A Novel Curcumin-Galactomannoside Complex Delivery System Improves Hepatic Function Markers in Chronic Alcoholics: A Double-Blinded, randomized, Placebo-Controlled Study

Naveen T Krishnareddy, Jestin V Thomas, Saritha S Nair, Johannah N Mulakal, Balu P Maliakel, I M Krishnakumar, Naveen T Krishnareddy, Jestin V Thomas, Saritha S Nair, Johannah N Mulakal, Balu P Maliakel, I M Krishnakumar

Abstract

Considering the recent interest in free (unconjugated) curcuminoids delivery, the present study investigated the efficacy of a novel food-grade free-curcuminoids delivery system (curcumin-galactomannoside complex; CGM) in improving the hepatic function markers (inflammation and oxidative stress) in chronic alcoholics. The double-blinded, placebo-controlled study randomized 48 subjects with elevated serum transaminases and gamma-glutamyl transferase (GGT) levels, who were allocated to two groups (n=24) and to receive either placebo or CGM at (250 mg × 2)/day for 8 weeks. While liver function markers (transaminases and GGT) in the placebo group showed an increase (~ 9.5%), CGM group indicated a significant decrease in transaminases (31%) and GGT (29%) from the baseline levels. The beneficial effect of CGM was also clear from the significant increase (p <0.001) in endogenous antioxidants (GSH, SOD, and GPx) and decrease in inflammatory markers (IL-6 and CRP) levels (p <0.001) as compared to both the baseline and placebo group. To summarize, the nutritional intervention of CGM-curcumin was found to offer a significant hepatoprotective effect to attenuate the alcohol induced alterations to hepatic function markers. The Indian Medical Council and Drug Controller General of India approved Clinical Trial Registry No. CTRI/2018/03/012385.

Figures

Figure 1
Figure 1
CONSORT flow diagram of the study.
Figure 2
Figure 2
HPLC and HPTLC analysis of CGM in comparison with standard curcumin.
Figure 3
Figure 3
Liver toxicity markers in serum; significant difference in p values given as ∗∗ = p < 0.01; ∗∗∗ = p < 0.001, and ns = p > 0.05, when the CGM group is compared with that of placebo.
Figure 4
Figure 4
Oxidative stress markers in serum; significant difference in p values given as ∗∗ = p < 0.01; ∗∗∗ = p < 0.001, and ns = p > 0.05, when the CGM group is compared with that of placebo.
Figure 5
Figure 5
Inflammatory marker in serum; significant difference in p values given as ∗∗ = p < 0.01; ∗∗∗ = p < 0.001, and ns = p > 0.05, when the CGM group is compared with that of placebo.

