Clinical review: Bedside lung ultrasound in critical care practice

Bélaïd Bouhemad, Mao Zhang, Qin Lu, Jean-Jacques Rouby, Bélaïd Bouhemad, Mao Zhang, Qin Lu, Jean-Jacques Rouby

Abstract

Lung ultrasound can be routinely performed at the bedside by intensive care unit physicians and may provide accurate information on lung status with diagnostic and therapeutic relevance. This article reviews the performance of bedside lung ultrasound for diagnosing pleural effusion, pneumothorax, alveolar-interstitial syndrome, lung consolidation, pulmonary abscess and lung recruitment/derecruitment in critically ill patients with acute lung injury.

Figures

Figure 1
Figure 1
Ultrasound pattern of normal lung. The pleural line (white arrow) is a roughly horizontal hyperechoic line 0.5 cm below the upper and lower ribs identified by acoustic shadow (R). A single vertical artifact arising from the pleural line and spreading up to the edge of the screen (comet-tails, indicated by asterisk) can be seen in dependant regions in normally aerated lungs.
Figure 2
Figure 2
Ultrasound aspects of alveolar-interstitial syndrome. (a) B-lines 7 mm apart or spaced comet-tail artifacts. The pleural line (white arrow) and the ribs (R) with their acoustic shadow. Spaced comet-tail artifacts (indicated by asterisks) or B-lines arising from the pleural line and spreading up to the edge of the screen are present. These artifacts correspond to thickened interlobular septa on chest CT scan. (b) B-lines 3 mm or less apart. The pleural line (white arrow) and the rib (R) with their acoustic shadow. Contiguous comet-tails arising from the pleural line and spreading up to the edge of screen are present. These artefacts correspond to ground-glass areas on chest CT scan.
Figure 3
Figure 3
Ultrasound aspect of a lung consolidation and a pleural effusion. (a) Transversal view of consolidated left lower lobe; lung consolidation is seen as a tissular structure (C). In this consolidation, hyperechoic punctiform images (indicated by asterisk) can be seen; these correspond to air bronchograms (air-filled bronchi). Pleural effusion is anechoic (Pl). (b) Cephalocaudal view of consolidated left lower lobe: lung consolidation with air bronchograms. Ao, descending aorta; D, diaphragm; Pl, pleural effusion.
Figure 4
Figure 4
Cephalocaudal view of consolidated left lower lobe with a peripheral abscess. The abscess (A) appears as rounded hypoechoic lesions inside a lung consolidation (C). Ao, descending aorta; D, diaphragm; Pl, pleural effusion.
Figure 5
Figure 5
Consolidated lung 'floating' in a massive pleural effusion. The pleural effusion (Pl) is abundant enough to be compressive and the lung (C) is seen consolidated and floating in the pleural effusion.
Figure 6
Figure 6
Consolidated lung and adjacent pleural effusion with pleural adherences. The pleural effusion (Pl) is abundant and the lung is seen consolidated and floating (C) in the pleural effusion with pleural adherences (A).
Figure 7
Figure 7
Time-motion mode lung ultrasound. (a) Normal lung and (b) pneumothorax patterns using time-motion mode lung ultrasound. In time motion mode, one must first locate the pleural line (white arrow) and, above it, the motionless parietal structures. Below the pleural line, lung sliding appears as a homogenous granular pattern (a). In the case of pneumothorax and absent lung sliding, horizontal lines only are visualised (b). In a patient examined in the supine position with partial pneumothorax, normal lung sliding and absence of lung sliding may coexist in lateral regions of the chest wall. In this boundary region, called the 'lung point' (P), lung sliding appears (granular pattern) and disappears (strictly horizontal lines) with inspiration when using the time-motion mode.

