Visceral Adipose Tissue Inflammatory Factors (TNF-Alpha, SOCS3) in Gestational Diabetes (GDM): Epigenetics as a Clue in GDM Pathophysiology

Rebecca C Rancourt, Raffael Ott, Thomas Ziska, Karen Schellong, Kerstin Melchior, Wolfgang Henrich, Andreas Plagemann, Rebecca C Rancourt, Raffael Ott, Thomas Ziska, Karen Schellong, Kerstin Melchior, Wolfgang Henrich, Andreas Plagemann

Abstract

Gestational diabetes (GDM) is among the most challenging diseases in westernized countries, affecting mother and child, immediately and in later life. Obesity is a major risk factor for GDM. However, the impact visceral obesity and related epigenetics play for GDM etiopathogenesis have hardly been considered so far. Our recent findings within the prospective 'EaCH' cohort study of women with GDM or normal glucose tolerance (NGT), showed the role, critical factors of insulin resistance (i.e., adiponectin, insulin receptor) may have for GDM pathophysiology with epigenetically modified expression in subcutaneous (SAT) and visceral (VAT) adipose tissues. Here we investigated the expression and promoter methylation of key inflammatory candidates, tumor necrosis factor-alpha (TNF-α) and suppressor of cytokine signaling 3 (SOCS3) in maternal adipose tissues collected during caesarian section (GDM, n = 19; NGT, n = 22). The mRNA expression of TNF-α and SOCS3 was significantly increased in VAT, but not in SAT, of GDM patients vs. NGT, accompanied by specific alterations of respective promoter methylation patterns. In conclusion, we propose a critical role of VAT and visceral obesity for the pathogenesis of GDM, with epigenetic alterations of the expression of inflammatory factors as a potential factor.

Keywords: DNA methylation; SOCS3; TNF-α; adipose tissue; epigenetics; gestational diabetes mellitus; mRNA expression.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Relative mRNA levels of TNF-α and suppressor of cytokine signaling 3 (SOCS3) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of women with GDM vs. NGT. Relative gene expression of TNF-α (A) and SOCS3 (B) was normalized to peptidylprolyl isomerase A (PPIA) in abdominal SAT and omental VAT, of women with GDM (n = 19, black) vs. NGT women (n = 22, white). Data are means ± SEM, shown as percentage to NGT levels. A.U., arbitrary units. TNF-α VAT ** P < 0.0001, SOCS3-VAT * P = 0.01. (CD) Pearson’s correlation coefficients (R) calculating the relationship between maternal blood TNF-α levels and VAT gene expression data. NGT: open circles, GDM: red circles. Statistical significance between groups (A,B) and for correlations (C,D) remained after adjustment for prepregnancy body-mass-index (BMI) and BMI at delivery.
Figure 2
Figure 2
DNA methylation analysis in the TNF-α promoter region. CpG site-specific DNA methylation analyses at the TNF-α promoter region in visceral adipose tissue from mothers with NGT vs. GDM. (A) Schematic illustration of the DNA methylation assays (R1, R2, and R3) for the TNF-α promoter region, including transcription factor binding sites (TFBS) Sp1, EGR1, AP2 (diamonds). (B) Percent DNA methylation at each individual CpG site investigated (10 CpG sites) in VAT of normal glucose tolerant (NGT; white; n = 22) vs. GDM group (GDM; black; n = 19). Overall mean across CpG sites is also included. Data are means ± S.E.M. * P < 0.05. TSS: Transcriptional start site, bp: basepairs.
Figure 3
Figure 3
DNA methylation analysis in the SOCS3 promoter region. CpG site-specific DNA methylation analyses at SOCS3 within the promoter region in visceral adipose tissue from mothers with NGT vs. GDM. (A) Schematic illustration of the DNA methylation assays (R1, R2, and R3) for the SOCS3 promoter region, including potential transcription factor binding sites (TFBS) Sp1, NFKB (diamonds) and within the CpG island (blue). (B) Percent DNA methylation at each individual CpG site investigated (18 CpG sites) in VAT of NGT (white; n = 22) vs. GDM group (GDM; black; n = 19). The overall mean across CpG sites is also included. Data are means ± S.E.M. TSS: Transcriptional start site, bp: base pairs.

