Characterization of the salivary microbiome in patients with pancreatic cancer

Pedro J Torres, Erin M Fletcher, Sean M Gibbons, Michael Bouvet, Kelly S Doran, Scott T Kelley, Pedro J Torres, Erin M Fletcher, Sean M Gibbons, Michael Bouvet, Kelly S Doran, Scott T Kelley

Abstract

Clinical manifestations of pancreatic cancer often do not occur until the cancer has undergone metastasis, resulting in a very low survival rate. In this study, we investigated whether salivary bacterial profiles might provide useful biomarkers for early detection of pancreatic cancer. Using high-throughput sequencing of bacterial small subunit ribosomal RNA (16S rRNA) gene, we characterized the salivary microbiota of patients with pancreatic cancer and compared them to healthy patients and patients with other diseases, including pancreatic disease, non-pancreatic digestive disease/cancer and non-digestive disease/cancer. A total of 146 patients were enrolled at the UCSD Moores Cancer Center where saliva and demographic data were collected from each patient. Of these, we analyzed the salivary microbiome of 108 patients: 8 had been diagnosed with pancreatic cancer, 78 with other diseases and 22 were classified as non-diseased (healthy) controls. Bacterial 16S rRNA sequences were amplified directly from salivary DNA extractions and subjected to high-throughput sequencing (HTS). Several bacterial genera differed in abundance in patients with pancreatic cancer. We found a significantly higher ratio of Leptotrichia to Porphyromonas in the saliva of patients with pancreatic cancer than in the saliva of healthy patients or those with other disease (Kruskal-Wallis Test; P < 0.001). Leptotrichia abundances were confirmed using real-time qPCR with Leptotrichia specific primers. Similar to previous studies, we found lower relative abundances of Neisseria and Aggregatibacter in the saliva of pancreatic cancer patients, though these results were not significant at the P < 0.05 level (K-W Test; P = 0.07 and P = 0.09 respectively). However, the relative abundances of other previously identified bacterial biomarkers, e.g., Streptococcus mitis and Granulicatella adiacens, were not significantly different in the saliva of pancreatic cancer patients. Overall, this study supports the hypothesis that bacteria abundance profiles in saliva are useful biomarkers for pancreatic cancer though much larger patient studies are needed to verify their predictive utility.

Keywords: 16S rRNA; Early detection biomarker; High-throughput sequencing; Pancreatic cancer; Salivary microbiome.

Conflict of interest statement

The authors declare there are no competing interests.

Figures

Figure 1. Relative abundance of phyla identified…
Figure 1. Relative abundance of phyla identified in patient saliva summarized by diagnosis group.
Relative abundance of phyla in oral communities from 108 study patients summarized by diagnosis group (H, healthy control; O, other disease; and P, pancreatic cancer).
Figure 2. Mean relative abundances of particular…
Figure 2. Mean relative abundances of particular genera in pancreatic cancer patients (P) compared to healthy (H) and other disease (O) patient groups.
Relative abundances of genera in oral communities from 108 patients. Arrows point to specific genera that showed interesting trends across diagnosis groups.
Figure 3. Abundance ratio of Leptotrichia to…
Figure 3. Abundance ratio of Leptotrichia to Porphyromonas between different patient categories.
Each symbol represents the ratio of Leptotrichia Oral Taxon 221 and Leptotrichia hongkongenesis to Porphyromonas for an individual patient (n = 108). Patients are grouped into 3 different categories depending on their diagnosis: healthy control (H), other diseases (including cancer) (O), and pancreatic cancer (P). Horizontal bar and error bars represent the mean and SEM, respectively. ∗∗∗p < 0.001 (Kruskal–Wallis test followed by Dunn’s multiple-comparison test).
Figure 4. Correlation between Leptotrichia abundance from…
Figure 4. Correlation between Leptotrichia abundance from 16S rRNA sequences and from real-time qPCR.
Cross validation of total Leptotrichia OTU abundance using real-time qPCR. After using 16S rRNA as a reference gene for normalization of the levels of Leptotrichia genus, data was normalized by fold change to three healthy controls with relatively low Leptotrichia OTU abundance. Each symbol represents a patient: P = 6, and O = 12. Leptotrichia OTU abundance was correlated with qPCR fold change according to Pearson’s correlation (r = 0.903).

