Deconstructing the molecular portraits of breast cancer

Aleix Prat, Charles M Perou, Aleix Prat, Charles M Perou

Abstract

Breast cancer is a heterogeneous disease in terms of histology, therapeutic response, dissemination patterns to distant sites, and patient outcomes. Global gene expression analyses using high-throughput technologies have helped to explain much of this heterogeneity and provided important new classifications of cancer patients. In the last decade, genomic studies have established five breast cancer intrinsic subtypes (Luminal A, Luminal B, HER2-enriched, Claudin-low, Basal-like) and a Normal Breast-like group. In this review, we dissect the most recent data on this genomic classification of breast cancer with a special focus on the Claudin-low subtype, which appears enriched for mesenchymal and stem cell features. In addition, we discuss how the combination of standard clinical-pathological markers with the information provided by these genomic entities might help further understand the biological complexity of this disease, increase the efficacy of current and novel therapies, and ultimately improve outcomes for breast cancer patients.

Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Figures

Figure 1
Figure 1
Intrinsic hierarchical clustering and selected gene expression patterns of 337 UNC breast samples data set (publicly available at GSE18229 and https://genome.unc.edu). (A) Average‐linkage hierarchical clustering of genes and arrays was performed using the intrinsic gene list from Parker et al. (2009b), with the sample associated dendrogram colored according to intrinsic subtype. Characteristic expression patterns are highlighted including the Luminal, HER2, Basal, Immune, Cell adhesion, Mesenchymal/Extracellular matrix (ECM) and Proliferation gene clusters. Each colored square represents the relative transcript abundance (in log2 space) with highest expression being red, average expression being black, and lowest expression being green. (B) Mesenchymal and stem cell‐like gene expression in Claudin‐low tumors shown using ANOVA analysis for each subtype. The Stem Cell‐like Signature (CD44+/PROCR+ vs. CD24+) was obtained from Shipitsin et al. (2007), and a enrichment/activity score was derived by calculating the inner product of this signature (gene ratio) and the gene expression value of each tumor sample. (C) DNA‐repair (PARP1 and CHEK1) and angiogenesis (VEGFA) gene expression for individual genes across the subtypes.
Figure 2
Figure 2
Selected histological features of the intrinsic subtypes of breast cancer. (A–C) Dual label immuno‐fluorescence analysis of a Claudin‐low sample with tumor cells positive for vimentin (green, A), keratin 5/19 (red, B) and both (yellow, white arrows, C). (D) Basal‐like sample with EGFR/HER1 positive staining. (E) Basal‐like sample with keratin 5/6 positive staining. (F) Well‐differentiated Luminal A tumor with strong ER‐positivity. (G) Poorly differentiated Luminal B tumor with weak/moderate ER‐positivity. (H) HER2‐enriched tumor with strong membrane staining for HER2. (I) Claudin‐low tumor with brisk lymphocytic infiltration (black arrows). This figure has been modified from Prat et al. (2010).
Figure 3
Figure 3
Identification of the Claudin‐low profile in breast cancer cell lines. (A) Intrinsic Gene clusters selected in Figure 1 are shown here using the cell line gene expression data set of Neve et al. (2006). The sample associated dendrogram has been derived by semi‐unsupervised hierarchical clustering using the intrinsic list from Parker et al. (2009b) and the 51 cell lines of Neve et al. Claudin‐low cell lines are shown in yellow. Each colored square represents the relative transcript abundance (in log2 space) with highest expression being red, average expression being black, and lowest expression being green. (B) Mean expression of the top highly expressed (n = 833) and lowly expressed (n = 642) genes in Claudin‐low cell lines across 337 human breast tumor samples classified according to intrinsic subtype, including the Normal Breast‐like group. Both gene lists were obtained by performing Significance Analysis Microarray (SAM) between Claudin‐low breast cancer cell lines vs. the rest (FDR

Figure 4

Expression of inflammatory response/angiogenesis biological…

Figure 4

Expression of inflammatory response/angiogenesis biological processes genes across 52 breast cancer cell lines.…

Figure 4
Expression of inflammatory response/angiogenesis biological processes genes across 52 breast cancer cell lines. (A) Selected expression of genes involved in wound response, angiogenesis and/or inflammatory response. The sample/cell line associated dendrogram was derived by semi‐unsupervised hierarchical clustering using the intrinsic list from Parker et al. (2009b). Claudin‐low cell lines are shown in yellow color. (B) Selected highly expressed Gene Ontology (GO) terms in Claudin‐low cell lines. The highly expressed gene list was obtained by SAM between Claudin‐low breast cancer cell lines vs. rest (FDRhttp://david.abcc.ncifcrf.gov/) (Dennis et al., 2003).

Figure 5

Clinical‐pathological characteristics of the current…

Figure 5

Clinical‐pathological characteristics of the current intrinsic subtypes of breast cancer. (A) Table summarizing…

Figure 5
Clinical‐pathological characteristics of the current intrinsic subtypes of breast cancer. (A) Table summarizing the percentages of the different pathological variables across three microarray data sets with clinical information (UNC337, NKI295 (van 't Veer et al., 2002) and MDACC133). (B) Kaplan–Meier relapse‐free survival and overall survival curves using the UNC337 data set with Normal Breast‐like samples excluded. This figure has been modified from Prat et al. (2010).