References

    1. Chen C., Xu X., Yan Y. Estimated global overweight and obesity burden in pregnant women based on panel data model. PLoS ONE. 2018;13:e0202183. doi: 10.1371/journal.pone.0202183.
    1. Franzago M., Fraticelli F., Stuppia L., Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics. 2019;14:215–235. doi: 10.1080/15592294.2019.1582277.
    1. Lain K.Y., Catalano P.M. Metabolic changes in pregnancy. Clin. Obstet. Gynecol. 2007;50:938–948. doi: 10.1097/GRF.0b013e31815a5494.
    1. Melchior H., Kurch-Bek D., Mund M. The prevalence of gestational diabetes—A population based analysis of a nationwide screening program. Dtsch. Ärzteblatt Int. 2017;114:412–418. doi: 10.3238/arztebl.2017.0412.
    1. Plagemann A. Maternal diabetes and perinatal programming. Early Hum. Dev. 2011;87:743–747. doi: 10.1016/j.earlhumdev.2011.08.018.
    1. Sacks D.A., Hadden D.R., Maresh M., Deerochanawong C., Dyer A.R., Metzger B.E., Lowe L.P., Coustan D.R., Hod M., Oats J.J.N., et al. Frequency of Gestational Diabetes Mellitus at Collaborating Centers Based on IADPSG Consensus Panel–Recommended Criteria The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Diabetes Care. 2012;35:526–528. doi: 10.2337/dc11-1641.
    1. Metzger B.E., Buchanan T.A., Coustan D.R., De Leiva A., Dunger D.B., Hadden D.R., Hod M., Kitzmiller J.L., Kjos S.L., Oats J.N., et al. Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care. 2007;30:S251–S260. doi: 10.2337/dc07-s225.
    1. O’Sullivan E.P., Avalos G., O’Reilly M., Dennedy M.C., Gaffney G., Dunne F., the Atlantic DIP Collaborators Atlantic Diabetes in Pregnancy (DIP): the prevalence and outcomes of gestational diabetes mellitus using new diagnostic criteria. Diabetologia. 2011;54:1670–1675.
    1. Catalano P., DeMouzon S.H. Maternal obesity and metabolic risk to the offspring: why lifestyle interventionsmay have not achieved the desired outcomes. Int. J. Obes. (Lond.) 2015;39:642–649. doi: 10.1038/ijo.2015.15.
    1. Tchernof A., Després J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013;93:359–404. doi: 10.1152/physrev.00033.2011.
    1. Ghaben A.L., Scherer P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019;20:242–258. doi: 10.1038/s41580-018-0093-z.
    1. De Souza L.R., Berger H., Retnakaran R., Maguire J.L., Nathens A.B., Connelly P.W., Ray J.G. First-Trimester Maternal Abdominal Adiposity Predicts Dysglycemia and Gestational Diabetes Mellitus in Midpregnancy. Diabetes Care. 2016;39:61–64. doi: 10.2337/dc15-2027.
    1. Castellano-Castillo D., Moreno-Indias I., Sanchez-Alcoholado L., Ramos-Molina B., Alcaide-Torres J., Morcillo S., Ocaña-Wilhelmi L., Tinahones F., Queipo-Ortuño M.I., Cardona F. Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. J. Clin. Med. 2019;8:87. doi: 10.3390/jcm8010087.
    1. Bravo-Flores E., Mancilla-Herrera I., Espino y Sosa S., Ortiz-Ramirez M., Flores-Rueda V., Ibargüengoitia-Ochoa F., Ibañez C.A., Zambrano E., Solis-Paredes M., Perichart-Perera O., et al. Macrophage Populations in Visceral Adipose Tissue from Pregnant Women: Potential Role of Obesity in Maternal Inflammation. Int. J. Mol. Sci. 2018;19:1074. doi: 10.3390/ijms19041074.
    1. Reilly S.M., Saltiel A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017;13:633–643. doi: 10.1038/nrendo.2017.90.
    1. Ott R., Stupin J.H., Melchior K., Schellong K., Ziska T., Dudenhausen J.W., Henrich W., Rancourt R.C., Plagemann A. Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome. Clin. Epigenetics. 2018;10:131. doi: 10.1186/s13148-018-0567-z.
    1. Ott R., Melchior K., Stupin J.H., Ziska T., Schellong K., Henrich W., Rancourt R.C., Plagemann A. Reduced insulin receptor expression and altered DNA methylation in fat tissues and blood of women with GDM and offspring. JCEM. 2019;104:137–149. doi: 10.1210/jc.2018-01659.
    1. Rancourt R.C., Ott R., Schellong K., Melchior K., Ziska T., Henrich W., Plagemann A. Visceral adipose tissue alteration of PI3KR1 expression is associated with gestational diabetes but not promoter DNA methylation. Adipocyte. 2019;8:339–346. doi: 10.1080/21623945.2019.1675239.