References

    1. Aas JA, Paster BJ, Stokes LN, Olsen I. Defining the normal bacterial flora of the oral cavity. Journal of Clinical Microbiology. 2005;43:5721–5732. doi: 10.1128/JCM.43.11.5721-5732.2005.
    1. Ahn J, Yang L, Paster BJ, Ganly I, Morris L, Pei Z. Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS ONE. 2011;6:e1373. doi: 10.1371/journal.pone.0022788.
    1. Berezow AB, Darveau RP. Microbial shift and periodontitis. Periodontology 2000. 2011;55:36–47. doi: 10.1111/j.1600-0757.2010.00350.x.
    1. Bikandi J, San Millán R, Rementeria A, Garaizar J. In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics. 2004;20:798–799. doi: 10.1093/bioinformatics/btg491.
    1. Bracci PM. Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Molecular Carcinogenesis. 2012;51:53–63. doi: 10.1002/mc.20778.
    1. Caporaso JG, Bittinger K, Bushman FD. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–267. doi: 10.1093/bioinformatics/btp636.
    1. Caporaso J, Lauber C, Walters W, Lyons-Berg D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107.
    1. Chen T, Yu W-HH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database. 2010;2010 doi: 10.1093/database/baq013. baq013.
    1. Clark WB, Magnusson I, Beem JE, Jung JM, Marks RG, McArthur WP. Immune modulation of Prevotella intermedia colonization in squirrel monkeys. Infection and Immunity. 1991;59:1927–1931.
    1. Cole JR, Chai B, Marsh TL, Farris RJ. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research. 2003;31:442–443. doi: 10.1093/nar/gkg039.
    1. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–360. doi: 10.1038/nature13178.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461.
    1. El-Shinnawi U, Soory M. Associations between periodontitis and systemic inflammatory diseases: response to treatment. Recent Patents on Endocrine, Metabolic and Immune Drug Discovery. 2013;7:169–188. doi: 10.2174/18715303113139990040.
    1. Eribe E, Olsen I. Leptotrichia species in human infections. Anaerobe. 2008;14:131–137. doi: 10.1016/j.anaerobe.2008.04.004.
    1. Evans RT, Klausen B, Sojar HT, Bendi GS, Sfintescu C, Ramamurthy NS, Golub LM, Genco RJ. Immunization with Porphyromonas (Bacteroides) gingivalis fimbriae protects against periodontal destruction. Infection and Immunity. 1992;60:2926–2935.
    1. Farrell J, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DT. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61:582–588. doi: 10.1136/gutjnl-2011-300784.
    1. Farrow B, Evers MB. Inflammation and the development of pancreatic cancer. Surgical Oncology. 2002;10:153–169. doi: 10.1016/S0960-7404(02)00015-4.
    1. Feurino LW, Zhang Y, Bharadwaj U. IL-6 stimulates Th2 type cytokine secretion and upregulates VEGF and NRP-1 expression in pancreatic cancer cells. Cancer Biology and Therapy. 2007;6:1096–1100. doi: 10.4161/cbt.6.7.4328.
    1. Fuchs CS, Colditz GA, Stampfer MJ. A prospective study of cigarette smoking and the risk of pancreatic cancer. Archives of Internal Medicine. 1996;156:2255–2260. doi: 10.1001/archinte.1996.00440180119015.
    1. Galimanas V, Hall MW, Singh N, Lynch MD, Goldberg M, Tenenbaum H, Cvitkovitch DG, Neufeld JD, Senadheera DB. Bacterial community composition of chronic periodontitis and novel oral sampling sites for detecting disease indicators. Microbiome. 2014;2:32. doi: 10.1186/2049-2618-2-32.
    1. Grice EA, Segre JA. The human microbiome: our second genome. Annual Review of Genomics and Human Genetics. 2012;13:151–170. doi: 10.1146/annurev-genom-090711-163814.
