Healthcare-associated links in transmission of nontuberculous mycobacteria among people with cystic fibrosis (HALT NTM) study: Rationale and study design

Jane E Gross, Silvia Caceres, Katie Poch, Nabeeh A Hasan, Rebecca M Davidson, L Elaine Epperson, Ettie Lipner, Charmie Vang, Jennifer R Honda, Matthew Strand, Michael Strong, Lisa Saiman, D Rebecca Prevots, Kenneth N Olivier, Jerry A Nick, Jane E Gross, Silvia Caceres, Katie Poch, Nabeeh A Hasan, Rebecca M Davidson, L Elaine Epperson, Ettie Lipner, Charmie Vang, Jennifer R Honda, Matthew Strand, Michael Strong, Lisa Saiman, D Rebecca Prevots, Kenneth N Olivier, Jerry A Nick

Abstract

Background: Healthcare-associated transmission of nontuberculous mycobacteria (NTM) among people with cystic fibrosis (pwCF) has been reported and is of increasing concern. No standardized epidemiologic investigation tool has been published for healthcare-associated NTM outbreak investigations. This report describes the design of an ongoing observational study to standardize the approach to NTM outbreak investigation among pwCF.

Methods: This is a parallel multi-site study of pwCF within a single Center who have respiratory NTM isolates identified as being highly-similar. Participants have a history of positive airway cultures for NTM, receive care within a single Center, and have been identified as part of a possible outbreak based on genomic analysis of NTM isolates. Participants are enrolled in the study over a 3-year period. Primary endpoints are identification of a shared healthcare-associated encounter(s) among patients in a Center and identification of environmental isolates that are genetically highly-similar to respiratory isolates recovered from pwCF. Secondary endpoints include characterization of potential transmission modes and settings, as well as incidence and prevalence of healthcare-associated environmental NTM species/subspecies by geographical region.

Discussion: We hypothesize that genetically highly-similar strains of NTM among pwCF cared for at the same Center may arise from healthcare sources including patient-to-patient transmission and/or acquisition from environmental sources. This novel study design will establish a standardized, evidence-based epidemiologic investigation tool for healthcare-associated NTM outbreak investigation within CF Care Centers, will broaden the scope of independent outbreak investigations and demonstrate the frequency and nature of healthcare-associated NTM transmission in CF Care Centers nationwide. Furthermore, it will provide valuable insights into modeling risk factors associated with healthcare-associated NTM transmission and better inform future infection prevention and control guidelines. This study will systematically characterize clinically-relevant NTM isolates of CF healthcare environmental dust and water biofilms and set the stage to describe the most common environmental sources within the healthcare setting harboring clinically-relevant NTM isolates.

Trial registration: ClinicalTrials.gov NCT04024423. Date of registry July 18, 2019.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Schematic showing an overview of…
Fig 1. Schematic showing an overview of the healthcare-associated links in transmission of nontuberculous mycobacteria among people with cystic fibrosis (HALT NTM) study.
Fig 2. Schematic showing an overview of…
Fig 2. Schematic showing an overview of the parallel multi-site study design.