Figure 6

Distribution of clinical‐pathological categories relative…

Figure 6

Distribution of clinical‐pathological categories relative to the intrinsic subtypes of breast cancer. (A)…

Figure 6
Distribution of clinical‐pathological categories relative to the intrinsic subtypes of breast cancer. (A) Intrinsic subtype distribution within the triple‐negative tumor category shown with and without Claudin‐low tumors. (B) Distribution of ER+/HER2+, ER−/HER2+, ER−/HER2− clinical groups in the Claudin‐low, Basal‐like, HER2‐enriched, Luminal B, and Luminal A within each subtype.

Figure 7

Possible developmental origins of the…

Figure 7

Possible developmental origins of the intrinsic breast cancer subtypes. (A) Normal mammary luminal…

Figure 7
Possible developmental origins of the intrinsic breast cancer subtypes. (A) Normal mammary luminal and myoepithelial differentiation hierarchies with approximate genomic expression patterns of mesenchymal, basal, and luminal profiles highlighted. (B) Hypothesis 1: each molecular subtype originates in a normal epithelial cell along the luminal differentiation hierarchy. Aberrant symmetric division expands each subpopulation of cells to form the bulk of the tumor, which is composed entirely of TICs. (C) Hypothesis 2: the MaSC subpopulation is the cell of origin of all breast cancers and depending upon its genetic alterations, a given tumor arrests at a distinct stage of development. (D) Hypothesis 3: each molecular subtype originates in a normal epithelial cell along the luminal differentiation hierarchy. However, the transformation events (genetically and/or via microenvironment influences) render differentiated cells with MaSC‐like features including the ability to self‐renew and divide asymmetrically. Abbreviations: MaSC, mammary stem cell; MyoProg, myoepithelial progenitor; Mature‐Myo, mature myoepithelial cells; LumProg, luminal progenitor; Late‐LP, late luminal progenitor; Mature‐L, mature luminal cells.
All figures (7)
Figure 4
Figure 4
Expression of inflammatory response/angiogenesis biological processes genes across 52 breast cancer cell lines. (A) Selected expression of genes involved in wound response, angiogenesis and/or inflammatory response. The sample/cell line associated dendrogram was derived by semi‐unsupervised hierarchical clustering using the intrinsic list from Parker et al. (2009b). Claudin‐low cell lines are shown in yellow color. (B) Selected highly expressed Gene Ontology (GO) terms in Claudin‐low cell lines. The highly expressed gene list was obtained by SAM between Claudin‐low breast cancer cell lines vs. rest (FDRhttp://david.abcc.ncifcrf.gov/) (Dennis et al., 2003).
Figure 5
Figure 5
Clinical‐pathological characteristics of the current intrinsic subtypes of breast cancer. (A) Table summarizing the percentages of the different pathological variables across three microarray data sets with clinical information (UNC337, NKI295 (van 't Veer et al., 2002) and MDACC133). (B) Kaplan–Meier relapse‐free survival and overall survival curves using the UNC337 data set with Normal Breast‐like samples excluded. This figure has been modified from Prat et al. (2010).
Figure 6
Figure 6
Distribution of clinical‐pathological categories relative to the intrinsic subtypes of breast cancer. (A) Intrinsic subtype distribution within the triple‐negative tumor category shown with and without Claudin‐low tumors. (B) Distribution of ER+/HER2+, ER−/HER2+, ER−/HER2− clinical groups in the Claudin‐low, Basal‐like, HER2‐enriched, Luminal B, and Luminal A within each subtype.
Figure 7
Figure 7
Possible developmental origins of the intrinsic breast cancer subtypes. (A) Normal mammary luminal and myoepithelial differentiation hierarchies with approximate genomic expression patterns of mesenchymal, basal, and luminal profiles highlighted. (B) Hypothesis 1: each molecular subtype originates in a normal epithelial cell along the luminal differentiation hierarchy. Aberrant symmetric division expands each subpopulation of cells to form the bulk of the tumor, which is composed entirely of TICs. (C) Hypothesis 2: the MaSC subpopulation is the cell of origin of all breast cancers and depending upon its genetic alterations, a given tumor arrests at a distinct stage of development. (D) Hypothesis 3: each molecular subtype originates in a normal epithelial cell along the luminal differentiation hierarchy. However, the transformation events (genetically and/or via microenvironment influences) render differentiated cells with MaSC‐like features including the ability to self‐renew and divide asymmetrically. Abbreviations: MaSC, mammary stem cell; MyoProg, myoepithelial progenitor; Mature‐Myo, mature myoepithelial cells; LumProg, luminal progenitor; Late‐LP, late luminal progenitor; Mature‐L, mature luminal cells.