References

    1. World Health Organisation. Global status report on alcohol and health 2014.
    1. Rehm J., Shield K. D. Alcohol and mortality: global alcohol-attributable deaths from cancer, liver cirrhosis, and injury in 2010. Alcohol Research: Current Reviews. 2013;35(2):174–183.
    1. Singal A. K., Anand B. S. Recent trends in the epidemiology of alcoholic liver disease. Clinical Liver Disease. 2013;2(2):53–56. doi: 10.1002/cld.168.
    1. Lieber C. S. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol. 2004;34(1):9–19. doi: 10.1016/j.alcohol.2004.07.008.
    1. Torruellas C., French S. W., Medici V. Diagnosis of alcoholic liver disease. World Journal of Gastroenterology. 2014;20(33):11684–11699. doi: 10.3748/wjg.v20.i33.11684.
    1. Gao B., Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141(5):1572–1585. doi: 10.1053/j.gastro.2011.09.002.
    1. Cohen J. I., Nagy L. E. Pathogenesis of alcoholic liver disease: interactions between parenchymal and non-parenchymal cells. Journal of Digestive Diseases. 2011;12(1):3–9. doi: 10.1111/j.1751-2980.2010.00468.x.
    1. Torkadi P. P., Apte I. C., Bhute A. K. Biochemical evaluation of patients of alcoholic liver disease and non-alcoholic liver disease. Indian Journal of Clinical Biochemistry. 2014;29(1):79–83. doi: 10.1007/s12291-013-0310-7.
    1. Luedde T., Kaplowitz N., Schwabe R. F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147(4):765–783. doi: 10.1053/j.gastro.2014.07.018.
    1. Giannini E. G., Testa R., Savarino V. Liver enzyme alteration: a guide for clinicians. Canadian Medical Association Journal. 2005;172(3):367–379. doi: 10.1503/cmaj.1040752.
    1. Hong M., Li S., Tan H. Y., Wang N., Tsao S. W., Feng Y. Current status of herbal medicines in chronic liver disease therapy: the biological effects, molecular targets and future prospects. International Journal of Molecular Sciences. 2015;16(12):28705–28745. doi: 10.3390/ijms161226126.
    1. Perrone D., Ardito F., Giannatempo G., et al. Biological and therapeutic activities, and anticancer properties of curcumin (Review) Experimental and Therapeutic Medicine. 2015;10(5):1615–1623. doi: 10.3892/etm.2015.2749.
    1. Gupta S. C., Tyagi A. K., Deshmukh-Taskar P., Hinojosa M., Prasad S., Aggarwal B. B. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Archives of Biochemistry and Biophysics. 2014;559:91–99. doi: 10.1016/j.abb.2014.06.006.
    1. Bar-Sela G., Epelbaum R., Schaffer M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Current Medicinal Chemistry. 2010;17(3):190–197. doi: 10.2174/092986710790149738.
    1. Liu W., Zhai Y., Heng X., et al. Oral bioavailability of curcumin: problems and advancements. Journal of Drug Targeting. 2016;24(8):694–702. doi: 10.3109/1061186X.2016.1157883.
    1. Jäger R., Lowery R. P., Calvanese A. V., Joy J. M., Purpura M., Wilson J. M. Comparative absorption of curcumin formulations. Nutrition Journal . 2014;13, article 11 doi: 10.1186/1475-2891-13-11.
    1. Cuomo J., Appendino G., Dern A. S., et al. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. Journal of Natural Products. 2011;74(4):664–669. doi: 10.1021/np1007262.
    1. Sasaki H., Sunagawa Y., Takahashi K., et al. Innovative preparation of curcumin for improved oral bioavailability. Biological & Pharmaceutical Bulletin. 2011;34(5):660–665. doi: 10.1248/bpb.34.660.
    1. Choudhury A., Raja S., Mahapatra S., Nagabhushanam K., Majeed M. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites. Antioxidants. 2015;4(4):750–767. doi: 10.3390/antiox4040750.
    1. Pal A., Sung B., Bhanu Prasad B. A., et al. Curcumin glucuronides: Assessing the proliferative activity against human cell lines. Bioorganic & Medicinal Chemistry. 2014;22(1):435–439. doi: 10.1016/j.bmc.2013.11.006.
    1. Vareed S. K., Kakarala M., Ruffin M. T., et al. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiology Biomarkers & Prevention. 2008;17(6):1411–1417. doi: 10.1158/1055-9965.epi-07-2693.
    1. Szymusiak M., Hu X., Leon Plata P. A., Ciupinski P., Wang Z. J., Liu Y. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. International Journal of Pharmaceutics. 2016;511(1):415–423. doi: 10.1016/j.ijpharm.2016.07.027.
    1. Shoji M., Nakagawa K., Watanabe A., et al. Comparison of the effects of curcumin and curcumin glucuronide in human hepatocellular carcinoma HepG2 cells. Food Chemistry. 2014;151:126–132. doi: 10.1016/j.foodchem.2013.11.021.