References

    1. Qvist T, Pressler T, Hoiby N, Katzenstein TL. Shifting paradigms of nontuberculous mycobacteria in cystic fibrosis. Respir Res. 2014;15:41. doi: 10.1186/1465-9921-15-41
    1. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al.. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71 Suppl 1:i1–22.
    1. Adjemian J, Olivier KN, Prevots DR. Epidemiology of Pulmonary Nontuberculous Mycobacterial Sputum Positivity in Patients with Cystic Fibrosis in the United States, 2010–2014. Ann Am Thorac Soc. 2018;15(7):817–26. doi: 10.1513/AnnalsATS.201709-727OC
    1. Gross JE, Martiniano SL, Nick JA. Prevention of transmission of Mycobacterium abscessus among patients with cystic fibrosis. Curr Opin Pulm Med. 2019;25(6):646–53. doi: 10.1097/MCP.0000000000000621
    1. Primm TP, Lucero CA, Falkinham JO 3rd. Health impacts of environmental mycobacteria. Clin Microbiol Rev. 2004;17(1):98–106. doi: 10.1128/CMR.17.1.98-106.2004
    1. Falkinham JO, 3rd. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17(3):419–24. doi: 10.3201/eid1703.101510
    1. Honda JR, Hasan NA, Davidson RM, Williams MD, Epperson LE, Reynolds PR, et al.. Environmental Nontuberculous Mycobacteria in the Hawaiian Islands. PLoS Negl Trop Dis. 2016;10(10):e0005068. doi: 10.1371/journal.pntd.0005068
    1. Prevots DR, Adjemian J, Fernandez AG, Knowles MR, Olivier KN. Environmental risks for nontuberculous mycobacteria. Individual exposures and climatic factors in the cystic fibrosis population. Ann Am Thorac Soc. 2014;11(7):1032–8. doi: 10.1513/AnnalsATS.201404-184OC
    1. Aitken ML, Limaye A, Pottinger P, Whimbey E, Goss CH, Tonelli MR, et al.. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med. 2012;185(2):231–2. doi: 10.1164/ajrccm.185.2.231
    1. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, et al.. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60. doi: 10.1016/S0140-6736(13)60632-7
    1. Johnston DI, Chisty Z, Gross JE, Park SY. Investigation of Mycobacterium abscessus outbreak among cystic fibrosis patients, Hawaii 2012. J Hosp Infect. 2016;94(2):198–200. doi: 10.1016/j.jhin.2016.04.015
    1. Yan J, Kevat A, Martinez E, Teese N, Johnson K, Ranganathan S, et al.. Investigating transmission of Mycobacterium abscessus amongst children in an Australian cystic fibrosis centre. J Cyst Fibros. 2020;19(2):219–24. doi: 10.1016/j.jcf.2019.02.011
    1. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, et al.. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354(6313):751–7. doi: 10.1126/science.aaf8156
    1. Martiniano SL, Davidson RM, Nick JA. Nontuberculous mycobacteria in cystic fibrosis: Updates and the path forward. Pediatr Pulmonol. 2017;52(S48):S29–S36. doi: 10.1002/ppul.23825
    1. Tortoli E, Kohl TA, Trovato A, Baldan R, Campana S, Cariani L, et al.. Mycobacterium abscessus in patients with cystic fibrosis: low impact of inter-human transmission in Italy. Eur Respir J. 2017;50(1). doi: 10.1183/13993003.02525-2016
    1. Doyle RM, Rubio M, Dixon G, Hartley J, Klein N, Coll P, et al.. Cross-transmission Is Not the Source of New Mycobacterium abscessus Infections in a Multicenter Cohort of Cystic Fibrosis Patients. Clin Infect Dis. 2020;70(9):1855–64. doi: 10.1093/cid/ciz526
    1. Harris KA, Underwood A, Kenna DT, Brooks A, Kavaliunaite E, Kapatai G, et al.. Whole-genome sequencing and epidemiological analysis do not provide evidence for cross-transmission of mycobacterium abscessus in a cohort of pediatric cystic fibrosis patients. Clin Infect Dis. 2015;60(7):1007–16. doi: 10.1093/cid/ciu967
    1. du Moulin GC, Stottmeier KD, Pelletier PA, Tsang AY, Hedley-Whyte J. Concentration of Mycobacterium avium by hospital hot water systems. JAMA. 1988;260(11):1599–601. doi: 10.1001/jama.260.11.1599
    1. Shin JH, Lee EJ, Lee HR, Ryu SM, Kim HR, Chang CL, et al.. Prevalence of non-tuberculous mycobacteria in a hospital environment. J Hosp Infect. 2007;65(2):143–8. doi: 10.1016/j.jhin.2006.10.004
    1. Williams MM, Armbruster CR, Arduino MJ. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review. Biofouling. 2013;29(2):147–62. doi: 10.1080/08927014.2012.757308
