Metformin as a Therapeutic Target in Endometrial Cancers

Teresa Y Lee, Ubaldo E Martinez-Outschoorn, Russell J Schilder, Christine H Kim, Scott D Richard, Norman G Rosenblum, Jennifer M Johnson, Teresa Y Lee, Ubaldo E Martinez-Outschoorn, Russell J Schilder, Christine H Kim, Scott D Richard, Norman G Rosenblum, Jennifer M Johnson

Abstract

Endometrial cancer is the most common gynecologic malignancy in developed countries. Its increasing incidence is thought to be related in part to the rise of metabolic syndrome, which has been shown to be a risk factor for the development of hyperestrogenic and hyperinsulinemic states. This has consequently lead to an increase in other hormone-responsive cancers as well e.g., breast and ovarian cancer. The correlation between obesity, hyperglycemia, and endometrial cancer has highlighted the important role of metabolism in cancer establishment and persistence. Tumor-mediated reprogramming of the microenvironment and macroenvironment can range from induction of cytokines and growth factors to stimulation of surrounding stromal cells to produce energy-rich catabolites, fueling the growth, and survival of cancer cells. Such mechanisms raise the prospect of the metabolic microenvironment itself as a viable target for treatment of malignancies. Metformin is a biguanide drug that is a first-line treatment for type 2 diabetes that has beneficial effects on various markers of the metabolic syndrome. Many studies suggest that metformin shows potential as an adjuvant treatment for uterine and other cancers. Here, we review the evidence for metformin as a treatment for cancers of the endometrium. We discuss the available clinical data and the molecular mechanisms by which it may exert its effects, with a focus on how it may alter the tumor microenvironment. The pleiotropic effects of metformin on cellular energy production and usage as well as intercellular and hormone-based interactions make it a promising candidate for reprogramming of the cancer ecosystem. This, along with other treatments aimed at targeting tumor metabolic pathways, may lead to novel treatment strategies for endometrial cancer.

Keywords: endometrial cancer; metabolism; metformin; reverse Warburg; tumor microenvironment.

Figures

Figure 1
Figure 1
(A) Mechanisms of action of metformin within the endometrial cancer cell. (B) Downstream molecular targets of metformin showing differential expression or activity in endometrial cancer.

References

    1. Global Burden of Disease Cancer. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol (2017) 3:524–48. 10.1001/jamaoncol.2016.5688
    1. Global Burden of Disease Cancer. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, et al. The global burden of cancer 2013. JAMA Oncol (2015) 1:505–27. 10.1001/jamaoncol.2015.0735
    1. American Cancer Society Cancer Facts & Figures 2018. Atlanta, GA: American Cancer Society; (2018).
    1. Duska LR, Garrett A, Rueda BR, Haas J, Chang Y, Fuller AF. Endometrial cancer in women 40 years old or younger. Gynecol Oncol. (2001) 83:388–93. 10.1006/gyno.2001.6434
    1. Moir-Meyer GL, Pearson JF, Lose F, Scott RJ, Mcevoy M, Attia J, et al. . Rare germline copy number deletions of likely functional importance are implicated in endometrial cancer predisposition. Hum Genet. (2015) 134:269–78. 10.1007/s00439-014-1507-4
    1. Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. (1983) 15:10–7. 10.1016/0090-8258(83)90111-7
    1. Del Carmen MG, Birrer M, Schorge JO. Uterine papillary serous cancer: a review of the literature. Gynecol Oncol. (2012) 127:651–61. 10.1016/j.ygyno.2012.09.012
    1. Kilgore LC, Partridge EE, Alvarez RD, Austin JM, Shingleton HM, Noojin F, III, et al. . Adenocarcinoma of the endometrium: survival comparisons of patients with and without pelvic node sampling. Gynecol Oncol. (1995) 56:29–33. 10.1006/gyno.1995.1005
    1. Nout RA, Smit VT, Putter H, Jurgenliemk-Schulz IM, Jobsen JJ, Lutgens LC, et al. . Vaginal brachytherapy versus pelvic external beam radiotherapy for patients with endometrial cancer of high-intermediate risk (PORTEC-2): an open-label, non-inferiority, randomised trial. Lancet (2010) 375:816–23. 10.1016/S0140-6736(09)62163-2
    1. Kong A, Johnson N, Kitchener HC, Lawrie TA. Adjuvant radiotherapy for stage I endometrial cancer: an updated Cochrane systematic review and meta-analysis. J Natl Cancer Inst. (2012) 104:1625–34. 10.1093/jnci/djs374
    1. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet (2016) 387:1094–108. 10.1016/S0140-6736(15)00130-0
    1. Quinn MA. Hormonal treatment of endometrial cancer. Hematol Oncol Clin North Am. (1999) 13:163–87.ix. 10.1016/S0889-8588(05)70159-3