References

    1. Agus, D.B. , Akita, R.W. , Fox, W.D. , Lewis, G.D. , Higgins, B. , Pisacane, P.I. , Lofgren, J.A. , Tindell, C. , Evans, D.P. , Maiese, K. , Scher, H.I. , Sliwkowski, M.X. , 2002. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2, 127
    1. Al Sayed, A.D. , El Weshi, A.N. , Tulbah, A.M. , Rahal, M.M. , Ezzat, A.A. , 2006. Metaplastic carcinoma of the breast clinical presentation, treatment results and prognostic factors. Acta. Oncol. 45, 188–195.
    1. Al-Hajj, M. , Wicha, M. , Benito-Hernandez, A. , Morrison, S. , Clarke, M. , 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U S A. 100, 3983–3988.
    1. Benz, C. , Scott, G. , Sarup, J. , Johnson, R. , Tripathy, D. , Coronado, E. , Shepard, H. , Osborne, C. , 1992. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res. Treat. 24, 85–95.
    1. Carey, L.A. , Perou, C.M. , Livasy, C.A. , Dressler, L.G. , Cowan, D. , Conway, K. , Karaca, G. , Troester, M.A. , Tse, C.K. , Edmiston, S. , Deming, S.L. , Geradts, J. , Cheang, M.C. , Nielsen, T.O. , Moorman, P.G. , Earp, H.S. , Millikan, R.C. , 2006. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 295, 2492–2502.
    1. Carey, L.A. , Dees, E.C. , Sawyer, L. , Gatti, L. , Moore, D.T. , Collichio, F. , Ollila, D.W. , Sartor, C.I. , Graham, M.L. , Perou, C.M. , 2007. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334.
    1. Chaffer, C.L. , Weinberg, R.A. , 2010. Cancer cell of origin: spotlight on luminal progenitors. Cell Stem Cell. 7, 271–272.
    1. Chaffer, C.L. , Thompson, E.W. , Williams, E.D. , 2007. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs. 185, 7
    1. Charafe-Jauffret, E. , Ginestier, C. , Lovino, F. , Wicinski, J. , Cervera, N. , Finetti, P. , Hur, M. , Diebel, M. , Monville, F. , Dutcher, J. , Brown, M. , Viens, P. , Xerri, L. , Bertucci, F. , Stassi, G. , Dontu, G. , Birnbaum, D. , Wicha, M. , 2009. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69, 1302–1313.
    1. Cheang, M. , Voduc, D. , Bajdik, C. , Leung, S. , McKinney, S. , Chia, S. , Perou, C. , Nielsen, T. , 2008. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res. 14, 1368–1376.
    1. Cheang, M.C.U. , Chia, S.K. , Voduc, D. , Gao, D. , Leung, S. , Snider, J. , Watson, M. , Davies, S. , Bernard, P.S. , Parker, J.S. , Perou, C.M. , Ellis, M.J. , Nielsen, T.O. , 2009. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst. 101, 736–750.
    1. Chin, K. , DeVries, S. , DFridlyand, J. , Spellman, P. , Roydasqupta, R. , Kuo, W. , Lapuk, A. , Neve, R. , Quian, Z. , Ryder, T. , Chen, F. , Feiler, H. , Tokuyasu, T. , Gray, J. , 2006. Genomic and transcriptional aberations linked to breast cancer pathophysiologies. Cancer Cell. 10, 529–541.
    1. Creighton, C.J. , Li, X. , Landis, M. , Dixon, J.M. , Neumeister, V.M. , Sjolund, A. , Rimm, D.L. , Wong, H. , Rodriguez, A. , Herschkowitz, J.I. , Fan, C. , Zhang, X. , He, X. , Pavlick, A. , Gutierrez, M.C. , Renshaw, L. , Larionov, A.A. , Faratian, D. , Hilsenbeck, S.G. , Perou, C.M. , Lewis, M.T. , Rosen, J.M. , Chang, J.C. , 2009. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. U S A. 106, 13820–13825.
    1. Cristofanilli, M. , Budd, G.T. , Ellis, M.J. , Stopeck, A. , Matera, J. , Miller, M.C. , Reuben, J.M. , Doyle, G.V. , Allard, W.J. , Terstappen, L.W.M.M. , Hayes, D.F. , 2004. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791.
    1. Deisenroth, C., Thorner, A.R., Enomoto, T., Perou, C.M., Zhang, Y. Mitochondrial HEP27 is a c-Myb target gene that inhibits Mdm2 and Stabilizes p53. Mol. Cell Biol. 30, 3981–93.
    1. Dennis, G. , Sherman, B.T. , Hosack, D.A. , Yang, J. , Gao, W. , Lane, H.C. , Lempicki, R.A. , 2003. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, R60
    1. Diehn, M. , Cho, R.W. , Lobo, N.A. , Kalisky, T. , Dorie, M.J. , Kulp, A.N. , Qian, D. , Lam, J.S. , Ailles, L.E. , Wong, M. , Joshua, B. , Kaplan, M.J. , Wapnir, I. , Dirbas, F.M. , Somlo, G. , Garberoglio, C. , Paz, B. , Shen, J. , Lau, S.K. , Quake, S.R. , Brown, J.M. , Weissman, I.L. , Clarke, M.F. , 2009. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458, 780
    1. Dontu, G. , Abdallah, W. , Foley, J. , Jackson, K. , Clarke, M. , Kawamura, M. , Wicha, M. , 2003. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270.
    1. Dowsett M, Cuzick J, Wales C, Forbes J, Mallon L, Salter J, Quinn E, Bugarini R, Baehner F, Shak S. Risk of distant recurrence using oncotype DX in postmenopausal primary breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study. San Antonio Breast Cancer Symp. 2008:abstract 53, (2008).
