The Non-Genomic Actions of Vitamin D

Charles S Hii, Antonio Ferrante, Charles S Hii, Antonio Ferrante

Abstract

Since its discovery in 1920, a great deal of effort has gone into investigating the physiological actions of vitamin D and the impact its deficiency has on human health. Despite this intense interest, there is still disagreement on what constitutes the lower boundary of adequacy and on the Recommended Dietary Allowance. There has also been a major push to elucidate the biochemistry of vitamin D, its metabolic pathways and the mechanisms that mediate its action. Originally thought to act by altering the expression of target genes, it was realized in the mid-1980s that some of the actions of vitamin D were too rapid to be accounted for by changes at the genomic level. These rapid non-genomic actions have attracted as much interest as the genomic actions and they have spawned additional questions in an already busy field. This mini-review attempts to summarise the in vitro and in vivo work that has been conducted to characterise the rapid non-genomic actions, the mechanisms that give rise to these properties and the roles that these play in the overall action of vitamin D at the cellular level. Understanding the effects of vitamin D at the cellular level should enable the design of elegant human studies to extract the full potential of vitamin D to benefit human health.

Keywords: MAP kinases; protein kinase C; signalling molecules; vitamin D; vitamin D receptor; vitamin D response element.

Figures

Figure 1
Figure 1
The non-genomic actions of 1,25D. 1,25D acts via both genomic and non-genomic actions to regulate the expression of vitamin D responsive genes such as CY24 and those that promote anti-microbial defence. The non-genomic mechanisms, downstream of VDRn and/or VRDm complexed to caveolin1, include the activation of intracellular signalling molecules, such as PKC, PI3K, MAP kinases, CaMKII and PLA2. The range of signalling molecules being activated is related to the cell-type and status of cell maturation. Targets of these kinases include transcription factors, e.g., SP1, SP3 and RXR that bind to response elements on the promoters of vitamin D-responsive genes. Another non-genomic action of 1,25D involves the regulation of VDR binding to target proteins such as STAT1 and IKKβ that enables the cross modulation by 1,25D of gene expression mediated by non-vitamin D ligands, including IFN-α and TNF-α. This mechanism provides an avenue for 1,25D to directly regulate immune responses and anti-viral actions of immune and non-immune cells. Ligation of CD40, IFN-γ receptor and TLR2/4/8 causes an upregulation of VDR and CYP27B1 expression and this facilitates an autocrine mechanism that enables the increased availability of 1,25D and VDR to cooperate with these immune receptors for various responses, including anti-microbial activity while modulating the expression of cytokines, chemokines and type 1 interferons. The VDR, independently of 1,25D, can also exhibits a non-classical action that involves its interaction with proteins such as transcription factors or kinases to modulate cellular responses, including immune/antiviral response and stress-induced cell death. Bold arrows denote direct actions of 1,25D. Dotted arrows denote ligand binding to their receptors. Reversible arrows indicate protein-protein interaction. Arrows with double lines indicate kinase-substrate relationship. Abbreviations: 25D: 25-hydroxyvitamin D; 1,25D: 1,25 dihydroxyvitamin D; VDRm/n: membrane or nuclear vitamin D receptor; CYP27B1 and CYP24: cytochromes P450C1α and P450C24; PLA2: phospholipase A2; CaMKII: Calcium/calmodulin protein kinase II; AA: arachidonic acid; DAG: diacylglycerol; PLC: phospholipase C; IFN: interferon; TLR: Toll-like receptor; PMA: phorbol 12-myristate 13-acetate; PKC: protein kinase C; PI3K: phosphatidylinositol 3-kinase; Akt: protein kinase B; IKK: I-κB kinase; MED1; Mediator Complex Subunit 1; RXR: retinoic acid X receptor; Specificity Protein; ETS 1: Avian Erythroblastosis Virus E26 Oncogene Homolog-1; VSE: Vitamin D stimulatory element; STAT: Signal Transducer and Activator of Transcription; JAK: Janus kinase; Tyk: Tyrosine kinase; ERK: Extracellular signal Regulated protein Kinase; JNK: c-Jun N-terminal Kinase; MCP-1: Monocyte chemoattractant protein 1; CAMP: Cathelicidin Antimicrobial Peptide; IFI27L: Interferon, Alpha-Inducible Protein 27 like; IFI44L: Interferon-Induced Protein 44-Like; ISG15: Interferon-Stimulated Protein, 15 KDa; OAS: 2′-5′-Oligoadenylate Synthetase; RSAD2: Radical S-Adenosyl Methionine Domain Containing 2; “p” denotes phosphorylation; “+” denotes enhancement.