    1. Network NCC Uterine Neoplasms Version 1.2018 (2018) Available online at: (Accessed April 30, 2018).
    1. Moore TD, Phillips PH, Nerenstone SR, Cheson BD. Systemic treatment of advanced and recurrent endometrial carcinoma: current status and future directions. J Clin Oncol. (1991) 9:1071–88. 10.1200/JCO.1991.9.6.1071
    1. Humber CE, Tierney JF, Symonds RP, Collingwood M, Kirwan J, Williams C, et al. . Chemotherapy for advanced, recurrent or metastatic endometrial cancer: a systematic review of Cochrane collaboration. Ann Oncol. (2007) 18:409–20. 10.1093/annonc/mdl417
    1. Russo A, Autelitano M, Bisanti L. Metabolic syndrome and cancer risk. Eur J Cancer (2008) 44:293–7. 10.1016/j.ejca.2007.11.005
    1. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care (2012) 35:2402–11. 10.2337/dc12-0336
    1. Stocks T, Bjorge T, Ulmer H, Manjer J, Haggstrom C, Nagel G, et al. . Metabolic risk score and cancer risk: pooled analysis of seven cohorts. Int J Epidemiol. (2015) 44:1353–63. 10.1093/ije/dyv001
    1. Cust AE, Kaaks R, Friedenreich C, Bonnet F, Laville M, Tjonneland A, et al. . Metabolic syndrome, plasma lipid, lipoprotein and glucose levels, and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer (2007) 14:755–67. 10.1677/ERC-07-0132
    1. Bjorge T, Stocks T, Lukanova A, Tretli S, Selmer R, Manjer J, et al. . Metabolic syndrome and endometrial carcinoma. Am J Epidemiol. (2010) 171:892–902. 10.1093/aje/kwq006
    1. Zhang Y, Liu Z, Yu X, Zhang X, Lu S, Chen X, et al. . The association between metabolic abnormality and endometrial cancer: a large case-control study in China. Gynecol Oncol. (2010) 117:41–6. 10.1016/j.ygyno.2009.12.029
    1. Friedenreich CM, Biel RK, Lau DC, Csizmadi I, Courneya KS, Magliocco AM, et al. . Case-control study of the metabolic syndrome and metabolic risk factors for endometrial cancer. Cancer Epidemiol Biomarkers Prev. (2011) 20:2384–95. 10.1158/1055-9965.EPI-11-0715
    1. Rosato V, Zucchetto A, Bosetti C, Dal Maso L, Montella M, Pelucchi C, et al. . Metabolic syndrome and endometrial cancer risk. Ann Oncol. (2011) 22:884–9. 10.1093/annonc/mdq464
    1. Trabert B, Wentzensen N, Felix AS, Yang HP, Sherman ME, Brinton LA. Metabolic syndrome and risk of endometrial cancer in the united states: a study in the SEER-medicare linked database. Cancer Epidemiol Biomarkers Prev. (2015) 24:261–7. 10.1158/1055-9965.EPI-14-0923
    1. Esposito K, Chiodini P, Capuano A, Bellastella G, Maiorino MI, Giugliano D. Metabolic syndrome and endometrial cancer: a meta-analysis. Endocrine (2014) 45:28–36. 10.1007/s12020-013-9973-3
    1. Ni J, Zhu T, Zhao L, Che F, Chen Y, Shou H, et al. . Metabolic syndrome is an independent prognostic factor for endometrial adenocarcinoma. Clin Transl Oncol. (2015) 17:835–9. 10.1007/s12094-015-1309-8
    1. Aune D, Navarro Rosenblatt DA, Chan DS, Vingeliene S, Abar L, Vieira AR, et al. . Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol. (2015) 26:1635–48. 10.1093/annonc/mdv142
    1. Wise MR, Jordan V, Lagas A, Showell M, Wong N, Lensen S, et al. . Obesity and endometrial hyperplasia and cancer in premenopausal women: a systematic review. Am J Obstet Gynecol. (2016) 214:689.e1–689.e17. 10.1016/j.ajog.2016.01.175
    1. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. (2003) 348:1625–38. 10.1056/NEJMoa021423
    1. Secord AA, Hasselblad V, Von Gruenigen VE, Gehrig PA, Modesitt SC, Bae-Jump V, et al. . Body mass index and mortality in endometrial cancer: a systematic review and meta-analysis. Gynecol Oncol. (2016) 140:184–90. 10.1016/j.ygyno.2015.10.020