    1. Wallace RJ Jr., Brown BA, Griffith DE. Nosocomial outbreaks/pseudo-outbreaks caused by nontuberculous mycobacteria. Annu Rev Microbiol. 1998;52:453–90. doi: 10.1146/annurev.micro.52.1.453
    1. Olivier KN, Weber DJ, Wallace RJ Jr., Faiz AR, Lee JH, Zhang Y, et al.. Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med. 2003;167(6):828–34. doi: 10.1164/rccm.200207-678OC
    1. Baker AW, Lewis SS, Alexander BD, Chen LF, Wallace RJ Jr., Brown-Elliott BA, et al.. Two-Phase Hospital-Associated Outbreak of Mycobacterium abscessus: Investigation and Mitigation. Clin Infect Dis. 2017;64(7):902–11. doi: 10.1093/cid/ciw877
    1. Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J Clin Microbiol. 2013;51(9):3006–11. doi: 10.1128/JCM.00899-13
    1. Gebert MJ, Delgado-Baquerizo M, Oliverio AM, Webster TM, Nichols LM, Honda JR, et al.. Ecological Analyses of Mycobacteria in Showerhead Biofilms and Their Relevance to Human Health. MBio. 2018;9(5). doi: 10.1128/mBio.01614-18
    1. Colorado Cystic Fibrosis Research & Development Program Denver: National Jewish Health; 2015 [cited 2017. Available from: .
    1. Davidson RM, Hasan NA, Epperson LE, Benoit JB, Kammlade SM, Levin AR, et al.. Population Genomics of Mycobacterium abscessus from United States Cystic Fibrosis Care Centers. Ann Am Thorac Soc. 2021. doi: 10.1513/AnnalsATS.202009-1214OC
    1. Hasan NA, Davidson RM, Epperson LE, Kammlade SM, Beagle S, Levin AR, et al.. Population Genomics and Inference of Mycobacterium avium Complex Clusters in Cystic Fibrosis Care Centers, United States. Emerg Infect Dis. 2021;27(11):2836–46. doi: 10.3201/eid2711.210124
    1. Healthcare-Associated Infection (HAI) Outbreak Investigation Toolkit Atlanta: Centers for Disease Control and Prevention; 2013 [Available from: .
    1. Healthcare-Associated Infection Outbreak Investigation Abstraction Form Atlanta: Centers for Disease Control and Prevention; 2013 [Available from: .
    1. Hasan NA, Davidson RM, Epperson LE, Kammlade SM, Rodger RR, Levin AR, et al.. Population Genomics of Nontuberculous Mycobacteria Recovered from United States Cystic Fibrosis Patients. bioRxiv. 2019:663559.
    1. Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, et al.. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181S:S4–S15 e1. doi: 10.1016/j.jpeds.2016.09.064
    1. Martiniano SL, Sontag MK, Daley CL, Nick JA, Sagel SD. Clinical significance of a first positive nontuberculous mycobacteria culture in cystic fibrosis. Ann Am Thorac Soc. 2014;11(1):36–44. doi: 10.1513/AnnalsATS.201309-310OC
    1. Virdi R, Lowe ME, Norton GJ, Dawrs SN, Hasan NA, Epperson LE, et al.. Lower Recovery of Nontuberculous Mycobacteria from Outdoor Hawai’i Environmental Water Biofilms Compared to Indoor Samples. Microorganisms. 2021;9(2). doi: 10.3390/microorganisms9020224
    1. Epperson LE, Strong M. A scalable, efficient, and safe method to prepare high quality DNA from mycobacteria and other challenging cells. J Clin Tuberc Other Mycobact Dis. 2020;19:100150. doi: 10.1016/j.jctube.2020.100150
    1. Adekambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003;41(12):5699–708. doi: 10.1128/JCM.41.12.5699-5708.2003
    1. Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, Chambers MJ, et al.. Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect Control Hosp Epidemiol. 2014;35 Suppl 1:S1–S67. doi: 10.1086/676882
    1. Falkinham JO 3rd, Norton CD, LeChevallier MW. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl Environ Microbiol. 2001;67(3):1225–31. doi: 10.1128/AEM.67.3.1225-1231.2001
    1. Mullis SN, Falkinham JO, 3rd. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol. 2013;115(3):908–14. doi: 10.1111/jam.12272
    1. von Reyn CF, Maslow JN, Barber TW, Falkinham JO 3rd, Arbeit RD. Persistent colonisation of potable water as a source of Mycobacterium avium infection in AIDS. Lancet. 1994;343(8906):1137–41. doi: 10.1016/s0140-6736(94)90239-9
    1. Kaevska M, Slana I, Kralik P, Reischl U, Orosova J, Holcikova A, et al.. "Mycobacterium avium subsp. hominissuis" in neck lymph nodes of children and their environment examined by culture and triplex quantitative real-time PCR. J Clin Microbiol. 2011;49(1):167–72. doi: 10.1128/JCM.00802-10

Source: PubMed

3
Abonneren