References

    1. Gröber U., Reichrath J., Holick M.F. Live longer with vitamin D? Nutrients. 2015;7:1871–1880. doi: 10.3390/nu7031871.
    1. Holick M.F. Vitamin D deficiency. N. Engl. J. Med. 2007;357:266–281. doi: 10.1056/NEJMra070553.
    1. Mazahery H., von Hurst P.R. Factors Affecting 25-Hydroxyvitamin D Concentration in Response to Vitamin D Supplementation. Nutrients. 2015;7:5111–5142. doi: 10.3390/nu7075111.
    1. Veugelers P.J., Ekwaru J.P. A statistical error in the estimation of the recommended dietary allowance for vitamin D. Nutrients. 2014;6:4472–4475. doi: 10.3390/nu6104472.
    1. Heaney R., Garland C., Baggerly C., French C., Gorham E. Letter to Veugelers, P.J. and Ekwaru, J.P. A statistical error in the estimation of the recommended dietary allowance for vitamin D. Nutrients 2014, 6, 4472–4475, doi:10.3390/nu6104472. Nutrients. 2015;7:1688–1690.
    1. Paller C.J., Kanaan Y.M., Beyene D.A., Naab T.J., Copeland R.L., Tsai H.L., Kanarek N.F., Hudson T.S. Risk of prostate cancer in African-American men: Evidence of mixed effects of dietary quercetin by serum vitamin D status. Prostate. 2015;75:1376–1383. doi: 10.1002/pros.23018.
    1. Jones G., Strugnell S.A., DeLuca H.F. Current understanding of the molecular actions of vitamin D. Physiol. Rev. 1998;78:1193–1231.
    1. Christakos S., Pandya M.R., Yang W. Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin D3. Biochem. J. 1996;316:361–371. doi: 10.1042/bj3160361.
    1. Hewison M., O’Riordan J.L.H. Immunomodulatory and cell differentiation effects of vitamin D. In: Feldman D., Glorieux F.H., Pike J.W., editors. Vitamin D. Academic Press; San Diego, CA, USA: 1997. pp. 447–462.
    1. Issa L.L., Leong G.M., Eisman J.A. Molecular mechanism of vitamin D receptor action. Inflamm. Res. 1998;47:451–475. doi: 10.1007/s000110050360.
    1. Omdahl J.L., May B.K. The 25-hydroxyvitamin D 24-hydroxylase. In: Feldman D., Glorieux F.H., Pike J.W., editors. Vitamin D. Academic Press; San Diego, CA, USA: 1997. pp. 69–85.
    1. Fleet J.C. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: What are they and what do they mean? J. Nutr. 2004;134:3215–3218.
    1. Doroudi M., Schwartz Z., Boyan B.D. Membrane-mediated actions of 1,25-dihydroxy vitamin D3: A review of the roles of phospholipase A2 activating protein and Ca(2+)/calmodulin-dependent protein kinase II. J. Steroid Biochem. Mol. Biol. 2015;147:81–84. doi: 10.1016/j.jsbmb.2014.11.002.
    1. Dwivedi P.P., Hii C.S., Ferrante A., Tan J., Der C.J., Omdahl J.L., Morris H.A., May B.K. Role of MAP kinases in the 1,25-dihydroxyvitamin D3-induced transactivation of the rat cytochrome P450C24 (CYP24) promoter. Specific functions for ERK1/ERK2 and ERK5. J. Biol. Chem. 2002;277:29643–29653. doi: 10.1074/jbc.M204561200.
    1. Nutchey B.K., Kaplan J.S., Dwivedi P.P., Omdahl J.L., Ferrante A., May B.K., Hii C.S. Molecular action of 1,25-dihydroxyvitamin D3 and phorbol ester on the activation of the rat cytochrome P450C24 (CYP24) promoter: Role of MAP kinase activities and identification of an important transcription factor binding site. Biochem. J. 2005;389:753–762. doi: 10.1042/BJ20041947.
    1. Dwivedi P.P., Gao X.H., Tan J.C., Evdokiou A., Ferrante A., Morris H.A., May B.K., Hii C.S. A role for the phosphatidylinositol 3-kinase—Protein kinase C zeta—Sp1 pathway in the 1,25-dihydroxyvitamin D3 induction of the 25-hydroxyvitamin D3 24-hydroxylase gene in human kidney cells. Cell. Signal. 2010;22:543–552. doi: 10.1016/j.cellsig.2009.11.009.
    1. Norman A.W. Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology. 2006;147:5542–5548. doi: 10.1210/en.2006-0946.