    1. Friberg E, Orsini N, Mantzoros CS, Wolk A. Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia (2007) 50:1365–74. 10.1007/s00125-007-0681-5
    1. Liao C, Zhang D, Mungo C, Tompkins DA, Zeidan AM. Is diabetes mellitus associated with increased incidence and disease-specific mortality in endometrial cancer? A systematic review and meta-analysis of cohort studies. Gynecol Oncol. (2014) 135:163–71. 10.1016/j.ygyno.2014.07.095
    1. Anderson KE, Anderson E, Mink PJ, Hong CP, Kushi LH, Sellers TA, et al. . Diabetes and endometrial cancer in the Iowa women's health study. Cancer Epidemiol Biomarkers Prev (2001) 10:611–6. Available online at:
    1. Luo J, Beresford S, Chen C, Chlebowski R, Garcia L, Kuller L, et al. . Association between diabetes, diabetes treatment and risk of developing endometrial cancer. Br J Cancer (2014) 111:1432–9. 10.1038/bjc.2014.407
    1. Byers T, Sedjo RL. Body fatness as a cause of cancer: epidemiologic clues to biologic mechanisms. Endocr Relat Cancer (2015) 22:R125–34. 10.1530/ERC-14-0580
    1. Dossus L, Lukanova A, Rinaldi S, Allen N, Cust AE, Becker S, et al. . Hormonal, metabolic, and inflammatory profiles and endometrial cancer risk within the EPIC cohort–a factor analysis. Am J Epidemiol. (2013) 177:787–99. 10.1093/aje/kws309
    1. Hernandez AV, Pasupuleti V, Benites-Zapata VA, Thota P, Deshpande A, Perez-Lopez FR. Insulin resistance and endometrial cancer risk: a systematic review and meta-analysis. Eur J Cancer (2015) 51:2747–58. 10.1016/j.ejca.2015.08.031
    1. Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci. (2013) 34:508–17. 10.1016/j.tips.2013.06.005
    1. Wurth R, Thellung S, Bajetto A, Mazzanti M, Florio T, Barbieri F. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today (2016) 21:190–9. 10.1016/j.drudis.2015.09.017
    1. Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J (2015) 471:307–22. 10.1042/BJ20150497
    1. Diabetes Prevention Program Research G, Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet (2009) 374:1677–86. 10.1016/S0140-6736(09)61457-4
    1. Becker C, Jick SS, Meier CR, Bodmer M. Metformin and the risk of endometrial cancer: a case-control analysis. Gynecol Oncol. (2013) 129:565–9. 10.1016/j.ygyno.2013.03.009
    1. Ko EM, Sturmer T, Hong JL, Castillo WC, Bae-Jump V, Funk MJ. Metformin and the risk of endometrial cancer: a population-based cohort study. Gynecol Oncol. (2015) 136:341–7. 10.1016/j.ygyno.2014.12.001
    1. Tseng CH. Metformin and endometrial cancer risk in Chinese women with type 2 diabetes mellitus in Taiwan. Gynecol Oncol. (2015) 138:147–53. 10.1016/j.ygyno.2015.03.059
    1. Franchi M, Asciutto R, Nicotra F, Merlino L, La Vecchia C, Corrao G, et al. . Metformin, other antidiabetic drugs, and endometrial cancer risk: a nested case-control study within Italian healthcare utilization databases. Eur J Cancer Prev. (2016) 26:225–31. 10.1097/CEJ.0000000000000235
    1. Arima R, Hautakoski A, Marttila M, Arffman M, Sund R, Ilanne-Parikka P, et al. . Cause-specific mortality in endometrioid endometrial cancer patients with type 2 diabetes using metformin or other types of antidiabetic medication. Gynecol Oncol. (2017) 147:678–83. 10.1016/j.ygyno.2017.10.014
    1. Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, et al. . Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene (2013) 32:1475–87. 10.1038/onc.2012.181
    1. Febbraro T, Lengyel E, Romero IL. Old drug, new trick: repurposing metformin for gynecologic cancers? Gynecol Oncol. (2014) 135:614–21. 10.1016/j.ygyno.2014.10.011