    1. Ahima R.S., Stanley T.L., Khor V.K., Zanni M.V., Grinspoon S.K. Estrogen sulfotransferase is expressed in subcutaneous adipose tissue of obese humans in association with TNF-alpha and SOCS3. J. Clin. Endocrinol. Metab. 2011;96:E1153–E1158. doi: 10.1210/jc.2010-2903.
    1. Liu Z., Gan L., Zhou Z., Jin W., Sun C. SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3 signaling pathway in 3T3-L1 adipocyte. Immunobiology. 2015;220:947–953. doi: 10.1016/j.imbio.2015.02.004.
    1. Emanuelli B., Peraldi P., Filloux C., Chavey C., Freidinger K., Hilton D.J., Hotamisligil G.S., Van Obberghen E. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J. Biol. Chem. 2001;276:47944–47949. doi: 10.1074/jbc.M104602200.
    1. Hasan A., Akhter N., Al-Roub A., Thomas R., Kochumon S., Wilson A., Koshy M., Al-Ozairi E., Al-Mulla F., Ahmad R. TNF-α in Combination with Palmitate Enhances IL-8 Production via The MyD88- Independent TLR4 Signaling Pathway: Potential Relevance to Metabolic Inflammation. Int. J. Mol. Sci. 2019;20:4112. doi: 10.3390/ijms20174112.
    1. Tanti J.F., Ceppo F., Jager J., Berthou F. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front. Endocrinol. (Lausanne) 2013;3:181. doi: 10.3389/fendo.2012.00181.
    1. Ehlting C., Lai W.S., Schaper F., Brenndörfer E.D., Matthes R.J., Heinrich P.C., Ludwig S., Blackshear P.J., Gaestel M., Häussinger D., et al. Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-alpha involves activation of the MKK6/p38MAPK/MK2 cascade. J. Immunol. 2007;178:2813–2826. doi: 10.4049/jimmunol.178.5.2813.
    1. Abell S., De Courten B., Boyle J., Teede H. Inflammatory and other biomarkers: Role in pathophysiology and prediction of gestational diabetes mellitus. Int. J. Mol. Sci. 2015;16:13442–13473. doi: 10.3390/ijms160613442.
    1. Lekva T., Norwitz E.R., Aukrust P., Ueland T. Impact of Systemic Inflammation on the Progression of Gestational Diabetes Mellitus. Curr. Diabetes Rep. 2016;16:26. doi: 10.1007/s11892-016-0715-9.
    1. Dong Y., Chauhan M., Betancourt A., Belfort M., Yallampalli C. Adipose Tissue Inflammation and Adrenomedullin Overexpression Contribute to Lipid Dysregulation in Diabetic Pregnancies. J. Clin. Endocrinol. Metab. 2018;103:3810–3818. doi: 10.1210/jc.2018-00905.
    1. Cawthorn W.P., Sethi J.K. TNF-α and adipocyte biology. FEBS Lett. 2008;582:117–131. doi: 10.1016/j.febslet.2007.11.051.
    1. Makki K., Froguel P., Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:139239. doi: 10.1155/2013/139239.
    1. Pantham P., Aye I.L., Powell T.L. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36:709–715. doi: 10.1016/j.placenta.2015.04.006.
    1. Moller D.E. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol. Metab. 2000;11:212–217. doi: 10.1016/S1043-2760(00)00272-1.
    1. Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M. IRS-1-Mediated Inhibition of Insulin Receptor Tyrosine Kinase Activity in TNF-α- and Obesity-Induced Insulin Resistance. Science. 1996;271:665–668. doi: 10.1126/science.271.5249.665.
    1. Kanety H., Feinstein R., Papa M.Z., Hemi R., Karasik A. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J. Biol. Chem. 1995;270:23780–23784. doi: 10.1074/jbc.270.40.23780.
    1. Dhar K., Rakesh K., Pankajakshan D., Agrawal D.K. SOCS3 promotor hypermethylation and STAT3-NF-κB interaction downregulate SOCS3 expression in human coronary artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2013;304:H776–H785. doi: 10.1152/ajpheart.00570.2012.
    1. Ronn S.G., Billestrup N., Mandrup-Poulsen T. Diabetes and Suppressors of Cytokine Signaling Proteins. Diabetes. 2007;56:541–548. doi: 10.2337/db06-1068.
    1. Kleiblova P., Dostalova I., Bartlova M., Lacinova Z., Ticha I., Krejci V., Springer D., Kleibl Z., Haluzik M. Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol. Cell. Endocrinol. 2010;314:150–156. doi: 10.1016/j.mce.2009.08.002.
    1. Tsiotra P.C., Halvatsiotis P., Patsouras K., Maratou E., Salamalekis G., Raptis S.A., Dimitriadis G., Boutati E. Circulating adipokines and mRNA expression in adipose tissue and the placenta in women with gestational diabetes mellitus. Peptides. 2018;101:157–166. doi: 10.1016/j.peptides.2018.01.005.