    1. Dormanen M.C., Bishop J.E., Hammond M.W., Odamura W.H., Nemere I., Norman A.W. Nonnuclear effects of the steroid hormone 1 alpha, 25(OH)2-vitamin D3: Analogs are able to functionally differentiate between nuclear and membrane receptors. Biochem. Biophys. Res. Commun. 1994;201:394–401. doi: 10.1006/bbrc.1994.1714.
    1. Nemere I., Dormanen M.C., Hammond M.W., Okamura W.H., Norman A.W. Identification of a specific binding protein for 1,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. J. Biol. Chem. 1994;269:23750–23756.
    1. Huhtakangas J.A., Olivera C.J., Bishop J.E., Zanello L.P., Norman A.W. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha, 25(OH)2-vitamin D3 in vivo and in vitro. Mol. Endocrinol. 2004;18:2660–2671. doi: 10.1210/me.2004-0116.
    1. Chen J., Doroudi M., Cheung J., Grozier A.L., Schwartz Z., Boyan B.D. Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1α,25(OH)(2)D(3) Cell. Signal. 2013;25:2362–2373. doi: 10.1016/j.cellsig.2013.07.020.
    1. Boyan B.D., Sylvia V.L., McKinney N., Schwartz Z. Membrane actions of vitamin D metabolites 1α,25(OH)2D3 and 24R,25(OH)2D3 are retained in growth plate cartilage cells from vitamin D receptor knockout mice. J. Cell. Biochem. 2003;90:1207–1223. doi: 10.1002/jcb.10716.
    1. Yamauchi J., Sekiguchi M., Shirai T., Ishimi Y. Vitamin D receptor is not essential for extracellular signal-related kinase phosphorylation by vitamin D(3) in human Caco-2/TC7 cells. Biosci. Biotechnol. Biochem. 2012;76:1588–1590. doi: 10.1271/bbb.120298.
    1. Buitrago C., Pardo V.G., Boland R. Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J. Steroid Biochem. Mol. Biol. 2013;136:125–130. doi: 10.1016/j.jsbmb.2013.02.013.
    1. Antal C.E., Newton A.C. Tuning the signalling output of protein kinase C. Biochem. Soc. Trans. 2014;42:1477–1483. doi: 10.1042/BST20140172.
    1. Sequeira V.B., Rybchyn M.S., Tongkao-On W., Gordon-Thomson C., Malloy P.J., Nemere I., Norman A.W., Reeve V.E., Halliday G.M., Feldman D., et al. The role of the vitamin D receptor and ERp57 in photoprotection by 1α,25-dihydroxyvitamin D3. Mol. Endocrinol. 2012;26:574–582. doi: 10.1210/me.2011-1161.
    1. Tan J., Dwivedi P.P., Anderson P., Nutchey B.K., O’Loughlin P., Morris H.A., May B.K., Ferrante A., Hii C.S. Antineoplastic agents target the 25-hydroxyvitamin D3 24-hydroxylase messenger RNA for degradation: Implications in anticancer activity. Mol. Cancer Ther. 2007;6:3131–3138. doi: 10.1158/1535-7163.MCT-07-0427.
    1. Wang X., Pesakhov S., Harrison J.S., Danilenko M., Studzinski G.P. ERK5 pathway regulates transcription factors important for monocytic differentiation of human myeloid leukemia cells. J. Cell. Physiol. 2014;229:856–867. doi: 10.1002/jcp.24513.
    1. Schwartz Z., Ehland H., Sylvia V.L., Larsson D., Hardin R.R., Bingham V., Lopez D., Dean D.D., Boyan B.D. 1alpha,25-dihydroxyvitamin D(3) and 24R,25-dihydroxyvitamin D(3) modulate growth plate chondrocyte physiology via protein kinase C-dependent phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase. Endocrinology. 2002;143:2775–2786.
    1. Cui M., Zhao Y., Hance K.W., Shao A., Wood R.J., Fleet J.C. Effects of MAPK signalling on 1,25-dihydroxyvitamin D-mediated CYP24 gene expression in the enterocyte-like cell line, Caco-2. J. Cell. Physiol. 2009;21:132–142. doi: 10.1002/jcp.21657.
    1. Jiang Y., Fleet J.C. Phorbol esters enhance 1α,25-dihydroxyvitamin D3-regulated 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) gene expression through ERK-mediated phosphorylation of specific protein 3 (Sp3) in Caco-2 cells. Mol. Cell. Endocrinol. 2012;361:31–39. doi: 10.1016/j.mce.2012.03.008.