    1. Coperchini F, Leporati P, Rotondi M, Chiovato L. Expanding the therapeutic spectrum of metformin: from diabetes to cancer. J Endocrinol Invest. (2015) 38:1047–55. 10.1007/s40618-015-0370-z
    1. Imai A, Ichigo S, Matsunami K, Takagi H, Yasuda K. Clinical benefits of metformin in gynecologic oncology. Oncol Lett. (2015) 10:577–82. 10.3892/ol.2015.3262
    1. Chae YK, Arya A, Malecek MK, Shin DS, Carneiro B, Chandra S, et al. . Repurposing metformin for cancer treatment: current clinical studies. Oncotarget (2016) 7:40767–80. 10.18632/oncotarget.8194
    1. Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin in cancer: an update on antitumor mechanisms and clinical development. Target Oncol. (2016) 11:447–67. 10.1007/s11523-016-0423-z
    1. Irie H, Banno K, Yanokura M, Iida M, Adachi M, Nakamura K, et al. . Metformin: a candidate for the treatment of gynecological tumors based on drug repositioning. Oncol Lett. (2016) 11:1287–93. 10.3892/ol.2016.4075
    1. Tang YL, Zhu LY, Li Y, Yu J, Wang J, Zeng XX, et al. . Metformin use is associated with reduced incidence and improved survival of endometrial cancer: a meta-analysis. Biomed Res Int. (2017) 2017:5905384. 10.1155/2017/5905384
    1. Nevadunsky NS, Van Arsdale A, Strickler HD, Moadel A, Kaur G, Frimer M, et al. . Metformin use and endometrial cancer survival. Gynecol Oncol. (2014) 132:236–40. 10.1016/j.ygyno.2013.10.026
    1. Ko EM, Walter P, Jackson A, Clark L, Franasiak J, Bolac C, et al. . Metformin is associated with improved survival in endometrial cancer. Gynecol Oncol. (2014) 132:438–42. 10.1016/j.ygyno.2013.11.021
    1. Lemanska A, Zaborowski M, Spaczynski M, Nowak-Markwitz E. Do endometrial cancer patients benefit from metformin intake? Ginekol Pol. (2015) 86:419–23. 10.17772/gp/2397
    1. Al Hilli MM, Bakkum-Gamez JN, Mariani A, Cliby WA, Mc Gree ME, Weaver AL, et al. . The effect of diabetes and metformin on clinical outcomes is negligible in risk-adjusted endometrial cancer cohorts. Gynecol Oncol. (2016) 140:270–6. 10.1016/j.ygyno.2015.11.019
    1. Ezewuiro O, Grushko TA, Kocherginsky M, Habis M, Hurteau JA, Mills KA, et al. . Association of metformin use with outcomes in advanced endometrial cancer treated with chemotherapy. PLoS ONE (2016) 11:e0147145. 10.1371/journal.pone.0147145
    1. Hall C, Stone RL, Gehlot A, Zorn KK, Burnett AF. Use of metformin in obese women with type I endometrial cancer is associated with a reduced incidence of cancer recurrence. Int J Gynecol Cancer (2016) 26:313–7. 10.1097/IGC.0000000000000603
    1. Seebacher V, Bergmeister B, Grimm C, Koelbl H, Reinthaller A, Polterauer S. The prognostic role of metformin in patients with endometrial cancer: a retrospective study. Eur J Obstet Gynecol Reprod Biol. (2016) 203:291–6. 10.1016/j.ejogrb.2016.06.013
    1. Meireles CG, Pereira SA, Valadares LP, Rego DF, Simeoni LA, Guerra ENS, et al. . Effects of metformin on endometrial cancer: systematic review and meta-analysis. Gynecol Oncol. (2017) 147:167–80. 10.1016/j.ygyno.2017.07.120
    1. Zhang ZJ, Li S. The prognostic value of metformin for cancer patients with concurrent diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. (2014) 16:707–10. 10.1111/dom.12267
    1. Byrne FL, Poon IK, Modesitt SC, Tomsig JL, Chow JD, Healy ME, et al. . Metabolic vulnerabilities in endometrial cancer. Cancer Res. (2014) 74:5832–45. 10.1158/0008-5472.CAN-14-0254
    1. Han J, Zhang L, Guo H, Wysham WZ, Roque DR, Willson AK, et al. . Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol. (2015) 138:668–75. 10.1016/j.ygyno.2015.06.036