    1. Han YW, Wang X. Mobile microbiome oral bacteria in extra-oral infections and inflammation. Journal of Dental Research. 2013;92:485–491. doi: 10.1177/0022034513487559.
    1. Haugvik S-PP, Hedenström P, Korsæth E, Valente R, Hayes A, Siuka D, Maisonneuve P, Gladhaug IP, Lindkvist B, Capurso G. Diabetes, smoking, alcohol and family history of cancer as risk factors for pancreatic neuroendocrine tumors: a systematic review and meta-analysis. Neuroendocrinology. 2015;101:133–142. doi: 10.1159/000375164.
    1. Holly EA, Chaliha I, Bracci PM, Gautam M. Signs and symptoms of pancreatic cancer: a population-based case-control study in the San Francisco Bay area. Clinical Gastroenterology and Hepatology. 2004;2:510–517. doi: 10.1016/S1542-3565(04)00171-5.
    1. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST. Bayesian community-wide culture-independent microbial source tracking. Nature Methods. 2011;8:761–763. doi: 10.1038/nmeth.1650.
    1. Kuczynski J, Lauber CL, Walters WA. Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics. 2011;13:47–58. doi: 10.1038/nrg3129.
    1. Lazarevic V, Whiteson K, Gaïa N, Hernandez D, Farinelli L, Osterås M, François P, Schrenzel J. Analysis of the salivary microbiome using culture-independent techniques. Journal of Clinical Bioinformatics. 2012;2:4. doi: 10.1186/2043-9113-2-4.
    1. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–1057. doi: 10.1016/S0140-6736(04)15841-8.
    1. Lin IH, Wu J, Cohen SM, Chen C, Bryk D, Marr M, Melis M, Newman E, Patcher HL, Alekseyenko AV, Hayes RB, Ahn J. Pilot study of oral microbiome and risk of pancreatic cancer. Abstract 101Cancer Research. 2013;73:101. doi: 10.1158/1538-7445.AM2013-101.
    1. Liu X, Hemminki K, Försti A, Sundquist K, Sundquist J, Ji J. Cancer risk in patients with type 2 diabetes mellitus and their relatives. International Journal of Cancer. 2015;137:903–910. doi: 10.1002/ijc.29440.
    1. Mager D, Haffajee A, Devlin P, Norris C, Posner M, Goodson J. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. Journal of Translational Medicine. 2005;3:27. doi: 10.1186/1479-5876-3-27.
    1. Malka D, Hammel P, Maire F, Rufat P, Madeira I. Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut. 2002;51:849–852. doi: 10.1136/gut.51.6.849.
    1. Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjønneland A, Dahm CC, Overvad K, Jenab M, Fedirko V, Boutron-Ruault MC, Clavel-Chapelon F, Racine A, Kaaks R, Boeing H, Foerster J, Trichopoulou A, Lagiou P, Trichopoulos D, Sacerdote C, Sieri S, Palli D, Tumino R, Panico S, Siersema PD, Peeters PH, Lund E, Barricarte A, Huerta JM, Molina-Montes E, Dorronsoro M, Quirós JR, Duell EJ, Ye W, Sund M, Lindkvist B, Johansen D, Khaw KT, Wareham N, Travis RC, Vineis P, Bueno-de-Mesquita HB, Riboli E. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut. 2012;62:1764–1770. doi: 10.1136/gutjnl-2012-303006.
    1. Michaud DS, Joshipura K, Giovannucci E, Fuchs CS. A prospective study of periodontal disease and pancreatic cancer in US male health professionals. Journal of National Cancer Institute. 2007;99:171–175. doi: 10.1093/jnci/djk021.
    1. Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga Y, Ito M, Kurihara H, Kanno S, Igarashi H, Naito T, Adachi Y, Tachibana M, Tanuma T, Maguchi H, Shinohara T, Hasegawa T, Imamura M, Kimura Y, Hirata K, Maruyama R, Suzuki H, Imai K, Yamamoto H, Shinomura Y. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;30:7209–7220. doi: 10.18632/oncotarget.3109.
    1. Mittal S, Bansal V, Garg S, Atreja G, Bansal S. The diagnostic role of Saliva—a review. Journal of Clinical and Experimental Dentistry. 2011;3:e314–e320. doi: 10.4317/jced.3.e314.
