Trained Immunity Based-Vaccines as a Prophylactic Strategy in Common Variable Immunodeficiency. A Proof of Concept Study

Kissy Guevara-Hoyer, Paula Saz-Leal, Carmen M Diez-Rivero, Juliana Ochoa-Grullón, Miguel Fernández-Arquero, Rebeca Pérez de Diego, Silvia Sánchez-Ramón, Kissy Guevara-Hoyer, Paula Saz-Leal, Carmen M Diez-Rivero, Juliana Ochoa-Grullón, Miguel Fernández-Arquero, Rebeca Pérez de Diego, Silvia Sánchez-Ramón

Abstract

Background: A major concern in the care of common variable immunodeficiency (CVID) patients is the persistence of subclinical or recurrent respiratory tract infections (RRTI) despite adequate trough IgG levels, which impacts the quality of life (QoL) and morbidity. Therefore, the development of new approaches to prevent and treat infection, especially RRTI, is necessary.

Objectives: We conducted a clinical observational study from May, 2016 to December, 2017 in 20 CVID patients; ten of these patients had a history of RRTI and received the polybacterial preparation MV130, a trained immunity-based vaccine (TIbV) to assess its impact on their QoL and prognosis.

Methods: Subjects with RRTI received MV130 for 3 months and were followed up to 12 months after initiation of the treatment. The primary endpoint was a reduction in RRTI at the end of the study. We analyzed the pharmacoeconomic impact on the RRTI group before and after immunotherapy by estimating the direct and indirect costs, and assessed CVID-QoL and cytokine profile. Specific antibody responses to the bacteria contained in MV130 were measured.

Results: The RRTI-group treated with TIbV MV130 showed a significant decrease in infection rate (p = 0.006) throughout the 12 months after initiation of the treatment. A decrease in antibiotic use and unscheduled outpatient visits was observed (p = 0.005 and p = 0.002, respectively). Significant increases in anti-pneumococcus and anti-MV130 IgA antibodies (p = 0.039 both) were detected after 12 months of MV130. Regarding the CVID QoL questionnaire, an overall decrease in the score by more than 50% was observed (p < 0.05) which demonstrated that patients experienced an improvement in their QoL. The pharmacoeconomic analysis showed that the real annual direct costs decreased up to 4 times per patient with the prophylactic intervention (p = 0.005).

Conclusion: The sublingual administration of the TIbV MV130 significantly reduced the rate of respiratory infections, antibiotic use and unscheduled visits, while increasing specific IgA responses in CVID patients. Additionally, the CVID population felt that their QoL was improved, and a decrease in expenses derived from health care was predicted.

Keywords: CVID; MV130; TIbV; prophylaxis; quality of life.

Conflict of interest statement

P.S.-L. and C.M.D.-R. belong to the Inmunotek R&D research team.

Figures

Figure 1
Figure 1
Flow chart of the classification of common variable immunodeficiency (CVID) patients according to clinical criteria.
Figure 2
Figure 2
MV130 significantly reduces the incidence of respiratory infections (AC). (A,B) Number of respiratory tract infectious episodes scored 1 year prior to immunization (black) and in the 12 months after the initiation of immunotherapy with MV130 (green). (C) Percentage of subjects that remained free of infection (grey) or suffered recurrences (red) in the 12 months following MV130 administration. Data from 10 subjects are shown. (B) Lines link paired values. Normal distribution was evaluated using the Shapiro–Wilk test, p value was calculated using Wilcoxon signed-rank test. (C) p value was calculated using Fischer’s exact test, compared with rates prior to MV130 initiation (100% of subjects suffering infections).
Figure 3
Figure 3
Prophylaxis with MV130 significantly decreases the rate of healthcare resources consumption and work absenteeism. (AC) Antibiotic consumption (A), visits to emergency unit (B) and work absenteeism (C) during the year before and after the initiation of MV130 treatment. Bars show the relative number of antibiotic courses (A), emergency unit visits (B) or days of work lost (C) in the total of subjects recorded. Data from 10 subjects are shown. Normal distribution was evaluated using the Shapiro–Wilk test. p values were calculated using Wilcoxon signed-rank test.
Figure 4
Figure 4
Specific anti-MV130 IgA and IgG antibodies. Prophylaxis with MV130 increases serum IgA antibody production. (A,B) Serum IgA (A) and IgG (B) antibodies against S. pneumoniae (left panels) or the bacterial mixture (right panels), collected from subjects before and after 12 months following MV130 immunotherapy analyzed by ELISA. Data from 6–10 individuals are shown. Lines show paired values. Normal distribution was evaluated using the Shapiro–Wilk test. p values were calculated using Paired Student’s t-test or Wilcoxon signed-rank test.
Figure 5
Figure 5
Prophylaxis with MV130 modulates serum cytokine, chemokine and growth factor secretion pattern. Cytokines (upper panels), chemokines (left bottom panel) and growth factors (right bottom panel) secreted in serum one year following MV130 administration determined by Luminex technique. Fold induction relative to basal level (before MV130 treatment) is shown. Undetectable values were found for IL-2, IL-5, IL-10, IL-12(p70), IL-15, GM-CSF, RANTES and VEGF. Data from 9–10 subjects are shown as mean ± SEM of fold increase. Outliers were identified by means of Tukey’s range test on represented values. Normal distribution was evaluated using the Shapiro–Wilk test. p values were calculated using one-sample t-test with a theoretical value of 1 (no fold induction). * p < 0.05.