    1. Cantrell LA, Zhou C, Mendivil A, Malloy KM, Gehrig PA, Bae-Jump VL. Metformin is a potent inhibitor of endometrial cancer cell proliferation–implications for a novel treatment strategy. Gynecol Oncol. (2010) 116:92–8. 10.1016/j.ygyno.2009.09.024
    1. Iglesias DA, Yates MS, Van Der Hoeven D, Rodkey TL, Zhang Q, Co NN, et al. . Another surprise from Metformin: novel mechanism of action via K-Ras influences endometrial cancer response to therapy. Mol Cancer Ther. (2013) 12:2847–56. 10.1158/1535-7163.MCT-13-0439
    1. Sarfstein R, Friedman Y, Attias-Geva Z, Fishman A, Bruchim I, Werner H. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners. PLoS ONE (2013) 8:e61537 10.1371/journal.pone.0061537
    1. Takahashi A, Kimura F, Yamanaka A, Takebayashi A, Kita N, Takahashi K, et al. . Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell Int. (2014) 14:53. 10.1186/1475-2867-14-53
    1. Zhang Y, Li MX, Wang H, Zeng Z, Li XM. Metformin down-regulates endometrial carcinoma cell secretion of IGF-1 and expression of IGF-1R. Asian Pac J Cancer Prev. (2015) 16:221–5. 10.7314/APJCP.2015.16.1.221
    1. De Barros Machado A, Dos Reis V, Weber S, Jauckus J, Brum IS, Von Eye Corleta H, et al. . Proliferation and metastatic potential of endometrial cancer cells in response to metformin treatment in a high versus normal glucose environment. Oncol Lett. (2016) 12:3626–32. 10.3892/ol.2016.5041
    1. Zou J, Hong L, Luo C, Li Z, Zhu Y, Huang T, et al. . Metformin inhibits estrogen-dependent endometrial cancer cell growth by activating the AMPK-FOXO1 signal pathway. Cancer Sci. (2016) 107:1806–17. 10.1111/cas.13083
    1. Wallbillich JJ, Josyula S, Saini U, Zingarelli RA, Dorayappan KD, Riley MK, et al. . High Glucose-mediated STAT3 activation in endometrial cancer is inhibited by metformin: therapeutic implications for endometrial cancer. PLoS ONE (2017) 12:e0170318. 10.1371/journal.pone.0170318
    1. Hanna RK, Zhou C, Malloy KM, Sun L, Zhong Y, Gehrig PA, et al. . Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol. (2012) 125:458–69. 10.1016/j.ygyno.2012.01.009
    1. Xie Y, Wang JL, Ji M, Yuan ZF, Peng Z, Zhang Y, et al. . Regulation of insulin-like growth factor signaling by metformin in endometrial cancer cells. Oncol Lett. (2014) 8:1993–9. 10.3892/ol.2014.2466
    1. Liu Z, Qi S, Zhao X, Li M, Ding S, Lu J, et al. . Metformin inhibits 17beta-estradiol-induced epithelial-to-mesenchymal transition via betaKlotho-related ERK1/2 signaling and AMPKalpha signaling in endometrial adenocarcinoma cells. Oncotarget (2016) 7:21315–31. 10.18632/oncotarget.7040
    1. Zhuo Z, Wang A, Yu H. Metformin targeting autophagy overcomes progesterone resistance in endometrial carcinoma. Arch Gynecol Obstet. (2016) 294:1055–61. 10.1007/s00404-016-4148-0
    1. Barry JA, Azizia MM, Hardiman PJ. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update (2014) 20:748–58. 10.1093/humupd/dmu012
    1. Tan BK, Adya R, Chen J, Lehnert H, Sant Cassia LJ, Randeva HS. Metformin treatment exerts antiinvasive and antimetastatic effects in human endometrial carcinoma cells. J Clin Endocrinol Metab. (2011) 96:808–16. 10.1210/jc.2010-1803
    1. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci. (2012) 122:253–70. 10.1042/CS20110386
    1. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. (2000) 275:223–8. 10.1074/jbc.275.1.223
    1. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. (2000) 348(Pt. 3):607–14. 10.1042/bj3480607
    1. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. . Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. (2001) 108:1167–74. 10.1172/JCI13505