References

    1. Lichtenstein D, Biderman P, Meziere G, Gepner A. The "sinusogram", a real-time ultrasound sign of maxillary sinusitis. Intensive Care Med. 1998;24:1057–1061. doi: 10.1007/s001340050716.
    1. Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100:9–15. doi: 10.1097/00000542-200401000-00006.
    1. Greenbaum DM, Marschall KE. The value of routine daily chest x-rays in intubated patients in the medical intensive care unit. Crit Care Med. 1982;10:29–30.
    1. Bekemeyer WB, Crapo RO, Calhoon S, Cannon CY, Clayton PD. Efficacy of chest radiography in a respiratory intensive care unit. A prospective study. Chest. 1985;88:691–696.
    1. Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P. Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med. 2000;26:1046–1056. doi: 10.1007/s001340051317.
    1. Mayo JR, Aldrich J, Muller NL. Radiation exposure at chest CT: a statement of the Fleischner Society. Radiology. 2003;228:15–21.
    1. Beckmann U, Gillies DM, Berenholtz SM, Wu AW, Pronovost P. Incidents relating to the intra-hospital transfer of critically ill patients. An analysis of the reports submitted to the Australian Incident Monitoring Study in Intensive Care. Intensive Care Med. 2004;30:1579–1585. doi: 10.1007/s00134-004-2177-9.
    1. Kirkpatrick AW, Breeck K, Wong J, Hamilton DR, McBeth PB, Sawadsky B, Betzner MJ. The potential of handheld trauma sonography in the air medical transport of the trauma victim. Air Med J. 2005;24:34–39. doi: 10.1016/j.amj.2004.10.012.
    1. Lichtenstein D, Courret JP. Feasibility of ultrasound in the helicopter. Intensive Care Med. 1998;24:1119. doi: 10.1007/s001340050730.
    1. Sargsyan AE, Hamilton DR, Jones JA, Melton S, Whitson PA, Kirkpatrick AW, Martin D, Dulchavsky SA. FAST at MACH 20: clinical ultrasound aboard the International Space Station. J Trauma. 2005;58:35–39.
    1. Kirkpatrick AW, Nicolaou S, Campbell MR, Sargsyan AE, Dulchavsky SA, Melton S, Beck G, Dawson DL, Billica RD, Johnston SL, Hamilton DR. Percutaneous aspiration of fluid for management of peritonitis in space. Aviat Space Environ Med. 2002;73:925–930.
    1. Muradali D, Gold WL, Phillips A, Wilson R. Can ultrasound probes and coupling gel be a source of nosocomial infection in patients undergoing sonography? An in vivo and in vitro study. Am J Roentgenol. 1995;164:1521–1524.
    1. Patterson SL, Monga M, Silva JB, Bishop KD, Blanco JD. Microbiologic assessment of the transabdominal ultrasound transducer head. South Med J. 1996;89:503–504. doi: 10.1097/00007611-199605000-00011.
    1. Tesch C, Froschle G. Sonography machines as a source of infection. Am J Roentgenol. 1997;168:567–568.
    1. Abdullah BJ, Mohd Yusof MY, Khoo BH. Physical methods of reducing the transmission of nosocomial infections via ultrasound and probe. Clin Radiol. 1998;53:212–214. doi: 10.1016/S0009-9260(98)80103-7.
    1. Gaillot O, Maruejouls C, Abachin E, Lecuru F, Arlet G, Simonet M, Berche P. Nosocomial outbreak of Klebsiella pneumoniae producing SHV-5 extended-spectrum beta-lactamase, originating from a contaminated ultrasonography coupling gel. J Clin Microbiol. 1998;36:1357–1360.
    1. Ohara T, Itoh Y, Itoh K. Ultrasound instruments as possible vectors of staphylococcal infection. J Hosp Infect. 1998;40:73–77. doi: 10.1016/S0195-6701(98)90028-7.
    1. Fowler C, McCracken D. US probes: risk of cross infection and ways to reduce it – comparison of cleaning methods. Radiology. 1999;213:299–300.
    1. Ohara T, Itoh Y, Itoh K. Contaminated ultrasound probes: a possible source of nosocomial infections. J Hosp Infect. 1999;43:73. doi: 10.1053/jhin.1999.0618.
    1. Karadenz YM, Kilic D, Kara Altan S, Altinok D, Guney S. Evaluation of the role of ultrasound machines as a source of nosocomial and cross-infection. Invest Radiol. 2001;36:554–558. doi: 10.1097/00004424-200109000-00009.