    1. Eisinger, F. , Jacquemier, J. , Charpin, C. , Stoppa-Lyonnet, D. , Paillerets, BB-d , Peyrat, J.-P. , Longy, M. , Guinebretiere, J.-M. , Sauvan, R. , Noguchi, T. , Birnbaum, D. , Sobol, H. , 1998. Mutations at BRCA1: the medullary breast carcinoma revisited. Cancer Res. 58, 1588–1592.
    1. Ellis, M.J. , Tao, Y. , Young, O. , White, S. , Proia, A.D. , Murray, J. , Renshaw, L. , Faratian, D. , Thomas, J. , Dowsett, M. , Krause, A. , Evans, D.B. , Miller, W.R. , Dixon, J.M. , 2006. Estrogen-Independent proliferation is present in estrogen-receptor HER2-Positive primary breast cancer after neoadjuvant letrozole. J. Clin. Oncol. 24, 3019–3025.
    1. Ellis, M.J. , Tao, Y. , Luo, J. , A'Hern, R. , Evans, D.B. , Bhatnagar, A.S. , Chaudri Ross, H.A. , von Kameke, A. , Miller, W.R. , Smith, I. , Eiermann, W. , Dowsett, M. , 2008. Outcome prediction for estrogen receptor-positive breast cancer based on post neoadjuvant endocrine therapy tumor characteristics. J. Natl. Cancer Inst. 100, 1380–1388.
    1. Elstrodt, F. , Hollestelle, A. , Nagel, J.H.A. , Gorin, M. , Wasielewski, M. , van den Ouweland, A. , Merajver, S.D. , Ethier, S.P. , Schutte, M. , 2006. BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants. Cancer Res. 66, 41–45.
    1. Esteller, M. , Silva, J.M. , Dominguez, G. , Bonilla, F. , Matias-Guiu, X. , Lerma, E. , Bussaglia, E. , Prat, J. , Harkes, I.C. , Repasky, E.A. , Gabrielson, E. , Schutte, M. , Baylin, S.B. , Herman, J.G. , 2000. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl. Cancer Inst. 92, 564–569.
    1. Fan, C. , Oh, D.S. , Wessels, L. , Weigelt, B. , Nuyten, D.S.A. , Nobel, A.B. , van't Veer, L.J. , Perou, C.M. , 2006. Concordance among gene-Expression-Based predictors for breast cancer. N. Engl. J. Med. 355, 560–569.
    1. Fillmore, C. , Kuperwasser, C. , 2008. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10, R25
    1. Foulkes, W.D. , Stefansson, I.M. , Chappuis, P.O. , Begin, L.R. , Goffin, J.R. , Wong, N. , Trudel, M. , Akslen, L.A. , 2003. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl. Cancer Inst. 95, 1482–1485.
    1. Ginestier, C. , Hur, M. , Charafe-Jauffret, E. , Monville, F. , Dutcher, J. , Brown, M. , Jacquemier, J. , Viens, P. , Kleer, C. , Liu, S. , Schott, A. , Hayes, D. , Birnbaum, D. , Wicha, M. , Dontu, G. , 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1, 555–567.
    1. Ginestier, C. , Liu, S. , Diebel, M.E. , Korkaya, H. , Luo, M. , Brown, M. , Wicinski, J. , Cabaud, O. , Charafe-Jauffret, E. , Birnbaum, D. , Guan, J.-L. , Dontu, G. , Wicha, M.S. , 2010. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest.
    1. Gupta, P. , Onder, T. , Jiang, G. , Tao, K. , Kuperwasser, C. , Weinberg, R. , Lander, E. , 2009. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 138, 645–659.
    1. Gupta, P.B. , Chaffer, C.L. , Weinberg, R.A. , 2009. Cancer stem cells: mirage or reality?. Nat. Med. 15, 1010–1012.
    1. Hackett, A. , Smith, H. , Springer, E. , Owens, R. , Nelson-Rees, W. , Riggs, J. , Gardner, M. , 1977. Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J. Natl. Cancer Inst. 58, 1795–1806.
    1. Hennessy, B.T. , Krishnamurthy, S. , Giordano, S. , Buchholz, T.A. , Kau, S.W. , Duan, Z. , Valero, V. , Hortobagyi, G.N. , 2005. Squamous cell carcinoma of the breast. J. Clin. Oncol. 23, 7827–7835.
    1. Hennessy, B., Gonzalez-Angulo, A., Stemke-Hale, K., Gilcrease, M., Krishnamurthy, S., Lee, J., Fridlyand, J., Mills, G. Characterization of a naturally occurring breast cancer subset enriched in EMT and stem cell characteristics. Cancer Res., in press.
    1. Herschkowitz, J. , Simin, K. , Weigman, V. , Mikaelian, I. , Usary, J. , Hu, Z. , Rasmussen, K. , Jones, L. , Assefnia, S. , Chandrasekharan, S. , Backlund, M. , Yin, Y. , Khramtsov, A. , Bastein, R. , Quackenbush, J. , Glazer, R. , Brown, P. , Green, J. , Kopelovich, L. , Furth, P. , Palazzo, J. , Olopade, O. , Bernard, P. , Churchill, G. , Van Dyke, T. , Perou, C. , 2007. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76
    1. Hess, K.R. , Anderson, K. , Symmans, W.F. , Valero, V. , Ibrahim, N. , Mejia, J.A. , Booser, D. , Theriault, R.L. , Buzdar, A.U. , Dempsey, P.J. , Rouzier, R. , Sneige, N. , Ross, J.S. , Vidaurre, T. , Gomez, H.L. , Hortobagyi, G.N. , Pusztai, L. , 2006. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J. Clin. Oncol. 24, 4236–4244.