    1. Stephenne X, Foretz M, Taleux N, Van Der Zon GC, Sokal E, Hue L, et al. . Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia (2011) 54:3101–10. 10.1007/s00125-011-2311-5
    1. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, et al. . The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (2005) 310:1642–6. 10.1126/science.1120781
    1. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. (2007) 67:10804–12. 10.1158/0008-5472.CAN-07-2310
    1. Wang Y, Xu W, Yan Z, Zhao W, Mi J, Li J, et al. . Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. (2018) 37:63. 10.1186/s13046-018-0731-5
    1. Xie Y, Wang YL, Yu L, Hu Q, Ji L, Zhang Y, et al. . Metformin promotes progesterone receptor expression via inhibition of mammalian target of rapamycin (mTOR) in endometrial cancer cells. J Steroid Biochem Mol Biol. (2011) 126:113–20. 10.1016/j.jsbmb.2010.12.006
    1. Zhang Z, Dong L, Sui L, Yang Y, Liu X, Yu Y, et al. . Metformin reverses progestin resistance in endometrial cancer cells by downregulating GloI expression. Int J Gynecol Cancer (2011) 21:213–21. 10.1097/IGC.0b013e318207dac7
    1. Zhang J, Xu H, Zhou X, Li Y, Liu T, Yin X, et al. . Role of metformin in inhibiting estrogen-induced proliferation and regulating ERalpha and ERbeta expression in human endometrial cancer cells. Oncol Lett. (2017) 14:4949–56. 10.3892/ol.2017.6877
    1. Harwood HJ, Jr, Petras SF, Shelly LD, Zaccaro LM, Perry DA, Makowski MR, et al. . Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J Biol Chem. (2003) 278:37099–111. 10.1074/jbc.M304481200
    1. Ning J, Clemmons DR. AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation. Mol Endocrinol. (2010) 24:1218–29. 10.1210/me.2009-0474
    1. Karnevi E, Said K, Andersson R, Rosendahl AH. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer (2013) 13:235. 10.1186/1471-2407-13-235
    1. Quinn BJ, Dallos M, Kitagawa H, Kunnumakkara AB, Memmott RM, Hollander MC, et al. . Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling. Cancer Prev Res. (2013) 6:801–10. 10.1158/1940-6207.CAPR-13-0058-T
    1. Yuan J, Zhang F, Niu R. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci Rep. (2015) 5:17663. 10.1038/srep17663
    1. Tierney BJ, Mccann GA, Naidu S, Rath KS, Saini U, Wanner R, et al. . Aberrantly activated pSTAT3-Ser727 in human endometrial cancer is suppressed by HO-3867, a novel STAT3 inhibitor. Gynecol Oncol. (2014) 135:133–41. 10.1016/j.ygyno.2014.07.087
    1. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell (2004) 117:421–6. 10.1016/S0092-8674(04)00452-0
    1. Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA. (2003) 100:11285–90. 10.1073/pnas.1934283100
    1. Yun H, Park S, Kim MJ, Yang WK, Im DU, Yang KR, et al. . AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J. (2014) 281:4421–38. 10.1111/febs.12949
    1. Laskov I, Abou-Nader P, Amin O, Philip CA, Beauchamp MC, Yasmeen A, et al. . Metformin increases E-cadherin in tumors of diabetic patients with endometrial cancer and suppresses epithelial-mesenchymal transition in endometrial cancer cell lines. Int J Gynecol Cancer (2016) 26:1213–21. 10.1097/IGC.0000000000000761
    1. Dong L, Zhou Q, Zhang Z, Zhu Y, Duan T, Feng Y. Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. J Obstet Gynaecol Res. (2012) 38:1077–85. 10.1111/j.1447-0756.2011.01839.x
    1. Uehara T, Mitsuhashi A, Tsuruoka N, Shozu M. Metformin potentiates the anticancer effects of cisplatin under normoxic conditions in vitro. Oncol Rep. (2015) 33:744–50. 10.3892/or.2014.3611
    1. Markowska A, Pawalowska M, Filas V, Korski K, Grybos M, Sajdak S, et al. . Does Metformin affect ER, PR, IGF-1R, beta-catenin and PAX-2 expression in women with diabetes mellitus and endometrial cancer? Diabetol Metab Syndr. (2013) 5:76. 10.1186/1758-5996-5-76
