Well-loved music robustly relieves pain: a randomized, controlled trial

Christine Hsieh, Jian Kong, Irving Kirsch, Robert R Edwards, Karin B Jensen, Ted J Kaptchuk, Randy L Gollub, Christine Hsieh, Jian Kong, Irving Kirsch, Robert R Edwards, Karin B Jensen, Ted J Kaptchuk, Randy L Gollub

Abstract

Music has pain-relieving effects, but its mechanisms remain unclear. We sought to verify previously studied analgesic components and further elucidate the underpinnings of music analgesia. Using a well-characterized conditioning-enhanced placebo model, we examined whether boosting expectations would enhance or interfere with analgesia from strongly preferred music. A two-session experiment was performed with 48 healthy, pain experiment-naïve participants. In a first cohort, 36 were randomized into 3 treatment groups, including music enhanced with positive expectancy, non-musical sound enhanced with positive expectancy, and no expectancy enhancement. A separate replication cohort of 12 participants received only expectancy-enhanced music following the main experiment to verify the results of expectancy-manipulation on music. Primary outcome measures included the change in subjective pain ratings to calibrated experimental noxious heat stimuli, as well as changes in treatment expectations. Without conditioning, expectations were strongly in favor of music compared to non-musical sound. While measured expectations were enhanced by conditioning, this failed to affect either music or sound analgesia significantly. Strongly preferred music on its own was as pain relieving as conditioning-enhanced strongly preferred music, and more analgesic than enhanced sound. Our results demonstrate the pain-relieving power of personal music even over enhanced expectations.

Trial information: Clinicaltrials.gov NCT01835275.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. CONSORT Flowchart.
Figure 1. CONSORT Flowchart.
Figure 2. Schematic of Session 2.
Figure 2. Schematic of Session 2.
All subjects first receive identical baseline stimuli on three spots of their right arm. Conditioning groups were then given a verbal suggestion specific to their conditioned audio target, while the no-conditioning group was given a neutral suggestion. All groups then received four blocks of two stimulus intensities, with levels determined during Session 1 (target levels = 20–40 out of 100 and 55–70 out of 100 on the pain intensity VAS). Conditioning groups received lower heat levels when the conditioned audio stimulus was on, while the no-conditioning group received stimuli with silence. All groups were then tested with three audio conditions: music, sound, and silence, in randomized order across participants. Within each set of trials, lead-in arrows represent 1 minute of audio or silence that preceded the start of pain stimuli. In all groups ERS was assessed right after verbal suggestion, then following conditioning/variable pain, and after testing (red arrows). We added one more baseline ERS assessment within the music conditioning replication group at the end of session 1 (orange arrow).
Figure 3. Average pain intensity and unpleasantness…
Figure 3. Average pain intensity and unpleasantness changes, all original groups.
N = 35. Shown here are pre (baseline) minus post (testing) pain difference scores (mean ± SEM); positive values indicate analgesia. Panel A displays Pain Intensity, panel B displays Pain Unpleasantness.
Figure 4. Average expectancy scores in all…
Figure 4. Average expectancy scores in all original groups, across all ERS assessment points
. Means ± SEM are shown for N = 35. Time 1 occurs after verbal suggestion but prior to the conditioning phase in the conditioning groups, and prior to the matched variable pain phase in the no- conditioning group. Time 2 occurs immediately after the conditioning/variable pain phase, and Time 3 occurs after testing.