    1. Simboli-Campbell M., Gagnon A., Franks D.J., Welsh J. 1,25-dihydroxyvitamin D3 translocates protein kinase C beta to nucleus and enhances plasma membrane association of protein kinase C alpha in renal epithelial cells. J. Biol. Chem. 1994;269:3257–3264.
    1. Chen Y., Zhang J., Ge X., Du J., Deb D.K., Li Y.C. Vitamin D receptor inhibits nuclear factor κB activation by interacting with IκB kinase β protein. J. Biol. Chem. 2013;288:19450–19458. doi: 10.1074/jbc.M113.467670.
    1. Lange C.M., Gouttenoire J., Duong F.H., Morikawa K., Heim M.H., Moradpour D. Vitamin D receptor and Jak-STAT signalling crosstalk results in calcitriol-mediated increase of hepatocellularresponse to IFN-α. J. Immunol. 2014;192:6037–6044. doi: 10.4049/jimmunol.1302296.
    1. Wei R., Christakos S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients. 2015;7:8251–8260. doi: 10.3390/nu7105392.
    1. Li Q.P., Qi X., Pramanik R., Pohl N.M., Loesch M., Chen G. Stress-induced c-Jun-dependent Vitamin D receptor (VDR) activation dissects the non-classical VDR pathway from the classical VDR activity. J. Biol. Chem. 2007;282:1544–1551. doi: 10.1074/jbc.M604052200.
    1. Pálmer H.G., González-Sancho J.M., Espada J., Berciano M.T., Puig I., Baulida J., Quintanilla M., Cano A., de Herreros A.G., Lafarga M., et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J. Cell. Biol. 2001;154:369–387. doi: 10.1083/jcb.200102028.
    1. Yuan W., Pan W., Kong J., Zheng W., Szeto F.L., Wong K.E., Cohen R., Klopot A., Zhang Z., Li Y.C. 1,25-Dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP AMP response element in the renin gene promoter. J. Biol. Chem. 2007;282:29821–29830. doi: 10.1074/jbc.M705495200.
    1. Ding C., Wilding J.P., Bing C. 1,25-dihydroxyvitamin D3 protects against macrophage-induced activation of NFκB and MAPK signalling and chemokine release in human adipocytes. PLoS ONE. 2013;24:135. doi: 10.1371/journal.pone.0061707.
    1. Chen Y., Kong J., Sun T., Li G., Szeto F.L., Liu W., Deb D.K., Wang Y., Zhao Q., Thadhani R., et al. 1,25-Dihydroxyvitamin D(3) suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-κB activation. Arch. Biochem. Biophys. 2011;507:241–247. doi: 10.1016/j.abb.2010.12.020.
    1. Chen Y., Liu W., Sun T., Huang Y., Wang Y., Deb D.K., Yoon D., Kong J., Thadhani R., Li Y.C. 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signalling via targeting microRNA-155-SOCS1 in macrophages. J. Immunol. 2013;190:3687–3695. doi: 10.4049/jimmunol.1203273.
    1. Deb D.K., Chen Y., Zhang Z., Zhang Y., Szeto F.L., Wong K.E., Kong J., Li Y.C. 1,25-Dihydroxyvitamin D3 suppresses high glucose-induced angiotensinogen expression in kidney cells by blocking the NF-kappa B pathway. Am. J. Physiol. Ren. Physiol. 2009;296:F1212–F1218. doi: 10.1152/ajprenal.00002.2009.
    1. D’Ambrosio D., Cippitelli M., Cocciolo M.G., Mazzeo D., Di Lucia P., Lang R., Sinigaglia F., Panina-Bordignon P. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J. Clin. Investig. 1998;101:252–262. doi: 10.1172/JCI1050.
    1. Lange C.M., Bojunga J., Ramos-Lopez E., von Wagner M., Hassler A., Vermehren J., Herrmann E., Badenhoop K., Zeuzem S., Sarrazin C. Vitamin D deficiency and a CYP27B1–1260 promoter polymorphism are associated with chronic hepatitis C and poor response to interferon-alfa based therapy. J. Hepatol. 2011;54:887–893. doi: 10.1016/j.jhep.2010.08.036.
    1. Gal-Tanamy M., Bachmetov L., Ravid A., Koren R., Erman A., Tur-Kaspa R., Zemel R. Vitamin D: An innate antiviral agent suppressing hepatitis C virus in human hepatocytes. Hepatology. 2011;54:1570–1579. doi: 10.1002/hep.24575.
    1. Matsumura T., Kato T., Sugiyama N., Tasaka-Fujita M., Murayama A., Masaki T., Wakita T., Imawari M. 25-Hydroxyvitamin D3 suppresses hepatitis C virus production. Hepatology. 2012;56:1231–1239. doi: 10.1002/hep.25763.