    1. Hollestelle, A. , Nagel, J. , Smid, M. , Lam, S. , Elstrodt, F. , Wasielewski, M. , Ng, S. , French, P. , Peeters, J. , Rozendaal, M. , Riaz, M. , Koopman, D. , ten Hagen, T. , de Leeuw, B. , Zwarthoff, E. , Teunisse, A. , van der Spek, P. , Klijn, J. , Dinjens, W. , Ethier, S. , Clevers, H. , Jochemsen, A. , den Bakker, M. , Foekens, J. , Martens, J. , Schutte, M. , 2009. Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res. Treat. [Epub ahead of print]
    1. Honeth, G. , Bendahl, P.-O. , Ringner, M. , Saal, L. , Gruvberger-Saal, S. , Lovgren, K. , Grabau, D. , Ferno, M. , Borg, A. , Hegardt, C. , 2008. The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 10, R53
    1. Houston, S. , Plunkett, T. , Barnes, D. , Smith, P. , Rubens, R. , Miles, D. , 1999. Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer. Br. J. Cancer. 79, (7–8) 1220–1226.
    1. Hu, Z. , Cheng, F. , Oh, D.S. , Marron, J.S. , He, X. , Qaqish, B.F. , Livasy, C. , Carey, L.A. , Reynolds, E. , Dressler, L. , Nobel, A. , Parker, J. , Ewend, M.G. , Sawyer, L.R. , Wu, J. , Liu, Y. , Nanda, R. , Tretiakova, M. , Orrico, A.R. , Dreher, D. , Palazzo, J.P. , Perreard, L. , Nelson, E. , Mone, M. , Hansen, H. , Mullins, M. , Quackenbush, J.F. , Ellis, M.J. , Olopade, O.I. , Bernard, P.S. , Perou, C.M. , 2006. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 7, 96
    1. Hugh, J. , Hanson, J. , Cheang, M.C.U. , Nielsen, T.O. , Perou, C.M. , Dumontet, C. , Reed, J. , Krajewska, M. , Treilleux, I. , Rupin, M. , Magherini, E. , Mackey, J. , Martin, M. , Vogel, C. , 2009. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J. Clin. Oncol. 27, 1168–1176.
    1. Jemal, A. , Siegel, R. , Ward, E. , Hao, Y. , Xu, J. , Thun, M.J. , 2009. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249.
    1. Johnston, S. , Pippen, J. , Pivot, X. , Lichinitser, M. , Sadeghi, S. , Dieras, V. , Gomez, H.L. , Romieu, G. , Manikhas, A. , Kennedy, M.J. , Press, M.F. , Maltzman, J. , Florance, A. , O'Rourke, L. , Oliva, C. , Stein, S. , Pegram, M. , 2009. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J. Clin. Oncol. 27, 5538–5546.
    1. Jordan, C.T. , 2009. Cancer stem cells: controversial or just misunderstood?. Cell Stem Cell. 4, 203
    1. Kaufman, B. , Mackey, J. , Clemens, M. , Bapsy, P. , Vaid, A. , Wardley, A. , Tjulandin, S. , Jahn, M. , Lehle, M. , Jones, A. , 2006. Trastuzumab Plus Anastrozole Prolongs Progression-free Survival in Postmenopausal Women with HER2-positive, Hormone-dependent Metastatic Breast Cancer. Proc. San Antonio Breast Cancer Symposium: a.
    1. Kenny, P.A. , Lee, G.Y. , Myers, C.A. , Neve, R.M. , Semeiks, J.R. , Spellman, P.T. , Lorenz, K. , Lee, E.H. , Barcellos-Hoff, M.H. , Petersen, O.W. , Gray, J.W. , Bissell, M.J. , 2007. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1, 84–96.
    1. Kim, M.-Y. , Oskarsson, T. , Acharyya, S. , Nguyen, D.X. , Zhang, X.H.F. , Norton, L. , Massagué, J. , 2009. Tumor self-Seeding by circulating cancer cells. Cell. 139, 1315
    1. La Vecchia, C., Bosetti, C., Lucchini, F., Bertuccio, P., Negri, E., Boyle, P., Levi, F. Cancer mortality in Europe, 2000–2004, and an overview of trends since 1975. Ann. Oncol., in press.
    1. Lakhani, S.R. , Jacquemier, J. , Sloane, J.P. , Gusterson, B.A. , Anderson, T.J. , van de Vijver, M.J. , Farid, L.M. , Venter, D. , Antoniou, A. , Storfer-Isser, A. , Smyth, E. , Steel, C.M. , Haites, N. , Scott, R.J. , Goldgar, D. , Neuhausen, S. , Daly, P.A. , Ormiston, W. , McManus, R. , Scherneck, S. , Ponder, B.A. , Ford, D. , Peto, J. , Stoppa-Lyonnet, D. , Easton, D.F. , 1998. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J. Natl. Cancer Inst. 90, 1138–1145.
    1. Li, X. , Lewis, M.T. , Huang, J. , Gutierrez, C. , Osborne, C.K. , Wu, M.-F. , Hilsenbeck, S.G. , Pavlick, A. , Zhang, X. , Chamness, G.C. , Wong, H. , Rosen, J. , Chang, J.C. , 2008. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672–679.
    1. Liedtke, C. , Mazouni, C. , Hess, K.R. , Andre, F. , Tordai, A. , Mejia, J.A. , Symmans, W.F. , Gonzalez-Angulo, A.M. , Hennessy, B. , Green, M. , Cristofanilli, M. , Hortobagyi, G.N. , Pusztai, L. , 2008. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26, 1275–1281.
    1. Lim, E. , Vaillant, F. , Wu, D. , Forrest, N.C. , Pal, B. , Hart, A.H. , Asselin-Labat, M.-L. , Gyorki, D.E. , Ward, T. , Partanen, A. , Feleppa, F. , Huschtscha, L.I. , Thorne, H.J. , Fox, S.B. , Yan, M. , French, J.D. , Brown, M.A. , Smyth, G.K. , Visvader, J.E. , Lindeman, G.J. , 2009. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15, 907
