The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: a randomized crossover controlled trial

Anuwat Amatachaya, Mark P Jensen, Niramol Patjanasoontorn, Narong Auvichayapat, Chanyut Suphakunpinyo, Suparerk Janjarasjitt, Niran Ngernyam, Benchaporn Aree-uea, Paradee Auvichayapat, Anuwat Amatachaya, Mark P Jensen, Niramol Patjanasoontorn, Narong Auvichayapat, Chanyut Suphakunpinyo, Suparerk Janjarasjitt, Niran Ngernyam, Benchaporn Aree-uea, Paradee Auvichayapat

Abstract

Abnormal synaptic maturation and connectivity are possible etiologies of autism. Previous studies showed significantly less alpha activity in autism than normal children. Therefore, we studied the effects of anodal tDCS on peak alpha frequency (PAF) related to autism treatment evaluation checklist (ATEC). Twenty male children with autism were randomly assigned in a crossover design to receive a single session of both active and sham tDCS stimulation (11 mA) over F3 (left dorsolateral prefrontal cortex). Pre- to postsession changes in a measure of cortical activity impacted by tDCS (PAF) and ATEC were compared between groups. We also examined the associations between pre- and postsession changes in the PAF and ATEC. The results show significant pre- to postsession improvements in two domains of ATEC (social and health/behavior domains) following active tDCS, relative to sham treatment. PAF also significantly increased at the stimulation site, and an increase in PAF was significantly associated with improvements in the two domains of ATEC impacted by tDCS. The findings suggest that a single session of anodal tDCS over the F3 may have clinical benefits in children with autism and that those benefits may be related to an increase in PAF.

Figures

Figure 1
Figure 1
Changes in peak alpha frequency (PAF) at 18 electrode sites (referenced to Cz) after active and sham tDCS stimulation over dorsolateral prefrontal cortex (F3), relative to baseline. In the active condition, significant differences in PAF were found at 5 electrode sites: Fp1, Fp2, F7, F3, and Fc. Immediately after stimulation, PAF significantly increased at Fp1, F7, and Fc; significant increases in PAF at Fp2 were found at 72 hours after stimulation. At the stimulation site (F3), increases in PAF were found immediately and at 24 hours after stimulation. In the sham condition, PAF did not have any significant changes at any time point at any of the 18 electrode sites. Red = increase; blue = decrease; white = no changes; ∗ significant different main effect of time; *P < 0.05; **P < 0.01; ***P < 0.001.
Figure 2
Figure 2
Power spectrum density at baseline relative to immediately after stimulation and 24 hours after stimulation for the two treatment conditions. (a) In the active condition, the results show significant increases in peak alpha frequency (PAF) between baseline (black dashed line) and immediately after stimulation (blue line) (P < 0.001). Significant increases in PAF from baseline were also found at 24 hours after stimulation (P = 0.004). (b) In the sham condition, no significant changes in PAF were found at either assessment point. Significant differences following active treatment, relative to baseline, are indicated by **P < 0.01; ***P < 0.001. Significant differences following sham treatment, relative to baseline, are indicated by †P < 0.05; ††P < 0.01.
Figure 3
Figure 3
Correlation between change in peak alpha frequency (PAF) and autism treatment evaluation checklist (ATEC) subscale scores. (a) An increase in PAF at 24 hours after stimulation and change in the ATEC social scale at 7 days after stimulation (r = −0.47, P = 0.037). (b) An increase in PAF immediately after stimulation and change in the ATEC health and behavioral problem scale at 7 days after stimulation (r = −0.46, P = 0.039).

