yoon SH, Koo BK, Lee JY, Kim WJ, Park DW, Lee SW, Kim YH, et al. . Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc Interv. 2014;7:868–874. doi: 10.1016/j.jcin.2014.02.015
    1. El Hajj SC, Toya T, Warisawa T, Nan J, Lewis BR, Cook CM, Rajkumar C, Howard JP, Seligman H, Ahmad Y, et al. . Correlation of intravascular ultrasound and instantaneous wave-free ratio in patients with intermediate left main coronary artery disease. Circ Cardiovasc Interv. 2021;14:e009830. doi: 10.1161/CIRCINTERVENTIONS.120.009830
    1. Johnson TW, Räber L, di Mario C, Bourantas C, Jia H, Mattesini A, Gonzalo N, de la Torre Hernandez JM, Prati F, Koskinas K, et al. . Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the EAPCI. Eur Heart J. 2019;40:2566–2584. doi: 10.1093/eurheartj/ehz332
    1. Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, Nelis O, Bartunek J, Vanderheyden M, Wyffels E, et al. . Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation. 2009;120:1505–1512. doi: 10.1161/CIRCULATIONAHA.109.850073

Source: PubMed

3
Abonneren