    1. Lipton, A. , Ali, S.M. , Leitzel, K. , Demers, L. , Harvey, H.A. , Chaudri-Ross, H.A. , Brady, C. , Wyld, P. , Carney, W. , 2003. Serum HER-2/neu and response to the aromatase inhibitor letrozole versus tamoxifen. J. Clin. Oncol. 21, 1967–1972.
    1. Liu, R. , Wang, X. , Chen, G.Y. , Dalerba, P. , Gurney, A. , Hoey, T. , Sherlock, G. , Lewicki, J. , Shedden, K. , Clarke, M.F. , 2007. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226.
    1. Loi, S. , Haibe-Kains, B. , Desmedt, C. , Wirapati, P. , Lallemand, F. , Tutt, A. , Gillet, C. , Ellis, P. , Ryder, K. , Reid, J. , Daidone, M. , Pierotti, M. , Berns, E. , Jansen, M. , Foekens, J. , Delorenzi, M. , Bontempi, G. , Piccart, M. , Sotiriou, C. , 2008. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics. 9, 239
    1. Loi, S. , Sotiriou, C. , Haibe-Kains, B. , Lallemand, F. , Conus, N. , Piccart, M. , Speed, T. , McArthur, G. , 2009. Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer. BMC Med. Genomics. 2, 37
    1. Mani, S.A. , Guo, W. , Liao, M.-J. , Eaton, E.N. , Ayyanan, A. , Zhou, A.Y. , Brooks, M. , Reinhard, F. , Zhang, C.C. , Shipitsin, M. , Campbell, L.L. , Polyak, K. , Brisken, C. , Yang, J. , Weinberg, R.A. , 2008. The epithelial-mesenchymal transition Generates cells with properties of stem cells. Cell. 133, 704–715.
    1. McDermott, S.P. , Wicha, M.S. , 2010. Targeting breast cancer stem cells. Mol. Oncol. 4, 404–419.
    1. Menendez, J.A. , Mehmi, I. , Lupu, R. , 2006. Trastuzumab in combination with heregulin-activated Her-2 (erbB-2) triggers a receptor-enhanced chemosensitivity effect in the absence of Her-2 overexpression. J. Clin. Oncol. 24, 3735–3746.
    1. Millikan, R. , Newman, B. , Tse, C.-K. , Moorman, P. , Conway, K. , Smith, L. , Labbok, M. , Geradts, J. , Bensen, J. , Jackson, S. , Nyante, S. , Livasy, C. , Carey, L. , Earp, H. , Perou, C. , 2008. Epidemiology of basal-like breast cancer. Breast Cancer Res. Treat. 109, 123–139.
    1. Minn, A. , Gupta, G. , Siegel, P. , Bos, P. , Shu, W. , Giri, D. , Viale, A. , Oshen, A. , Gerald, W. , Massague, J. , 2005. Genes that mediate breast cancer metastasis to lung. Nature. 436, 518–524.
    1. Molyneux, G. , Geyer, F. , Magnay, F. , McCarthy, A. , Kendrick, H. , Natrajan, R. , Mackay, A. , Grigoriadis, A. , Tutt, A. , Ashworth, A. , Reis-Filho, J. , Mj, S. , 2010. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell. 3, 403–417.
    1. Morel, A.-P. , Lièvre, M. , Thomas, Cm , Hinkal, G. , Ansieau, Sp , Puisieux, A. , 2008. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE. 3, e2888
    1. Neve, R. , Chin, K. , Fridlyand, J. , Yeh, J. , Baehner, F.L. , Fevr, T. , Gray, J. , 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 10, 515–527.
    1. Nielsen, T.O. , Hsu, F.D. , Jensen, K. , Cheang, M. , Karaca, G. , Hu, Z. , Hernandez-Boussard, T. , Livasy, C. , Cowan, D. , Dressler, L. , Akslen, L.A. , Ragaz, J. , Gown, A.M. , Gilks, C.B. , van De Rijn, M. , Perou, C.M. , 2004. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10, 3574–5367.
    1. Nielsen, T.O. , Parker, J.S. , Leung, S. , Voduc, K.D. , Ebbert, M. , Vickery, T.L. , Davies, S.R. , Snider, J.E. , Stijleman, I.J. , Reed, J. , Cheang, M.C.U. , Mardis, E.R. , Perou, C.M. , Bernard, P.S. , Ellis, M.J. , 2010. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor positive breast cancer. Clin. Cancer Res. 16, 5222–5232.
    1. Osborne, C.K. , Schiff, R. , 2005. Estrogen-receptor biology: continuing progress and therapeutic implications. J. Clin. Oncol. 23, 1616–1622.
    1. O'Shaughnessy, L. , Osborne, C. , Pippen, J. , Yoffe, M. , Patt, D. , Monaghan, G. , Rocha, C. , Ossovskaya, V. , Sherman, B. , Bradley, C. , 2009. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized phase II trial. Proc. Am Soc Clin. Oncol. a.
    1. Paik, S. , Shak, S. , Tang, G. , Kim, C. , Baker, J. , Cronin, M. , Baehner, F.L. , Walker, M.G. , Watson, D. , Park, T. , 2004. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826.
    1. Paik, S. , Tang, G. , Shak, S. , Kim, C. , Baker, J. , Kim, W. , Cronin, M. , Baehner, F.L. , Watson, D. , Bryant, J. , Costantino, J.P. , Geyer, C.E. , Wickerham, D.L. , Wolmark, N. , 2006. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734.