References

    1. Fried A.J., Bonilla F.A. Pathogenesis, Diagnosis, and Management of Primary Antibody Deficiencies and Infections. Clin. Microbiol. Rev. 2009;22:396–414. doi: 10.1128/CMR.00001-09.
    1. Sánchez-Ramón S., Radigan L., Yu J.E., Bard S., Cunningham-Rundles C. Memory B cells in common variable immunodeficiency: Clinical associations and sex differences. Clin. Immunol. 2008;128:314–321. doi: 10.1016/j.clim.2008.02.013.
    1. Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematol. Am. Soc. Hematol. Educ. Program. 2012;2012:301–305. doi: 10.1182/asheducation.V2012.1.301.3798316.
    1. Jolles S. The variable in common variable immunodeficiency: A disease of complex phenotypes. J. Allergy Clin. Immunol. Pract. 2013;1:545–556. doi: 10.1016/j.jaip.2013.09.015.
    1. Warnatz K., Denz A., Dräger R., Braun M., Groth C., Wolff-Vorbeck G., Eibel H., Schlesier M., Peter H.H. Severe deficiency of switched memory B cells (CD27(+)IgM(-)IgD(-)) in subgroups of patients with common variable immunodeficiency: A new approach to classify a heterogeneous disease. Blood. 2002;99:1544–1551. doi: 10.1182/blood.V99.5.1544.
    1. Arandi N., Mirshafiey A., Jeddi-Tehrani M., Abolhassani H., Sadeghi B., Mirminachi B., Shaghaghi M., Aghamohammadi A. Evaluation of CD4+CD25+FOXP3+ regulatory T cells function in patients with common variable immunodeficiency. Cell. Immunol. 2013;281:129–133. doi: 10.1016/j.cellimm.2013.03.003.
    1. Siachoque H., Satisteban N., Iglesias-Gamarra A. T regulatory lymphocytes: Subpopulations, mechanism of action and importance in the control of autoimmunity. Rev. Colomb. Reumatol. 2011;18:203–220.
    1. Cunningham-Rundles C., Bodian C. Common variable immunodeficiency: Clinical and immunological features of 248 patients. Clin. Immunol. 1999;92:34–48. doi: 10.1006/clim.1999.4725.
    1. Ballow M. Approach to the patient with recurrent infections. Clin. Rev. Allergy Immunol. 2008;34:129–140. doi: 10.1007/s12016-007-8041-2.
    1. Kainulainen L., Vuorinen T., Rantakokko-Jalava K., Osterback R., Ruuskanen O. Recurrent and persistent respiratory tract viral infections in patients with primary hypogammaglobulinemia. J. Allergy Clin. Immunol. 2010;126:120–126. doi: 10.1016/j.jaci.2010.04.016.
    1. Bazregari S., Azizi G., Tavakol M., Asgardoon M.H., Kiaee F., Tavakolinia N., Valizadeh A., Abolhassani H., Aghamohammadi A. Evaluation of infectious and non-infectious complications in patients with primary immunodeficiency. Cent. Eur. J. Immunol. 2017;42:336–341. doi: 10.5114/ceji.2017.72825.
    1. Cunningham-Rundles C. Common variable immune deficiency: Dissection of the variable. Immunol. Rev. 2019;287:145–161. doi: 10.1111/imr.12728.
    1. Chapel H., Lucas M., Lee M., Bjorkander J., Webster D., Grimbacher B., Fieschi C., Thon V., Abedi M.R., Hammarstrom L. Common variable immunodeficiency disorders: Division into distinct clinical phenotypes. Blood. 2008;112:277–286. doi: 10.1182/blood-2007-11-124545.
    1. Geha R.S., Notarangelo L.D., Casanova J.-L., Chapel H., Conley M.E., Fischer A., Hammarström L., Nonoyama S., Ochs H.D., Puck J., et al. The International Union of Immunological Societies (IUIS) Primary Immunodeficiency Diseases (PID) Classification Committee. J. Allergy Clin. Immunol. 2007;120:776–794. doi: 10.1016/j.jaci.2007.08.053.