    1. Kibria SM, Kerr KG, Dave J, Gough MJ, Homer-Vanniasinkam S, Mavor AI. Bacterial colonisation of Doppler probes on vascular surgical wards. Eur J Vasc Endovasc Surg. 2002;23:241–243. doi: 10.1053/ejvs.2001.1552.
    1. Bello TO, Taiwo SS, Oparinde DP, Hassan WO, Amure JO. Risk of nosocomial bacteria transmission: evaluation of cleaning methods of probes used for routine ultrasonography. West Afr J Med. 2005;24:167–170.
    1. Schabrun S, Chipchase L, Rickard H. Are therapeutic ultrasound units a potential vector for nosocomial infection? Physiother Res Int. 2006;11:61–71. doi: 10.1002/pri.329.
    1. Schabrun S, Chipchase L. Healthcare equipment as a source of nosocomial infection: a systematic review. J Hosp Infect. 2006;63:239–245. doi: 10.1016/j.jhin.2005.10.013.
    1. Rutala WA, Weber DJ. Disinfection and sterilization in health care facilities: what clinicians need to know. Clin Infect Dis. 2004;39:702–709. doi: 10.1086/423182.
    1. Barbry T, Bouhemad B, Leleu K, de Castro V, Remerand F, Rouby JJ. Transthoracic ultrasound approach of thoracic aorta in critically ill patients with lung consolidation. J Crit Care. 2006;21:203–208. doi: 10.1016/j.jcrc.2005.11.001.
    1. Doelken P, Strange C. Chest ultrasound for "Dummies". Chest. 2003;123:332–333. doi: 10.1378/chest.123.2.332.
    1. Lichtenstein DA, Meziere G, Lascols N, Biderman P, Courret JP, Gepner A, Goldstein I, Tenoudji-Cohen M. Ultrasound diagnosis of occult pneumothorax. Crit Care Med. 2005;33:1231–1238. doi: 10.1097/01.CCM.0000164542.86954.B4.
    1. Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby J-J, the CT Scan ARDS Study Group Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences on lung morphology. Intensive Care Med. 2000;26:857–869. doi: 10.1007/s001340051274.
    1. Lichtenstein D, Meziere G. A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med. 1998;24:1331–1334. doi: 10.1007/s001340050771.
    1. Lichtenstein D, Meziere G, Biderman P, Gepner A, Barre O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997;156:1640–1646.
    1. Yang PC, Chang DB, Yu CJ, Lee YC, Kuo SH, Luh KT. Ultrasound guided percutaneous cutting biopsy for the diagnosis of pulmonary consolidations of unknown aetiology. Thorax. 1992;47:457–460.
    1. Weinberg B, Diakoumakis EE, Kass EG, Seife B, Zvi ZB. The air bronchogram: sonographic demonstration. Am J Roentgenol. 1986;147:593–595.
    1. Yang PC, Luh KT, Chang DB, Yu CJ, Kuo SH, Wu HD. Ultra-sonographic evaluation of pulmonary consolidation. Am Rev Respir Dis. 1992;146:757–762.
    1. Yang PC, Luh KT, Lee YC, Chang DB, Yu CJ, Wu HD, Lee LN, Kuo SH. Lung abscesses: US examination and US-guided transthoracic aspiration. Radiology. 1991;180:171–175.
    1. Yu CJ, Yang PC, Chang DB, Luh KT. Diagnostic and therapeutic use of chest sonography: value in critically ill patients. Am J Roentgenol. 1992;159:695–701.
    1. Lichtenstein DA, Lascols N, Meziere G, Gepner A. Ultrasound diagnosis of alveolar consolidation in the critically ill. Intensive Care Med. 2004;30:276–281. doi: 10.1007/s00134-003-2075-6.
    1. Klein JS, Schultz S, Heffner JE. Interventional radiology of the chest: image-guided percutaneous drainage of pleural effusions, lung abscess, and pneumothorax [see comments] Am J Roentgenol. 1995;164:581–588.
    1. Gehmacher O, Mathis G, Kopf A, Scheier M. Ultrasound imaging of pneumonia. Ultrasound Med Biol. 1995;21:1119–1122. doi: 10.1016/0301-5629(95)02003-9.
    1. Bouhemad B, Liu Z, Zhang M, Lu Q, Rouby JJ. Lung ultrasound detection of lung re-aeration in patients treated for ventilator-associated pneumonia [abstract] Intensive Care Med. 2006;32:S221. doi: 10.1007/s00134-006-0323-2.
    1. Doust BD, Baum JK, Maklad NF, Doust VL. Ultrasonic evaluation of pleural opacities. Radiology. 1975;114:135–140.