References

    1. Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A 98: 11818–11823.
    1. Koelsch S, Fritz T, DY VC, Muller K, Friederici AD (2006) Investigating emotion with music: an fMRI study. Hum Brain Mapp 27: 239–250.
    1. Benedetti F, Carlino E, Pollo A (2011) How placebos change the patient’s brain. Neuropsychopharmacology 36: 339–354.
    1. Juslin PN, Vastfjall D (2008) Emotional responses to music: the need to consider underlying mechanisms. Behav Brain Sci 31: 559–575 discussion 575–621.
    1. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14: 257–262.
    1. Koelsch S (2009) A neuroscientific perspective on music therapy. Ann N Y Acad Sci 1169: 374–384.
    1. Leknes S, Tracey I (2008) A common neurobiology for pain and pleasure. Nat Rev Neurosci 9: 314–320.
    1. Zatorre RJ, Salimpoor VN (2013) From perception to pleasure: Music and its neural substrates. Proc Natl Acad Sci U S A 110 Suppl 2 10430–10437.
    1. Salimpoor VN, van den Bosch I, Kovacevic N, McIntosh AR, Dagher A, et al. (2013) Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340: 216–219.
    1. Gabrielsson A (2001) Emotions in Strong Experiences with Music. In: Juslin PN, Sloboda JA, editors. Music and Emotion: Theory and Research. New York: Oxford University Press.
    1. Gardner WJ, Licklider JC, Weisz AZ (1960) Suppression of pain by sound. Science 132: 32–33.
    1. Roy M, Peretz I, Rainville P (2008) Emotional valence contributes to music-induced analgesia. Pain 134: 140–147.
    1. Perlini AH, Viita KA (1996) Audioanalgesia in the Control of Experimental Pain. Canadian Journal of Behavioural Science 28: 292–301.
    1. Bernatzky G, Presch M, Anderson M, Panksepp J (2011) Emotional foundations of music as a non-pharmacological pain management tool in modern medicine. Neurosci Biobehav Rev 35: 1989–1999.
    1. Finniss DG, Kaptchuk TJ, Miller F, Benedetti F (2010) Biological, clinical, and ethical advances of placebo effects. Lancet 375: 686–695.
    1. Kaptchuk TJ, Kelley JM, Conboy LA, Davis RB, Kerr CE, et al. (2008) Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 336: 999–1003.
    1. Hall KT, Lembo AJ, Kirsch I, Ziogas DC, Douaiher J, et al. (2012) Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome. PLoS One 7: e48135.
    1. Kong J, Gollub RL, Rosman IS, Webb JM, Vangel MG, et al. (2006) Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J Neurosci 26: 381–388.
    1. Montgomery GH, Kirsch I (1997) Classical conditioning and the placebo effect. Pain 72: 107–113.
    1. Kirsch I (2000) The response set theory of hypnosis. Am J Clin Hypn 42: 274–292.
    1. Kong J, Gollub RL, Polich G, Kirsch I, Laviolette P, et al. (2008) A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J Neurosci 28: 13354–13362.
    1. Bingel U, Wanigasekera V, Wiech K, Ni Mhuircheartaigh R, Lee MC, et al. (2011) The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci Transl Med 3: 70ra14.
    1. Laverdure-Dupont D, Rainville P, Montplaisir J, Lavigne G (2009) Changes in rapid eye movement sleep associated with placebo-induced expectations and analgesia. J Neurosci 29: 11745–11752.
    1. Kong J, Spaeth R, Cook A, Kirsch I, Claggett B, et al. (2013) Are all placebo effects equal? Placebo pills, sham acupuncture, cue conditioning and their association. PLoS One 8: e67485.
    1. Voudouris NJ, Peck CL, Coleman G (1989) Conditioned response models of placebo phenomena: further support. Pain 38: 109–116.
    1. Voudouris NJ, Peck CL, Coleman G (1990) The role of conditioning and verbal expectancy in the placebo response. Pain 43: 121–128.
    1. Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S, et al. (2003) Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J Neurosci 23: 4315–4323.
    1. Price DD, Milling LS, Kirsch I, Duff A, Montgomery GH, et al. (1999) An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 83: 147–156.
    1. Geisser ME, Roth RS, Robinson ME (1997) Assessing depression among persons with chronic pain using the Center for Epidemiological Studies-Depression Scale and the Beck Depression Inventory: a comparative analysis. Clin J Pain 13: 163–170.
    1. Turner JA, Romano JM (1984) Self-report screening measures for depression in chronic pain patients. J Clin Psychol 40: 909–913.
    1. Bradley MM, Lang PJ (1994) Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J Behav Ther Exp Psychiatry 25: 49–59.
    1. Janata P (2009) The neural architecture of music-evoked autobiographical memories. Cereb Cortex 19: 2579–2594.
    1. Villarreal EA, Brattico E, Vase L, Ostergaard L, Vuust P (2012) Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music: the influence of emotion and cognitive style. PLoS One 7: e29397.
    1. Roy M, Lebuis A, Hugueville L, Peretz I, Rainville P (2012) Spinal modulation of nociception by music. Eur J Pain 16: 870–877.
    1. Braun V, Clarke V (2006) Using thematic analysis in psychology. Qualitative Research in Psychology 3: 77–101.
    1. Kong J, Kaptchuk TJ, Polich G, Kirsch I, Vangel M, et al. (2009) Expectancy and treatment interactions: a dissociation between acupuncture analgesia and expectancy evoked placebo analgesia. Neuroimage 45: 940–949.
    1. Amanzio M, Benedetti F (1999) Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci 19: 484–494.
    1. Benedetti F, Arduino C, Amanzio M (1999) Somatotopic activation of opioid systems by target-directed expectations of analgesia. J Neurosci 19: 3639–3648.
    1. Buhle JT, Stevens BL, Friedman JJ, Wager TD (2012) Distraction and placebo: two separate routes to pain control. Psychol Sci 23: 246–253.
    1. Baliki MN, Geha PY, Fields HL, Apkarian AV (2010) Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66: 149–160.
    1. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, et al. (2007) Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55: 325–336.
    1. Wager TD, Scott DJ, Zubieta JK (2007) Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A 104: 11056–11061.
    1. Goldstein A (1980) Thrills in response to music and other stimuli. Physiological Psychology 8: 126–129.
    1. de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, et al. (2001) Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293: 1164–1166.
    1. Lidstone SC, Schulzer M, Dinelle K, Mak E, Sossi V, et al. (2010) Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch Gen Psychiatry 67: 857–865.
    1. Petrovic P, Dietrich T, Fransson P, Andersson J, Carlsson K, et al. (2005) Placebo in emotional processing–induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46: 957–969.
    1. Mitchell LA, MacDonald RA (2006) An experimental investigation of the effects of preferred and relaxing music listening on pain perception. J Music Ther 43: 295–316.
    1. Mitchell LA, MacDonald RA, Brodie EE (2006) A comparison of the effects of preferred music, arithmetic and humour on cold pressor pain. Eur J Pain 10: 343–351.
    1. Sloboda JA, O’neill SA (2001) Emotions in Everyday Listening to Music. In: Juslin PN, Sloboda JA, editors. Music and Emotion: Theory and Research. New York: Oxford University Press.
    1. Corlett PR, Taylor JR, Wang XJ, Fletcher PC, Krystal JH (2010) Toward a neurobiology of delusions. Prog Neurobiol 92: 345–369.

Source: PubMed

3
Abonneren