References

    1. Levy S. E., Mandell D. S., Schultz R. T. Autism. The Lancet. 2009;374(9701):1627–1638. doi: 10.1016/S0140-6736(09)61376-3.
    1. Elsabbagh M., Divan G., Koh Y.-J., et al. Global prevalence of autism and other pervasive developmental disorders. Autism Research. 2012;5(3):160–179. doi: 10.1002/aur.239.
    1. Geschwind D. H. Advances in autism. Annual Review of Medicine. 2009;60:367–380. doi: 10.1146/annurev.med.60.053107.121225.
    1. Trottier G., Srivastava L., Walker C.-D. Etiology of infantile autism: a review of recent advances in genetic and neurobiological research. Journal of Psychiatry and Neuroscience. 1999;24(2):103–115.
    1. Herbert M. R., Harris G. J., Adrien K. T., et al. Abnormal asymmetry in language association cortex in autism. Annals of Neurology. 2002;52(5):588–596. doi: 10.1002/ana.10349.
    1. Cardinale R. C., Shih P., Fishman I., Ford L. M., Müller R.-A. Pervasive rightward asymmetry shifts of functional networks in autism spectrum disorder. JAMA Psychiatry. 2013;70(9):975–982. doi: 10.1001/jamapsychiatry.2013.382.
    1. Floris D. L., Chura L. R., Holt R. J., et al. Psychological correlates of handedness and corpus callosum asymmetry in autism: the left hemisphere dysfunction theory revisited. Journal of Autism and Developmental Disorders. 2013;43(8):1758–1772. doi: 10.1007/s10803-012-1720-8.
    1. Kleinhans N. M., Müller R.-A., Cohen D. N., Courchesne E. Atypical functional lateralization of language in autism spectrum disorders. Brain Research. 2008;1221:115–125. doi: 10.1016/j.brainres.2008.04.080.
    1. Lindell A. K., Hudry K. Atypicalities in cortical structure, handedness, and functional lateralization for language in autism spectrum disorders. Neuropsychology Review. 2013;23(3):257–270. doi: 10.1007/s11065-013-9234-5.
    1. Dinstein I., Thomas C., Behrmann M., Heeger D. J. A mirror up to nature. Current Biology. 2008;18(1):R13–R18. doi: 10.1016/j.cub.2007.11.004.
    1. Hamilton A. F. D. C. Emulation and mimicry for social interaction: a theoretical approach to imitation in autism. The Quarterly Journal of Experimental Psychology. 2008;61(1):101–115. doi: 10.1080/17470210701508798.
    1. Iacoboni M., Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience. 2006;7(12):942–951. doi: 10.1038/nrn2024.
    1. Persico A. M., Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends in Neurosciences. 2006;29(7):349–358. doi: 10.1016/j.tins.2006.05.010.
    1. Olejniczak P. Neurophysiologic basis of EEG. Journal of Clinical Neurophysiology. 2006;23(3):186–189. doi: 10.1097/01.wnp.0000220079.61973.6c.
    1. Alexander A. L., Lee J. E., Lazar M., et al. Diffusion tensor imaging of the corpus callosum in Autism. NeuroImage. 2007;34(1):61–73. doi: 10.1016/j.neuroimage.2006.08.032.
    1. Barnea-Goraly N., Kwon H., Menon V., Eliez S., Lotspeich L., Reiss A. L. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biological Psychiatry. 2004;55(3):323–326. doi: 10.1016/j.biopsych.2003.10.022.
    1. Herbert M. R., Ziegler D. A., Deutsch C. K., et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain. 2005;128(1):213–226. doi: 10.1093/brain/awh330.
    1. Just M. A., Cherkassky V. L., Keller T. A., Minshew N. J. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004;127(8):1811–1821. doi: 10.1093/brain/awh199.
    1. Monk C. S., Peltier S. J., Wiggins J. L., et al. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage. 2009;47(2):764–772. doi: 10.1016/j.neuroimage.2009.04.069.
    1. Sundaram S. K., Kumar A., Makki M. I., Behen M. E., Chugani H. T., Chugani D. C. Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cerebral Cortex. 2008;18(11):2659–2665. doi: 10.1093/cercor/bhn031.
    1. Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain and Cognition. 2011;75(1):18–28. doi: 10.1016/j.bandc.2010.10.005.
    1. Wang J., Barstein J., Ethridge L. E., Mosconi M. W., Takarae Y., Sweeney J. A. Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders. 2013;5(1, article 24) doi: 10.1186/1866-1955-5-24.
    1. Cantor D. S., Thatcher R. W., Hrybyk M., Kaye H. Computerized EEG analyses of autistic children. Journal of Autism and Developmental Disorders. 1986;16(2):169–187. doi: 10.1007/BF01531728.
    1. Chan A. S., Sze S. L., Cheung M.-C. Quantitative electroencephalographic profiles for children with autistic spectrum disorder. Neuropsychology. 2007;21(1):74–81. doi: 10.1037/0894-4105.21.1.74.