    1. Vivas-Rosales I.J., Hernández-Ojeda M., O’Farrill-Romanillos P.M., Herrera-Sánchez D.A., Maciel-Fierro A.E., Núñez-Enríquez J.C. Bronchiectasis severity in adult patients with common variable immunodeficiency. Rev. Alerg. Mex. 2018;65:242–249. doi: 10.29262/ram.v65i3.399.
    1. Sherani K., Upadhyay H., Vakil A., Cervellione K., Thurm C. Common Variable Immunodeficiency and Bronchiectasis: An Easily Missed Common Association. CHEST. 2014;145:123A. doi: 10.1378/chest.1826513.
    1. Milito C., Pulvirenti F., Cinetto F., Lougaris V., Soresina A., Pecoraro A., Vultaggio A., Carrabba M., Lassandro G., Plebani A., et al. Double-blind, placebo-controlled, randomized trial on low-dose azithromycin prophylaxis in patients with primary antibody deficiencies. J. Allergy Clin. Immunol. 2019;144:584–593.e7. doi: 10.1016/j.jaci.2019.01.051.
    1. Kuruvilla M., de la Morena M.T. Antibiotic prophylaxis in primary immune deficiency disorders. J. Allergy Clin. Immunol. Pract. 2013;1:573–582. doi: 10.1016/j.jaip.2013.09.013.
    1. Sperlich J.M., Grimbacher B., Workman S., Haque T., Seneviratne S.L., Burns S.O., Reiser V., Vach W., Hurst J.R., Lowe D.M. Respiratory Infections and Antibiotic Usage in Common Variable Immunodeficiency. J. Allergy Clin. Immunol. Pract. 2018;6:159–168.e3. doi: 10.1016/j.jaip.2017.05.024.
    1. Mohammadinejad P., Ataeinia B., Kaynejad K., Zeinoddini A., Sadeghi B., Hosseini M., Rezaei N., Aghamohammadi A. Antibiotic resistance in patients with primary immunodeficiency disorders versus immunocompetent patients. Expert Rev. Clin. Immunol. 2015;11:1163–1172. doi: 10.1586/1744666X.2015.1075396.
    1. Antimicrobial Resistance Spotlight—Emerging Infectious Diseases Journal—CDC. [(accessed on 25 May 2020)]; Available online: .
    1. Bellanti J.A., Settipane R.A. Bacterial vaccines and the innate immune system: A journey of rediscovery for the allergist-immunologist and all health care providers. Allergy Asthma Proc. 2009;30(Suppl. 1):S3–S4. doi: 10.2500/aap.2009.30.3251.
    1. García González L.-A., Arrutia Díez F. Mucosal bacterial immunotherapy with MV130 highly reduces the need of tonsillectomy in adults with recurrent tonsillitis. Hum. Vaccines Immunother. 2019;15:2150–2153. doi: 10.1080/21645515.2019.1581537.
    1. Sánchez-Ramón S., Conejero L., Netea M.G., Sancho D., Palomares Ó., Subiza J.L. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.02936.
    1. Cirauqui C., Benito-Villalvilla C., Sánchez-Ramón S., Sirvent S., Diez-Rivero C.M., Conejero L., Brandi P., Hernández-Cillero L., Ochoa J.L., Pérez-Villamil B., et al. Human dendritic cells activated with MV130 induce Th1, Th17 and IL-10 responses via RIPK2 and MyD88 signalling pathways. Eur. J. Immunol. 2018;48:180–193. doi: 10.1002/eji.201747024.
    1. Alecsandru D., Valor L., Sánchez-Ramón S., Gil J., Carbone J., Navarro J., Rodríguez J.J., Rodríguez-Sainz C., Fernández-Cruz E. Sublingual therapeutic immunization with a polyvalent bacterial preparation in patients with recurrent respiratory infections: Immunomodulatory effect on antigen-specific memory CD4+ T cells and impact on clinical outcome. Clin. Exp. Immunol. 2011;164:100–107. doi: 10.1111/j.1365-2249.2011.04320.x.
    1. Tejera-Alhambra M., Palomares O., Perez de Diego R., Diaz-Lezcano I., Sanchez-Ramon S. New Biological Insights in the Immunomodulatory Effects of Mucosal Polybacterial Vaccines in Clinical Practice. Curr. Pharm. Des. 2016;22:6283–6293. doi: 10.2174/1381612822666160829143129.