    1. Santangelo C., Filardi T., Perrone G., Mariani M., Mari E., Scazzocchio B., Masella R., Brunelli R., Lenzi A., Zicari A., et al. Cross-talk between fetal membranes and visceral adipose tissue involves HMGB1-RAGE and VIP-VPAC2 pathways in human gestational diabetes mellitus. Acta Diabetol. 2019;56:681–689. doi: 10.1007/s00592-019-01304-x.
    1. Deng X., Yang Y., Sun H., Qi W., Duan Y., Qian Y. Analysis of whole genome-wide methylation and gene expression profiles in visceral omental adipose tissue of pregnancies with gestational diabetes mellitus. J. Chin. Med. Assoc. 2018;81:623–630. doi: 10.1016/j.jcma.2017.06.027.
    1. Qian Y., Sun H., Xiao H., Ma M., Xiao X., Qu Q. Microarray analysis of differentially expressed genes and their functions in omental visceral adipose tissues of pregnant women with vs. without gestational diabetes mellitus. Biomed. Rep. 2017;6:503–512. doi: 10.3892/br.2017.878.
    1. D’Ambrosi F., Crovetto F., Colosi E., Fabietti I., Carbone F., Tassis B., Motta S., Bulfoni A., Fedele L., Rossi G., et al. Maternal Subcutaneous and Visceral Adipose Ultrasound Thickness in Women with Gestational Diabetes Mellitus at 24–28 Weeks’ Gestation. Fetal Diagn. Ther. 2018;43:143–147. doi: 10.1159/000475988.
    1. Gur E.B., Ince O., Turan G.A., Karadeniz M., Tatar S., Celik E., Yalcin M., Guclu S. Ultrasonographic visceral fat thickness in the first trimester can predict metabolic syndrome and gestational diabetes mellitus. Endocrine. 2014;47:478–484. doi: 10.1007/s12020-013-0154-1.
    1. Kelstrup L., Hjort L., Houshmand-Oeregaard A., Clausen T.D., Hansen N.S., Broholm C., Borch-Johnsen L., Mathiesen E.R., Vaag A.A., Damm P. Gene Expression and DNA Methylation of PPARGC1A in Muscle and Adipose Tissue From Adult Offspring of Women With Diabetes in Pregnancy. Diabetes. 2016;65:2900–2910. doi: 10.2337/db16-0227.
    1. Ott R., Stupin J.H., Loui A., Eilers E., Melchior K., Rancourt R.C., Schellong K., Ziska T., Dudenhausen J.W., Henrich W., et al. Maternal overweight is not an independent risk factor for increased birth weight, leptin and insulin in newborns of gestational diabetic women: Observations from the prospective “EaCH” cohort study. BMC Pregnancy Childbirth. 2018;18:250. doi: 10.1186/s12884-018-1889-8.
    1. Deutsche Gesellschaft für Gynäkologie und Geburtshilfe Diabetes und Schwangerschaft [Internet] 2008. [(accessed on 19 November 2019)]; Available online: .
    1. Kleinwechter H. Gestationsdiabetes mellitus (GDM) Dtsch. Med. Wochenschr. 2012;137:999–1002. doi: 10.1055/s-0031-1283757.
    1. Matthews D.R., Hosker J.R., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Neville M.J., Collins J.M., Gloyn A.L., McCarthy M.I., Karpe F. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity. 2011;19:888–892. doi: 10.1038/oby.2010.257.
    1. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45.
    1. Stahlberg A., Kubista M., Pfaffl M. Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 2004;50:1678–1680. doi: 10.1373/clinchem.2004.035469.
    1. Sato H., Watanabe A., Tanaka T., Koitabashi N., Arai M., Kurabayashi M., Yokoyama T. Regulation of the human tumor necrosis factor-alpha promoter by angiotensin II and lipopolysaccharide in cardiac fibroblasts: different cis-acting promoter sequences and transcriptional factors. J. Mol. Cell. Cardiol. 2003;35:1197–1205. doi: 10.1016/S0022-2828(03)00210-4.
    1. Tsai E.Y., Falvo J.V., Tsytsykova A.V., Barczak A.K., Reimold A.M., Glimcher L.H., Fenton M.J., Gordon D.C., Dunn I.F., Goldfeld A.E. A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Mol. Cell. Biol. 2000;20:6084–6094. doi: 10.1128/MCB.20.16.6084-6094.2000.
    1. Gowers I.R., Walters K., Kiss-Toth E., Read R.C., Duff G.W., Wilson A.G. Age-related loss of CpG methylation in the tumour necrosis factor promoter. Cytokine. 2011;56:792–797. doi: 10.1016/j.cyto.2011.09.009.
    1. Benjamini Y., Krieger A.M., Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507. doi: 10.1093/biomet/93.3.491.

Source: PubMed

3
Abonneren