    1. Greiller C.L., Martineau A.R. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015;7:4240–4270. doi: 10.3390/nu7064240.
    1. Petta S., Camma` C., Scazzone C., Tripodo C., Di Marco V., Bono A., Cabibi D., Licata G., Porcasi R., Marchesini G., et al. Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. Hepatology. 2010;51:1158–1167. doi: 10.1002/hep.23489.
    1. Kroner Jde C., Sommer A., Fabri M. Vitamin D every day to keep the infection away? Nutrients. 2015;7:4170–4188. doi: 10.3390/nu7064170.
    1. Chun R.F., Liu P.T., Modlin R.L., Adams J.S., Hewison M. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front. Physiol. 2014;5:151. doi: 10.3389/fphys.2014.00151.
    1. Peric M., Koglin S., Dombrowski Y., Gross K., Bradac E., Ruzicka T., Schauber J. VDR and MEK-ERK dependent induction of the antimicrobial peptide cathelicidin in keratinocytes by lithocholic acid. Mol. Immunol. 2009;46:3183–3187. doi: 10.1016/j.molimm.2009.08.010.
    1. Yim S., Dhawan P., Ragunath C., Christakos S., Diamond G. Induction of cathelicidin in normal and cf bronchial epithelial cells by 1,25-dihydroxyvitamin D(3) J. Cyst. Fibros. 2007;6:403–410. doi: 10.1016/j.jcf.2007.03.003.
    1. Campbell G.R., Spector S.A. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy. 2012;8:1523–1525. doi: 10.4161/auto.21154.
    1. Campbell G.R., Spector S.A. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathog. 2012;8:135. doi: 10.1371/journal.ppat.1003017.
    1. Qi X., Tang J., Pramanik R., Schultz R.M., Shirasawa S., Sasazuki T., Han J., Chen G. P38 MAPK activation selectively induces cell death in K-ras-mutated human colon cancer cells through regulation of vitamin D receptor. J. Biol. Chem. 2004;279:22138–22144. doi: 10.1074/jbc.M313964200.
    1. Qi X., Pramanik R., Wang J., Schultz R.M., Maitra R.K., Han J., DeLuca H.F., Chen G. The p38 and JNK pathways cooperate to trans-activate vitamin D receptor via c-Jun/AP-1 and sensitize human breast cancer cells to vitamin D(3)-induced growth inhibition. J. Biol. Chem. 2002;277:25884–25892. doi: 10.1074/jbc.M203039200.
    1. Jiang J., Shi D., Zhou X.Q., Yin L., Feng L., Jiang W.D., Liu Y., Tang L., Wu P., Zhao Y. Vitamin D inhibits lipopolysaccharide-induced inflammatory response potentially through the Toll-like receptor 4 signalling pathway in the intestine and enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian) Br. J. Nutr. 2015;114:1560–1568. doi: 10.1017/S0007114515003256.
    1. Al-Rasheed N.M., Al-Rasheed N.M., Bassiouni Y.A., Hasan I.H., Al-Amin M.A., Al-Ajmi H.N., Mohamad R.A. Vitamin D attenuates pro-inflammatory TNF-α cytokine expression by inhibiting NF-κB/p65 signaling in hypertrophied rat hearts. J. Physiol. Biochem. 2015;71:289–299. doi: 10.1007/s13105-015-0412-1.
    1. Choi M., Park H., Cho S., Lee M. Vitamin D3 supplementation modulates inflammatory responses from the muscle damage induced by high-intensity exercise in SD rats. Cytokine. 2013;63:27–35. doi: 10.1016/j.cyto.2013.03.018.
    1. Gao L., Cao J.T., Liang Y., Zhao Y.C., Lin X.H., Li X.C., Tan Y.J., Li J., Zhou C.L., Xu H.Y., et al. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome. Endocrine. 2015 doi: 10.1007/s12020-015-0797-1.
    1. Devaraj S., Yun J.M., Duncan-Staley C.R., Jialal I. Low vitamin D levels correlate with the proinflammatory state in type 1 diabetic subjects with and without microvascular complications. Am. J. Clin. Pathol. 2011;135:429–433. doi: 10.1309/AJCPJGZQX42BIAXL.
    1. Lucas R.M., Gorman S., Geldenhuys S., Hart P.H. Vitamin D and immunity. F1000Prime Rep. 2014;6:118. doi: 10.12703/P6-118.

Source: PubMed

3
Abonneren