    1. Collet J.P., Shapiro S., Ernst P., Renzi P., Ducruet T., Robinson A. Effects of an Immunostimulating Agent on Acute Exacerbations and Hospitalizations in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1997;156:1719–1724. doi: 10.1164/ajrccm.156.6.9612096.
    1. Roży A., Chorostowska-Wynimko J. Bacterial immunostimulants-mechanism of action and clinical application in respiratory diseases. Adv. Respir. Med. 2008;76:353–359.
    1. Lusuardi M. Challenging mucosal immunity with bacterial extracts to prevent respiratory infections: An old therapy revisited. Monaldi Arch. Chest Dis. 2004;61:4–5.
    1. Quinti I., Pulvirenti F., Giannantoni P., Hajjar J., Canter D.L., Milito C., Abeni D., Orange J.S., Tabolli S. Development and Initial Validation of a Questionnaire to Measure Health-Related Quality of Life of Adults with Common Variable Immune Deficiency: The CVID_QoL Questionnaire. J. Allergy Clin. Immunol. Pract. 2016;4:1169–1179.e4. doi: 10.1016/j.jaip.2016.07.012.
    1. Gasto farmacéutico por unidades. [(accessed on 28 June 2020)]; Available online: .
    1. Coste salarial por hora efectiva, tipo de jornada, sectores de actividad (6040) [(accessed on 28 June 2020)]; Available online: .
    1. Boletín Estadístico del Personal al Servicio de la Comunidad de Madrid. [(accessed on 2 May 2020)]; Available online: .
    1. Hampson F.A., Chandra A., Screaton N.J., Condliffe A., Kumararatne D.S., Exley A.R., Babar J.L. Respiratory disease in common variable immunodeficiency and other primary immunodeficiency disorders. Clin. Radiol. 2012;67:587–595. doi: 10.1016/j.crad.2011.10.028.
    1. do Amor Divino P.H., de Carvalho Basilio J.H., Fabbri R.M.A., Bastos I.P., Forte W.C.N. Bronchiectasis caused by common variable immunodeficiency. J. Bras. Pneumol. 2015;41:482–483. doi: 10.1590/S1806-37132015000000095.
    1. Erdem S.B., Gulez N., Genel F., Karaman S., Nacaroglu H.T. Characteristics of the patients followed with the diagnosis of common variable immunodeficiency and the complications. Cent. Eur. J. Immunol. 2019;44:119–126. doi: 10.5114/ceji.2019.87060.
    1. Lucas M., Lee M., Lortan J., Lopez-Granados E., Misbah S., Chapel H. Infection outcomes in patients with common variable immunodeficiency disorders: Relationship to immunoglobulin therapy over 22 years. J. Allergy Clin. Immunol. 2010;125:1354–1360.e4. doi: 10.1016/j.jaci.2010.02.040.
    1. Orange J.S., Grossman W.J., Navickis R.J., Wilkes M.M. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: A meta-analysis of clinical studies. Clin. Immunol. 2010;137:21–30. doi: 10.1016/j.clim.2010.06.012.
    1. Orange J.S., Belohradsky B.H., Berger M., Borte M., Hagan J., Jolles S., Wasserman R.L., Baggish J.S., Saunders R., Grimbacher B. Evaluation of correlation between dose and clinical outcomes in subcutaneous immunoglobulin replacement therapy. Clin. Exp. Immunol. 2012;169:172–181. doi: 10.1111/j.1365-2249.2012.04594.x.
    1. Phillips A.C., Carroll D., Drayson M.T., Der G. Salivary Immunoglobulin A Secretion Rate Is Negatively Associated with Cancer Mortality: The West of Scotland Twenty-07 Study. PLoS ONE. 2015;10:e0145083. doi: 10.1371/journal.pone.0145083.
    1. Rodríguez A., Tjärnlund A., Ivanji J., Singh M., García I., Williams A., Marsh P.D., Troye-Blomberg M., Fernández C. Role of IgA in the defense against respiratory infections IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG. Vaccine. 2005;23:2565–2572. doi: 10.1016/j.vaccine.2004.11.032.