    1. Moolya NN, Shetty A, Gupta N, Gupta A, Jalan V, Sharma R. Orthodontic bracket designs and their impact on microbial profile and periodontal disease: a clinical trial. Journal of Orthodontic Science. 2014;3:125–131. doi: 10.4103/2278-0203.143233.
    1. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148:257–266. doi: 10.1099/00221287-148-1-257.
    1. Nakamura K, Nagata C, Wada K, Tamai Y, Tsuji M, Takatsuka N, Shimizu H. Cigarette smoking and other lifestyle factors in relation to the risk of pancreatic cancer death: a prospective cohort study in Japan. Japanese Journal of Clinical Oncology. 2011;41:225–231. doi: 10.1093/jjco/hyq185.
    1. Persson GR, Engel D, Whitney C, Darveau R, Weinberg A, Brunsvold M, Page RC. Immunization against Porphyromonas gingivalis inhibits progression of experimental periodontitis in nonhuman primates. Infection and Immunity. 1994;62:1026–1031.
    1. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution. 2009;26:1641–1650. doi: 10.1093/molbev/msp077.
    1. Schwarzberg K, Le R, Bharti B, Lindsay S, Casaburi G, Salvatore F, Saber MH, Alonaizan F, Slots J, Gottlieb RA, Caporaso JG, Kelley ST. The personal human oral microbiome obscures the effects of treatment on periodontal disease. PLoS ONE. 2014;9:e1373. doi: 10.1371/journal.pone.0086708.
    1. Thornton B, Basu C. Real-time PCR (qPCR) primer design using free online software. Biochemistry and Molecular Biology Education. 2011;39:145–154. doi: 10.1002/bmb.20461.
    1. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience. 2013;2:16. doi: 10.1186/2047-217X-2-16.
    1. Von Bernstorff W, Voss M, Freichel S, Schmid A. Systemic and local immunosuppression in pancreatic cancer patients. Clinical Cancer Research. 2001;7:925s–932s.
    1. Vrieling A, Bueno-de-Mesquita HB, Boshuizen HC, Michaud DS, Severinsen MT, Overvad K, Olsen A, Tjønneland A, Clavel-Chapelon F, Boutron-Ruault MC, Kaaks R, Rohrmann S, Boeing H, Nöthlings U, Trichopoulou A, Moutsiou E, Dilis V, Palli D, Krogh V, Panico S, Tumino R, Vineis P, Van Gils CH, Peeters PH, Lund E, Gram IT, Rodríguez L, Agudo A, Larrañaga N, Sánchez MJ, Navarro C, Barricarte A, Manjer J, Lindkvist B, Sund M, Ye W, Bingham S, Khaw KT, Roddam A, Key T, Boffetta P, Duell EJ, Jenab M, Gallo V, Riboli E. Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. International Journal of Cancer. 2010;126:2394–2403. doi: 10.1002/ijc.24907.
    1. Wang J, Qi J, Zhao H, He S, Zhang Y, Wei S, Zhao F. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Scientific Reports. 2013;3:1843. doi: 10.1038/srep01843.
    1. Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA, Cochrane K, Allen-Vercoe E, Holt RA. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1:16. doi: 10.1186/2049-2618-1-16.
    1. Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Applied and Environmental Microbiology. 2012;78:717–725. doi: 10.1128/AEM.06516-11.
    1. Yamanaka W, Takeshita T, Shibata Y, Matsuo K. Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy. PLoS ONE. 2012;7:e1373. doi: 10.1371/journal.pone.0042806.
    1. Zaura E, Keijser B, Huse SM. Defining the healthy “core microbiome” of oral microbial communitites. BMC Microbiology. 2009;9:259. doi: 10.1186/1471-2180-9-259.
    1. Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. Food Science and Human Wellness. 2013;2:167–172. doi: 10.1016/j.fshw.2013.09.002.
    1. Zheng W, McLaughlin JK, Gridley G, Bjelke E. A cohort study of smoking, alcohol consumption, and dietary factors for pancreatic cancer (United States) Cancer Cause Control. 1993;4:477–482. doi: 10.1007/BF00050867.

Source: PubMed

3
Abonneren