    1. Murias M., Webb S. J., Greenson J., Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biological Psychiatry. 2007;62(3):270–273. doi: 10.1016/j.biopsych.2006.11.012.
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulation. 2008;1(3):206–223. doi: 10.1016/j.brs.2008.06.004.
    1. Ruffini G., Wendling F., Merlet I., et al. Transcranial current brain stimulation (tCS): models and technologies. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2013;21(3):333–345. doi: 10.1109/tnsre.2012.2200046.
    1. Poreisz C., Boros K., Antal A., Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin. 2007;72(4–6):208–214. doi: 10.1016/j.brainresbull.2007.01.004.
    1. Auvichayapat N., Rotenberg A., Gersner R., et al. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimulation. 2013;6(4):696–700. doi: 10.1016/j.brs.2013.01.009.
    1. Stuss D. T., Knight R. T. Principles of Frontal Lobe Function. 1st. Oxford, UK: Oxford University Press; 2002.
    1. Barbey A. K., Koenigs M., Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49(5):1195–1205. doi: 10.1016/j.cortex.2012.05.022.
    1. Fujii E., Mori K., Miyazaki M., Hashimoto T., Harada M., Kagami S. Function of the frontal lobe in autistic individuals: a proton magnetic resonance spectroscopic study. The Journal of Medical Investigation. 2010;57(1-2):35–44. doi: 10.2152/jmi.57.35.
    1. Schneider H. D., Hopp J. P. The use of the bilingual aphasia test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clinical Linguistics and Phonetics. 2011;25(6-7):640–654. doi: 10.3109/02699206.2011.570852.
    1. Amatachaya A., Auvichayapat N., Patjanasoontorn N., et al. Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial. Behavioural Neurology. 2014;2014:7. doi: 10.1155/2014/173073.173073
    1. Dawson G., Klinger L. G., Panagiotides H., Lewy A., Castelloe P. Subgroups of autistic children based on social behavior display distinct patterns of brain activity. Journal of Abnormal Child Psychology. 1995;23(5):569–583. doi: 10.1007/BF01447662.
    1. Geier D. A., Kern J. K., Geier M. R. A prospective cross sectional cohort assessment of health, physical, and behavioral problems in autism spectrum disorders. Mædica. 2012;7:193–200.
    1. American Psychiatric Association. Task Force on DSM-IV. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV TR. 4th. Washington, DC, USA: American Psychiatric Association; 2000.
    1. Raymaekers R., Wiersema J. R., Roeyers H. EEG study of the mirror neuron system in children with high functioning autism. Brain Research. 2009;1304:113–121. doi: 10.1016/j.brainres.2009.09.068.
    1. Coben R., Clarke A. R., Hudspeth W., Barry R. J. EEG power and coherence in autistic spectrum disorder. Clinical Neurophysiology. 2008;119(5):1002–1009. doi: 10.1016/j.clinph.2008.01.013.
    1. Duffy F. H., Als H. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls—a large case control study. BMC Medicine. 2012;10, article 64 doi: 10.1186/1741-7015-10-64.
    1. Koshino H., Kana R. K., Keller T. A., Cherkassky V. L., Minshew N. J., Just M. A. fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cerebral Cortex. 2008;18(2):289–300. doi: 10.1093/cercor/bhm054.
    1. Sato W., Toichi M., Uono S., Kochiyama T. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders. BMC Neuroscience. 2012;13(1, article 99) doi: 10.1186/1471-2202-13-99.
    1. Horwitz B., Rumsey J. M., Grady C. L., Rapoport S. I. The cerebral metabolic landscape in autism. Archives of Neurology. 1988;45(7):749–755. doi: 10.1001/archneur.1988.00520310055018.
    1. Cherkassky V. L., Kana R. K., Keller T. A., Just M. A. Functional connectivity in a baseline resting-state network in autism. NeuroReport. 2006;17(16):1687–1690. doi: 10.1097/01.wnr.0000239956.45448.4c.
    1. Courchesne E., Pierce K. Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology. 2005;15(2):225–230. doi: 10.1016/j.conb.2005.03.001.
    1. Geschwind D. H., Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Current Opinion in Neurobiology. 2007;17(1):103–111. doi: 10.1016/j.conb.2007.01.009.
    1. Shalom D. B. The medial prefrontal cortex and integration in autism. The Neuroscientist. 2009;15(6):589–598. doi: 10.1177/1073858409336371.
    1. Okamura H., Jing H., Takigawa M. EEG modification induced by repetitive transcranial magnetic stimulation. Journal of Clinical Neurophysiology. 2001;18(4):318–325. doi: 10.1097/00004691-200107000-00003.

Source: PubMed

3
Abonneren