    1. Boyaka P.N. Inducing mucosal IgA: A challenge for vaccine adjuvants and delivery systems. J. Immunol. 2017;199:9–16. doi: 10.4049/jimmunol.1601775.
    1. Diana J., Moura I.C., Vaugier C., Gestin A., Tissandie E., Beaudoin L., Corthésy B., Hocini H., Lehuen A., Monteiro R.C. Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. J. Immunol. 2013;191:2335–2343. doi: 10.4049/jimmunol.1300864.
    1. Gutzeit C., Magri G., Cerutti A. Intestinal IgA production and its role in host-microbe interaction. Immunol. Rev. 2014;260:76–85. doi: 10.1111/imr.12189.
    1. Tezuka H., Ohteki T. Regulation of IgA Production by Intestinal Dendritic Cells and Related Cells. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.01891.
    1. Eickhoff C.S., Blazevic A., Killoran E.A., Morris M.S., Hoft D.F. Induction of mycobacterial protective immunity by sublingual BCG vaccination. Vaccine. 2019;37:5364–5370. doi: 10.1016/j.vaccine.2019.07.034.
    1. Gallorini S., Taccone M., Bonci A., Nardelli F., Casini D., Bonificio A., Kommareddy S., Bertholet S., O’Hagan D.T., Baudner B.C. Sublingual immunization with a subunit influenza vaccine elicits comparable systemic immune response as intramuscular immunization, but also induces local IgA and TH17 responses. Vaccine. 2014;32:2382–2388. doi: 10.1016/j.vaccine.2013.12.043.
    1. Sánchez-Ramón S., Pérez de Diego R., Dieli-Crimi R., Subiza J.-L. Extending the clinical horizons of mucosal bacterial vaccines: Current evidence and future prospects. Curr. Drug Targets. 2014;15:1132–1143. doi: 10.2174/1389450115666141020160705.
    1. Varkey J.B., Varkey A.B., Varkey B. Prophylactic vaccinations in chronic obstructive pulmonary disease: Current status. Curr. Opin. Pulm. Med. 2009;15:90–99. doi: 10.1097/MCP.0b013e3283218356.
    1. Selva B., Nieto M., Bartoll E., Mazon A., Calaforra S., Calderón R., Palau M.J., Nieto A., Caballero R., Guzmán-Fulgencio M., et al. Sublingual therapeutic immunotherapy with a polyvalent bacterial preparation in preschool children with recurrent respiratory tract infections [abstract] Allergy. 2017;72:196.
    1. van der Meer J.W.M., Joosten L.A.B., Riksen N., Netea M.G. Trained immunity: A smart way to enhance innate immune defence. Mol. Immunol. 2015;68:40–44. doi: 10.1016/j.molimm.2015.06.019.
    1. Netea M.G., Domínguez-Andrés J., Barreiro L.B., Chavakis T., Divangahi M., Fuchs E., Joosten L.A.B., van der Meer J.W.M., Mhlanga M.M., Mulder W.J.M., et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020:1–14. doi: 10.1038/s41577-020-0285-6.
    1. van der Heijden C.D.C.C., Noz M.P., Joosten L.A.B., Netea M.G., Riksen N.P., Keating S.T. Epigenetics and Trained Immunity. Antioxid. Redox Signal. 2018;29:1023–1040. doi: 10.1089/ars.2017.7310.
    1. Mourits V.P., Wijkmans J.C., Joosten L.A., Netea M.G. Trained immunity as a novel therapeutic strategy. Curr. Opin. Pharmacol. 2018;41:52–58. doi: 10.1016/j.coph.2018.04.007.
    1. Brandi P., Conejero L., Cueto F.J., Martínez-Cano S., Saz-Leal P., Enamorado M., Amores-Iniesta J., Subiza J.L., Sancho D. MV130, a polybacterial mucosal preparation, protects mice against experimental viral infections inducing trained immunity [abstract] Allergy. 2019;74:111.