    1. Schrauwen S, Coenegrachts L, Cattaneo A, Hermans E, Lambrechts D, Amant F. The antitumor effect of metformin with and without carboplatin on primary endometrioid endometrial carcinoma in vivo. Gynecol Oncol. (2015) 138:378–82. 10.1016/j.ygyno.2015.06.006
    1. Chandel NS, Avizonis D, Reczek CR, Weinberg SE, Menz S, Neuhaus R, et al. . Are metformin doses used in murine cancer models clinically relevant? Cell Metab. (2016) 23:569–70. 10.1016/j.cmet.2016.03.010
    1. Curry J, Johnson J, Tassone P, Vidal MD, Menezes DW, Sprandio J, et al. . Metformin effects on head and neck squamous carcinoma microenvironment: window of opportunity trial. Laryngoscope (2017) 127:1808–15. 10.1002/lary.26489
    1. Rivadeneira DB, Delgoffe GM. Antitumor T-cell reconditioning: improving the metabolic fitness for optimal cancer immunotherapy. Clin Cancer Res. (2018) 24:2473–81. 10.1158/1078-0432.CCR-17-0894
    1. Sharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 blockake is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res. (2017) 5:9–16. 10.1158/2326-6066.CIR-16-0103
    1. Wang JC, Sun X, Ma Q, Fu GF, Cong LL, Zhang H, et al. Metformin's antitumor and anti-angiogenic activities are mediated by skewing macrophage polarization. J Cell Mol Med. (2018) 22:3825–936. 10.1111/jcmm.13655
    1. Tabrizi AD, Melli MS, Foroughi M, Ghojazadeh M, Bidadi S. Antiproliferative effect of metformin on the endometrium–a clinical trial. Asian Pac J Cancer Prev. (2014) 15:10067–70. 10.7314/APJCP.2014.15.23.10067
    1. Laskov I, Drudi L, Beauchamp MC, Yasmeen A, Ferenczy A, Pollak M, et al. . Anti-diabetic doses of metformin decrease proliferation markers in tumors of patients with endometrial cancer. Gynecol Oncol. (2014) 134:607–14. 10.1016/j.ygyno.2014.06.014
    1. Mitsuhashi A, Kiyokawa T, Sato Y, Shozu M. Effects of metformin on endometrial cancer cell growth in vivo: a preoperative prospective trial. Cancer (2014) 120:2986–95. 10.1002/cncr.28853
    1. Li X, Guo YR, Lin JF, Feng Y, Billig H, Shao R. Combination of diane-35 and metformin to treat early endometrial carcinoma in PCOS women with insulin resistance. J Cancer (2014) 5:173–81. 10.7150/jca.8009
    1. Schuler KM, Rambally BS, Difurio MJ, Sampey BP, Gehrig PA, Makowski L, et al. . Antiproliferative and metabolic effects of metformin in a preoperative window clinical trial for endometrial cancer. Cancer Med. (2015) 4:161–73. 10.1002/cam4.353
    1. Sivalingam VN, Kitson S, Mcvey R, Roberts C, Pemberton P, Gilmour K, et al. . Measuring the biological effect of presurgical metformin treatment in endometrial cancer. Br J Cancer (2016) 114:281–9. 10.1038/bjc.2015.453
    1. Cai D, Sun H, Qi Y, Zhao X, Feng M, Wu X. Insulin-like growth factor 1/mammalian target of rapamycin and AMP-activated protein kinase signaling involved in the effects of metformin in the human endometrial cancer. Int J Gynecol Cancer (2016) 26:1667–72. 10.1097/IGC.0000000000000818
    1. Soliman PT, Zhang Q, Broaddus RR, Westin SN, Iglesias D, Munsell MF, et al. . Prospective evaluation of the molecular effects of metformin on the endometrium in women with newly diagnosed endometrial cancer: a window of opportunity study. Gynecol Oncol. (2016) 143:466–71. 10.1016/j.ygyno.2016.10.011
    1. Mitsuhashi A, Sato Y, Kiyokawa T, Koshizaka M, Hanaoka H, Shozu M. Phase II study of medroxyprogesterone acetate plus metformin as a fertility-sparing treatment for atypical endometrial hyperplasia and endometrial cancer. Ann Oncol. (2016) 27:262–6. 10.1093/annonc/mdv539