    1. Lichtenstein D, Hulot JS, Rabiller A, Tostivint I, Meziere G. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;25:955–958. doi: 10.1007/s001340050988.
    1. Joyner CR, Jr, Herman RJ, Reid JM. Reflected ultrasound in the detection and localization of pleural effusion. JAMA. 1967;200:399–402. doi: 10.1001/jama.200.5.399.
    1. Gryminski J, Krakowka P, Lypacewicz G. The diagnosis of pleural effusion by ultrasonic and radiologic techniques. Chest. 1976;70:33–37.
    1. Eibenberger KL, Dock WI, Ammann ME, Dorffner R, Hormann MF, Grabenwoger F. Quantification of pleural effusions:sonography versus radiography. Radiology. 1994;191:681–684.
    1. Roch A, Bojan M, Michelet P, Romain F, Bregeon F, Papazian L, Auffray JP. Usefulness of ultrasonography in predicting pleural effusions > 500 mL in patients receiving mechanical ventilation. Chest. 2005;127:224–232. doi: 10.1378/chest.127.1.224.
    1. Vignon P, Chastagner C, Berkane V, Chardac E, Francois B, Normand S, Bonnivard M, Clavel M, Pichon N, Preux PM, et al. Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med. 2005;33:1757–1763. doi: 10.1097/01.CCM.0000171532.02639.08.
    1. Balik M, Plasil P, Waldauf P, Pazout J, Fric M, Otahal M, Pachl J. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32:318–321. doi: 10.1007/s00134-005-0024-2.
    1. Remerand F, Dellamonica J, Mao Z, Rouby JJ. Direct bedside quantification of pleural effusion in ICU: a new sonographic method [abstract] Intensive Care Med. 2006;32:S220.
    1. Yang PC, Luh KT, Chang DB, Wu HD, Yu CJ, Kuo SH. Value of sonography in determining the nature of pleural effusion: analysis of 320 cases. Am J Roentgenol. 1992;159:29–33.
    1. Mayo PH, Goltz HR, Tafreshi M, Doelken P. Safety of ultrasound-guided thoracentesis in patients receiving mechanical ventilation. Chest. 2004;125:1059–1062. doi: 10.1378/chest.125.3.1059.
    1. Remerand F, Dellamonica J, Mao Z, Rouby JJ. Percutaneous chest tube insertions: is the" safe triangle" safe for the lung? Intensive Care Med. 2006;32:S43.
    1. Lichtenstein D, Meziere G, Biderman P, Gepner A. The comet-tail artifact: an ultrasound sign ruling out pneumothorax. Intensive Care Med. 1999;25:383–388. doi: 10.1007/s001340050862.
    1. Lichtenstein D, Meziere G, Biderman P, Gepner A. The "lung point": an ultrasound sign specific to pneumothorax. Intensive Care Med. 2000;26:1434–1440. doi: 10.1007/s001340000627.
    1. Wernecke K, Galanski M, Peters PE, Hansen J. Pneumothorax: evaluation by ultrasound – preliminary results. J Thorac Imaging. 1987;2:76–78. doi: 10.1097/00005382-198704000-00015.
    1. Targhetta R, Bourgeois JM, Chavagneux R, Balmes P. Diagnosis of pneumothorax by ultrasound immediately after ultrasonically guided aspiration biopsy. Chest. 1992;101:855–856.
    1. Targhetta R, Bourgeois JM, Chavagneux R, Coste E, Amy D, Balmes P, Pourcelot L. Ultrasonic signs of pneumothorax: preliminary work. J Clin Ultrasound. 1993;21:245–250.
    1. Dulchavsky SA, Schwarz KL, Kirkpatrick AW, Billica RD, Williams DR, Diebel LN, Campbell MR, Sargysan AE, Hamilton DR. Prospective evaluation of thoracic ultrasound in the detection of pneumothorax. J Trauma. 2001;50:201–205.
    1. Liu DM, Forkheim K, Rowan K, Mawson JB, Kirkpatrick A, Nicolaou S. Utilization of ultrasound for the detection of pneumothorax in the neonatal special-care nursery. Pediatr Radiol. 2003;33:880–883. doi: 10.1007/s00247-003-0964-z.
    1. Kirkpatrick AW, Sirois M, Laupland KB, Liu D, Rowan K, Ball CG, Hameed SM, Brown R, Simons R, Dulchavsky SA, et al. Hand-held thoracic sonography for detecting post-traumatic pneumothoraces: the Extended Focused Assessment with Sonography for Trauma (EFAST) J Trauma. 2004;57:288–295.
    1. Zhang M, Liu ZH, Yang JX, Gan JX, Xu SW, You XD, Jiang GY. Rapid detection of pneumothorax by ultrasonography in patients with multiple trauma. Crit Care. 2006;10:R112. doi: 10.1186/cc5004.

Source: PubMed

3
Abonneren