    1. Rezaei N., Amirzargar A.A., Shakiba Y., Mahmoudi M., Moradi B., Aghamohammadi A. Proinflammatory cytokine gene single nucleotide polymorphisms in common variable immunodeficiency. Clin. Exp. Immunol. 2009;155:21–27. doi: 10.1111/j.1365-2249.2008.03790.x.
    1. Holm A.M., Aukrust P., Damås J.K., Müller F., Halvorsen B., Frøland S.S. Abnormal interleukin-7 function in common variable immunodeficiency. Blood. 2005;105:2887–2890. doi: 10.1182/blood-2004-06-2423.
    1. Holm A.M., Aukrust P., Aandahl E.M., Müller F., Taskén K., Frøland S.S. Impaired secretion of IL-10 by T cells from patients with common variable immunodeficiency—involvement of protein kinase A type I. J. Immunol. Baltim. Md 1950. 2003;170:5772–5777. doi: 10.4049/jimmunol.170.11.5772.
    1. Fischer M.B., Hauber I., Vogel E., Wolf H.M., Mannhalter J.W., Eibl M.M. Defective interleukin-2 and interferon-gamma gene expression in response to antigen in a subgroup of patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 1993;92:340–352. doi: 10.1016/0091-6749(93)90178-I.
    1. North M.E., Webster A.D., Farrant J. Role of interleukin-2 and interleukin-6 in the mitogen responsiveness of T cells from patients with “common-variable” hypogammaglobulinaemia. Clin. Exp. Immunol. 1990;81:412–416. doi: 10.1111/j.1365-2249.1990.tb05348.x.
    1. Del Vecchio G.C., Martire B., Lassandro G., Cecinati V., De Mattia D., Ciccarelli M., Piacente L., Giordano P. Reduced interleukin-5 production by peripheral CD4+ T cells in common variable immunodeficiency patients. Immunopharmacol. Immunotoxicol. 2008;30:679–686. doi: 10.1080/08923970802278102.
    1. Zhou Z., Huang R., Danon M., Mayer L., Cunningham-Rundles C. IL-10 production in common variable immunodeficiency. Clin. Immunol. Immunopathol. 1998;86:298–304. doi: 10.1006/clin.1997.4483.
    1. Kasztalska K., Ciebiada M., Cebula-Obrzut B., Górski P. Intravenous immunoglobulin replacement therapy in the treatment of patients with common variable immunodeficiency disease: An open-label prospective study. Clin. Drug Investig. 2011;31:299–307. doi: 10.1007/BF03256928.
    1. Isgrò A., Marziali M., Mezzaroma I., Luzi G., Mazzone A.M., Guazzi V., Andolfi G., Cassani B., Aiuti A., Aiuti F. Bone marrow clonogenic capability, cytokine production, and thymic output in patients with common variable immunodeficiency. J. Immunol. 2005;174:5074–5081. doi: 10.4049/jimmunol.174.8.5074.
    1. Pons J., Ferrer J.M., Martínez-Pomar N., Iglesias-Alzueta J., Matamoros N. Costimulatory molecules and cytokine production by T lymphocytes in common variable immunodeficiency disease. Scand. J. Immunol. 2006;63:383–389. doi: 10.1111/j.1365-3083.2006.01753.x.
    1. Andersen J.B., Midttun K., Feragen K.J.B. Measuring quality of life of primary antibody deficiency patients using a disease-specific health-related quality of life questionnaire for common variable immunodeficiency (CVID_QoL) J. Patient-Rep. Outcomes. 2019;3:15. doi: 10.1186/s41687-019-0101-x.
    1. EconPapers: Financial Integration, International Portfolio Choice and the European Monetary Union. [(accessed on 28 June 2020)]; Available online: .
    1. Modell V., Orange J.S., Quinn J., Modell F. Global report on primary immunodeficiencies: 2018 update from the Jeffrey Modell Centers Network on disease classification, regional trends, treatment modalities, and physician reported outcomes. Immunol. Res. 2018;66:367–380. doi: 10.1007/s12026-018-8996-5.

Source: PubMed

3
Abonneren