    1. Zhao Y, Sun H, Feng M, Zhao J, Zhao X, Wan Q, et al. . Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling. Gynecol Endocrinol. (2018) 34:428–32. 10.1080/09513590.2017.1409714
    1. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. (1927) 8:519–30. 10.1085/jgp.8.6.519
    1. Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, et al. . The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. Oncotarget (2017) 8:57813–25. 10.18632/oncotarget.18175
    1. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. . Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. (2011) 17:1498–503. 10.1038/nm.2492
    1. Romero IL, Mukherjee A, Kenny HA, Litchfield LM, Lengyel E. Molecular pathways: trafficking of metabolic resources in the tumor microenvironment. Clin Cancer Res. (2015) 21:680–6. 10.1158/1078-0432.CCR-14-2198
    1. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. . The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle (2009) 8:3984–4001. 10.4161/cc.8.23.10238
    1. Chiavarina B, Whitaker-Menezes D, Migneco G, Martinez-Outschoorn UE, Pavlides S, Howell A, et al. . HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: autophagy drives compartment-specific oncogenesis. Cell Cycle (2010) 9:3534–51. 10.4161/cc.9.17.12908
    1. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, et al. . Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle (2010) 9:3256–76. 10.4161/cc.9.16.12553
    1. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. . Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer's disease, and “Neuron-Glia Metabolic Coupling”. Aging (2010) 2:185–99. 10.18632/aging.100134
    1. Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, et al. . The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle (2010) 9:1960–71. 10.4161/cc.9.10.11601
    1. Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, et al. . Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther. (2011) 12:1085–97. 10.4161/cbt.12.12.18671
    1. Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, et al. . Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle (2011) 10:1772–83. 10.4161/cc.10.11.15659
    1. Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, et al. . Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. (2012) 72:5130–40. 10.1158/0008-5472.CAN-12-1949
    1. Goodwin ML, Jin H, Straessler K, Smith-Fry K, Zhu JF, Monument MJ, et al. . Modeling alveolar soft part sarcomagenesis in the mouse: a role for lactate in the tumor microenvironment. Cancer Cell (2014) 26:851–62. 10.1016/j.ccell.2014.10.003
    1. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. . Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature (2016) 536:479–83. 10.1038/nature19084
    1. Latif A, Chadwick AL, Kitson SJ, Gregson HJ, Sivalingam VN, Bolton J, et al. . Monocarboxylate transporter 1 (MCT1) is an independent prognostic biomarker in endometrial cancer. BMC Clin Pathol. (2017) 17:27. 10.1186/s12907-017-0067-7
    1. Zhao L, Zhou S, Zou L, Zhao X. The expression and functionality of stromal caveolin 1 in human adenomyosis. Hum Reprod. (2013) 28:1324–38. 10.1093/humrep/det042
    1. Cheong JH, Park ES, Liang J, Dennison JB, Tsavachidou D, Nguyen-Charles C, et al. . Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Mol Cancer Ther. (2011) 10:2350–62. 10.1158/1535-7163.MCT-11-0497
    1. Kim EH, Lee JH, Oh Y, Koh I, Shim JK, Park J, et al. . Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin. Neuro Oncol. (2017) 19:197–207. 10.1093/neuonc/now174

Source: PubMed

3
Abonneren