    1. National Institute of Health. National Institute on Alcohol Abuse &amp; Alcoholism. .
    1. Andersson A., Wiréhn A.-B., Ölvander C., Ekman D. S., Bendtsen P. Alcohol use among university students in Sweden measured by an electronic screening instrument. BMC Public Health. 2009;9
    1. Kypri K., Langley J., Stephenson S. Episode-centred analysis of drinking to intoxication in university students. Alcohol and Alcoholism. 2005;40(5):447–452. doi: 10.1093/alcalc/agh178.
    1. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) The Journal of Biological Chemistry. 1969;244(22):6049–6055.
    1. Hafeman D. G., Sunde R. A., Hoekstra W. G. Effect of Dietary Selenium on Erythrocyte and Liver Glutathione Peroxidase in the Rat. Journal of Nutrition. 1974;104(5):580–587. doi: 10.1093/jn/104.5.580.
    1. Moron M. S., Depierre J. W., Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta. 1979;582(1):67–78. doi: 10.1016/0304-4165(79)90289-7.
    1. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3.
    1. Persijn J. P., van der Slik W. A new method for the determination of γ glutamyltransferase in serum. Journal of Clinical Chemistry and Clinical Biochemistry. 1976;14(9):421–427.
    1. Si-Tayeb K., Lemaigre F. P., Duncan S. A. Organogenesis and development of the liver. Developmental Cell. 2010;18(2):175–189. doi: 10.1016/j.devcel.2010.01.011.
    1. Cichoz-Lach H., Michalak A. Oxidative stress as a crucial factor in liver diseases. World Journal of Gastroenterology. 2014;20(25):8082–8091. doi: 10.3748/wjg.v20.i25.8082.
    1. Weiskirchen R. Hepatoprotective and anti-fibrotic agents: It's time to take the next step. Frontiers in Pharmacology. 2016;6:p. 303.
    1. Nabavi S. F., Daglia M., Moghaddam A. H., Habtemariam S., Nabavi S. M. Curcumin and liver disease: From chemistry to medicine. Comprehensive Reviews in Food Science and Food Safety. 2014;13(1):62–77. doi: 10.1111/1541-4337.12047.
    1. Prasad S., Tyagi A. K., Aggarwal B. B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Research and Treatment. 2014;46:2–18. doi: 10.4143/crt.2014.46.1.2.
    1. Krishnakumar I. M., Maliakel A., Gopakumar G., Kumar D., Maliakel B., Kuttan R. Improved blood-brain-barrier permeability and tissue distribution following the oral administration of a food-grade formulation of curcumin with fenugreek fibre. Journal of Functional Foods. 2015;14:215–225. doi: 10.1016/j.jff.2015.01.049.
    1. Kumar D., Jacob D., Subash P. S., et al. Enhanced bioavailability and relative distribution of free (unconjugated) curcuminoids following the oral administration of a food-grade formulation with fenugreek dietary fibre: A randomised double-blind crossover study. Journal of Functional Foods. 2016;22:578–587. doi: 10.1016/j.jff.2016.01.039.
    1. Rahmani S., Asgary S., Askari G., et al. Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phytotherapy Research. 2016;30(9):1540–1548. doi: 10.1002/ptr.5659.
    1. Shinde A., Ganu J., Naik P., Sawant A. Oxidative stress and antioxidative status in patients with alcoholic liver disease. Journal of Biomedical Research. 2012;23(1):105–108.
    1. Sudheeran S. P., Jacob D., Mulakal J. N., et al. Safety, tolerance, and enhanced efficacy of a bioavailable formulation of curcumin with fenugreek dietary fiber on occupational stress a randomized, double-blind, placebo-controlled pilot study. Journal of Clinical Psychopharmacology. 2016;36(3):236–243. doi: 10.1097/JCP.0000000000000508.
    1. Adegbola P., Aderibigbe I., Hammed W., Omotayo T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: a review. American Journal of Cardiovascular Disease. 2017;7(2):p. pp.
    1. Guo J., Friedman S. L. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis & Tissue Repair. 2010;3(1)
    1. Campillo B., Sherman E., Richardet J. P., Bories P. N. Serum leptin levels in alcoholic liver cirrhosis: Relationship with gender, nutritional status, liver function and energy metabolism. European Journal of Clinical Nutrition. 2001;55(11):980–988. doi: 10.1038/sj/ejcn/1601255. doi: 10.1038/sj.ejcn.1601255.
    1. Fuster D., Cheng D. M., Quinn E. K., et al. Inflammatory cytokines and mortality in a cohort of HIV-infected adults with alcohol problems. AIDS. 2014;28(7):1059–1064. doi: 10.1097/QAD.0000000000000184.

Source: PubMed

3
Abonneren