    1. Paik, S. , Kim, C. , Wolmark, N. , 2008. HER2 status and benefit from adjuvant trastuzumab in breast cancer. New Engl. J. Med. 358, 1409–1411.
    1. Parker J, Prat A, Cheang M, Lenburg M, Paik S, Perou C. Breast Cancer Molecular Subtypes Predict Response to Anthracycline/taxane-based Chemotherapy. San Antonio Breast Cancer Symposium 2009a:(abstract 2019).
    1. Parker, J.S. , Mullins, M. , Cheang, M.C.U. , Leung, S. , Voduc, D. , Vickery, T. , Davies, S. , Fauron, C. , He, X. , Hu, Z. , Quackenbush, J.F. , Stijleman, I.J. , Palazzo, J. , Marron, J.S. , Nobel, A.B. , Mardis, E. , Nielsen, T.O. , Ellis, M.J. , Perou, C.M. , Bernard, P.S. , 2009. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167.
    1. Peppercorn, J. , Perou, C. , Carey, L. , 2008. Molecular subtypes in breast cancer evaluation and management: divide and Conquer. Cancer Invest. 26, 1–10.
    1. Perou, C.M. , Sorlie, T. , Eisen, M.B. , van de Rijn, M. , Jeffrey, S.S. , Rees, C.A. , Pollack, J.R. , Ross, D.T. , Johnsen, H. , Akslen, L.A. , 2000. Molecular portraits of human breast tumours. Nature. 406, 747–752.
    1. Piccart-Gebhart, M.J. , Procter, M. , Leyland-Jones, B. , Goldhirsch, A. , Untch, M. , Smith, I. , Gianni, L. , Baselga, J. , Bell, R. , Jackisch, C. , Cameron, D. , Dowsett, M. , Barrios, C.H. , Steger, G. , Huang, C.-S. , Andersson, M. , Inbar, M. , Lichinitser, M. , Lang, I. , Nitz, U. , Iwata, H. , Thomssen, C. , Lohrisch, C. , Suter, T.M. , Ruschoff, J. , Suto, T. , Greatorex, V. , Ward, C. , Straehle, C. , McFadden, E. , Dolci, M.S. , Gelber, R.D. , the Herceptin Adjuvant Trial Study T2005. Trastuzumab after adjuvant chemotherapy in HER2-Positive breast cancer. N. Engl. J. Med. 353, 1659–1672.
    1. Pietras, R. , Arboleda, J. , Reese, D. , Wongvipat, N. , Pegram, M. , Ramos, L. , Gorman, C. , Parker, M. , Sliwkowski, M. , Slamon, D. , 1995. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 10, 2435–2446.
    1. Podo, F., Buydens, L.M.C., Degani, H., Hilhorst, R., Klipp, E., Gribbestad, I.S., Van Huffel, S., W.M. van Laarhoven, H., Luts, J., Monleon, D., Postma, G.J, Schneiderhan-Marra, N., Santoro, F., Wouters, H., Russnes, H.G., Sørlie, T., Tagliabue, E., Børresen-Dale, A.-L. Triple-negative breast cancer: present challenges and new perspectives. Mol. Oncol. 4, 209–29.
    1. Prat, A. , Perou, C.M. , 2009. Mammary development meets cancer genomics. Nat. Med. 15, 842
    1. Prat, A. , Parker, J. , Karginova, O. , Fan, C. , Livasy, C. , Herschkowitz, J. , He, X. , Perou, C. , 2010. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68
    1. Raouf, A. , Zhao, Y. , To, K. , Stingl, J. , Delaney, A. , Barbara, M. , Iscove, N. , Jones, S. , McKinney, S. , Emerman, J. , Aparicio, S. , Marra, M. , Eaves, C. , 2008. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 3, 109–118.
    1. Resetkova, E., Reis-Filho, J., Jain, R., Mehta, R., Thorat, M., Nakshatri, H., Badve, S. Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Res. Treat., in press.
    1. Ridolfi, R. , Rosen, P. , Port, A. , Kinne, D. , Mike, V. , 1977. Medullary carcinoma of the breast. A clinicopathologic study with 10 year follow-up. Cancer. 40, 1365–1385.
    1. Romond, E.H. , Perez, E.A. , Bryant, J. , Suman, V.J. , Geyer, C.E. , Davidson, N.E. , Tan-Chiu, E. , Martino, S. , Paik, S. , Kaufman, P.A. , Swain, S.M. , Pisansky, T.M. , Fehrenbacher, L. , Kutteh, L.A. , Vogel, V.G. , Visscher, D.W. , Yothers, G. , Jenkins, R.B. , Brown, A.M. , Dakhil, S.R. , Mamounas, E.P. , Lingle, W.L. , Klein, P.M. , Ingle, J.N. , Wolmark, N. , 2005. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684.
    1. Rosen, J.M. , Jordan, C.T. , 2009. The increasing complexity of the cancer stem cell paradigm. Science. 324, 1670–1673.
    1. Rottenberg, S. , Jaspers, J. , Kersbergen, A. , van der Burg, E. , Nygren, A. , Zander, S. , Derksen, P. , de Bruin, M. , Zevenhoven, J. , Lau, A. , Boulter, R. , Cranston, A. , O'Connor, M. , Martin, N. , Borst, P. , Jonkers, J. , 2008. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. U S A. 105, 17079–17084.
    1. Rouzier, R. , Perou, C. , Symmans, W. , Ibrahim, N. , Cristofanilli, M. , Anderson, K. , Hess, K. , Stec, J. , Ayers, M. , Wagner, P. , Morandi, P. , Fan, C. , Rabiul, I. , Ross, J. , Hortobagyi, G. , Pusztai, L. , 2005. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11, 5678–5685.
    1. Rouzier, R. , Pusztai, L. , Delaloge, S. , Gonzalez-Angulo, A.M. , Andre, F. , Hess, K.R. , Buzdar, A.U. , Garbay, J.-R. , Spielmann, M. , Mathieu, M.-C. , Symmans, W.F. , Wagner, P. , Atallah, D. , Valero, V. , Berry, D.A. , Hortobagyi, G.N. , 2005. Nomograms to predict pathologic complete response and metastasis-free survival after preoperative chemotherapy for breast cancer. J. Clin. Oncol. 23, 8331–8339.
    1. Santisteban, M. , Reiman, J.M. , Asiedu, M.K. , Behrens, M.D. , Nassar, A. , Kalli, K.R. , Haluska, P. , Ingle, J.N. , Hartmann, L.C. , Manjili, M.H. , Radisky, D.C. , Ferrone, S. , Knutson, K.L. , 2009. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69, 2887–2895.
    1. Sheridan, C. , Kishimoto, H. , Fuchs, R. , Mehrotra, S. , Bhat-Nakshatri, P. , Turner, C. , Goulet, R. , Badve, S. , Nakshatri, H. , 2006. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 8, R59
    1. Shipitsin, M. , Campbell, L. , Argani, P. , Weremowicz, S. , Bloushtain-Qimron, N. , Yao, J. , Nikolskaya, T. , Serebryiskaya, T. , Beroukhim, R. , Hu, M. , Halushka, M. , Sukumar, S. , Parker, L. , Anderson, K. , Harris, L. , Garber, J. , Richardson, A. , Schnitt, S. , Nikolsky, Y. , Gelman, R. , Polyak, K. , 2007. Molecular definition of breast tumor heterogeneity. Cancer Cell. 11, 259–273.
    1. Sieuwerts, A. , Kraan, J. , Bolt, J. , Van der Spoel, P. , Elstrodt, F. , Schutte, M. , Martens, J. , Gratama, J. , Sleijfer, S. , Foekens, J. , 2009. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J. Natl. Cancer Inst. 101, 61–66.
    1. Sorlie, T. , Perou, C.M. , Tibshirani, R. , Aas, T. , Geisler, S. , Johnsen, H. , Hastie, T. , Eisen, M.B. , van de Rijn, M. , Jeffrey, S.S. , 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U S A. 98, 10869–10874.
    1. Sotiriou, C. , Wirapati, P. , Loi, S. , Harris, A. , Fox, S. , Smeds, J. , Nordgren, H. , Farmer, P. , Praz, V. , Haibe-Kains, B. , 2006. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl. Cancer Inst. 98, 262–272.
    1. Suspitsin, E. , Sokolenko, A. , Voskresenskiy, D. , Ivantsov, A. , Shelehova, K. , Klimashevskiy, V. , Matsko, D. , Semiglazov, V. , Imyanitov, E. , 2009 Apr 7. Mixed epithelial/mesenchymal metaplastic carcinoma (carcinosarcoma) of the breast in BRCA1 carrier. Breast Cancer. [Epub ahead of print]
    1. Taube, J.H. , Herschkowitz, J.I. , Komurov, K. , Zhou, A.Y. , Gupta, S. , Yang, J. , Hartwell, K. , Onder, T.T. , Gupta, P.B. , Evans, K.W. , Hollier, B.G. , Ram, P.T. , Lander, E.S. , Rosen, J.M. , Weinberg, R.A. , Mani, S.A. , 2010. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. PNAS. 107, 15449–15454.
    1. Turner, N.C. , Reis-Filho, J.S. , Russell, A.M. , Springall, R.J. , Ryder, K. , Steele, D. , Savage, K. , Gillett, C.E. , Schmitt, F.C. , Ashworth, A. , Tutt, A.N. , 2006. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 26, 2126
    1. van de Vijver, M.J. , He, Y.D. , van't Veer, L.J. , Dai, H. , Hart, A.A. , Voskuil, D.W. , Schreiber, G.J. , Peterse, J.L. , Roberts, C. , Marton, M.J. , Parrish, M. , Atsma, D. , Witteveen, A. , Glas, A. , Delahaye, L. , van der Velde, T. , Bartelink, H. , Rodenhuis, S. , Rutgers, E.T. , Friend, S.H. , Bernards, R. , 2002. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009.
    1. van 't Veer, L.J. , Dai, H. , van de Vijver, M.J. , He, Y.D. , Hart, A.A. , Mao, M. , Peterse, H.L. , van der Kooy, K. , Marton, M.J. , Witteveen, A.T. , 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415, 530–536.
    1. Visvader, J. , 2009. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 23, 2563–2577.
    1. Vu-Nishino, H. , Tavassoli, F.A. , Ahrens, W.A. , Haffty, B.G. , 2005. Clinicopathologic features and long-term outcome of patients with medullary breast carcinoma managed with breast-conserving therapy (BCT). Int. J. Radiat. Oncol. Biol. Phys. 62, 1040
    1. Weigelt, B. , Hu, Z. , He, X. , Livasy, C. , Carey, L.A. , Ewend, M.G. , Glas, A.M. , Perou, C.M. , van't Veer, L.J. , 2005. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res. 65, 9155–9158.
    1. Weigelt, B. , Horlings, H.M. , Kreike, B. , Hayes, M.M. , Hauptmann, M. , Wessels, L.F.A. , Jong, Dd , Vijver, MJVd , Veer, LJVt , Peterse, J.L. , 2008. Refinement of breast cancer classification by molecular characterization of histological special types. J. Pathol. 216, 141–150.
    1. Lyon Press; WHO Classification of Tumors.
    1. Young, R. , Cailleau, R. , Mackay, B. , Reeves, W. , 1974. Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusion of human breast carcinoma. In Vitro. 9, 239–245.

Source: PubMed

3
Abonneren