Impact of Glucocorticoid Excess on Glucose Tolerance: Clinical and Preclinical Evidence

Aoibhe M Pasieka, Alex Rafacho, Aoibhe M Pasieka, Alex Rafacho

Abstract

Glucocorticoids (GCs) are steroid hormones that exert important physiological actions on metabolism. Given that GCs also exert potent immunosuppressive and anti-inflammatory actions, synthetic GCs such as prednisolone and dexamethasone were developed for the treatment of autoimmune- and inflammatory-related diseases. The synthetic GCs are undoubtedly efficient in terms of their therapeutic effects, but are accompanied by significant adverse effects on metabolism, specifically glucose metabolism. Glucose intolerance and reductions in insulin sensitivity are among the major concerns related to GC metabolic side effects, which may ultimately progress to type 2 diabetes mellitus. A number of pre-clinical and clinical studies have aimed to understand the repercussions of GCs on glucose metabolism and the possible mechanisms of GC action. This review intends to summarize the main alterations that occur in liver, skeletal muscle, adipose tissue, and pancreatic islets in the context of GC-induced glucose intolerance. For this, both experimental (animals) and clinical studies were selected and, whenever possible, the main cellular mechanisms involved in such GC-side effects were discussed.

Keywords: dexamethasone; glucose homeostasis; glucose tolerance; insulin sensitivity; insulin signaling; outcomes; peripheral tissues; prednisolone; side-effects.

Figures

Figure 1
Figure 1
Adverse actions of glucocorticoids (GCs) on peripheral tissues involved in the control of glucose homeostasis. Excess or prolonged GC treatment may disrupt glucose homeostasis by interfering with several metabolic-related tissues. In visceral adipose tissue, GCs elevate LPL activity, leading to fat accumulation at this fat site; while at the same time exhibiting increased HSL activity, resulting in increased lipid (FFA and glycerol) release, supplying for hepatic triacylglycerol synthesis, fat accumulation and gluconeogenesis, and also in intramuscular fat accumulation. These steroids may also affect insulin signaling in adipose tissue. GCs impair insulin-stimulated glucose uptake in skeletal muscles and induce muscle wasting, which, in turn, provides gluconeogenesis substrates. In the liver, GCs have a negative effect on rate-limiting enzymes controlled by insulin. Finally, * GC in excess may also lead to an insulin hypersecretion that may not be sufficient to match with the disposition index, which means relative increase in islet function or ** cause insulinopenia depending on previous individual’s susceptibility (read Section 5 for more details). Continuous line means direct effect, while dotted lines means indirect action. FFA, free fatty acids; G6Pase, glucose-6-phospatase; HSL, hormone-sensitive lipase; LPL, lipoprotein lipase; PEPCK, phophoenolpyruvate carboxykinase; TG, triacylglycerol. Modified from Rafacho et al. [30].
Figure 2
Figure 2
Cellular mechanisms involved with the glucocorticoid (GC) side effects. The main cellular components or pathways altered in metabolic-related cells from experimental models subjected to GC administration. Please, find abbreviations in the list of abbreviations.

References

    1. Andrews R.C., Walker B.R. Glucocorticoids and insulin resistance: Old hormones, new targets. Clin. Sci. 1999;96:513–523. doi: 10.1042/cs0960513.
    1. Schäcke H., Döcke W.D., Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 2002;96:23–43. doi: 10.1016/S0163-7258(02)00297-8.
    1. De Bosscher K., Haegeman G., Elewaut D. Targeting inflammation using selective glucocorticoid receptor modulators. Curr. Opin. Pharmacol. 2010;10:497–504. doi: 10.1016/j.coph.2010.04.007.
    1. Rafacho A., Boschero A.C., Ortsäter H. Functional and Molecular Aspects of Glucocorticoids in the Endocrine Pancreas and Glucose Homeostasis. In: Magdeldin S., editor. State of the Art of Therapeutic Endocrinology. InTech; Rijeka, Croatia: 2012. pp. 121–152.
    1. Kwon S., Hermayer K.L. Glucocorticoid-induced hyperglycemia. Am. J. Med. Sci. 2013;345:274–277. doi: 10.1097/MAJ.0b013e31828a6a01.
    1. Mokuda O., Sakamoto Y., Ikeda T., Mashiba H. Sensitivity and responsiveness of glucose output to insulin in isolated perfused liver from dexamethasone-treated rats. Horm. Metab. Res. 1991;23:53–55. doi: 10.1055/s-2007-1003612.
    1. Venkatesan N., Lim J., Bouch C., Marciano D., Davidson M.B. Dexamethasone-induced impairment in skeletal muscle glucose transport is not reversed by inhibition of free fatty acid oxidation. Metabolism. 1996;45:92–100. doi: 10.1016/S0026-0495(96)90205-X.
    1. Kimura M., Daimon M., Tominaga M., Manaka H., Sasaki H., Kato T. Thiazolidinediones exert different effects on insulin resistance between dexamethasone-treated rats and wistar fatty rats. Endocr. J. 2000;47:21–28. doi: 10.1507/endocrj.47.21.
    1. Nicod N., Giusti V., Besse C., Tappy L. Metabolic adaptations to dexamethasone-induced insulin resistance in healthy volunteers. Obes. Res. 2003;11:625–631. doi: 10.1038/oby.2003.90.
    1. Van Raalte D.H., Brands M., van der Zijl N.J., Muskiet M.H., Pouwels P.J., Ackermans M.T., Sauerwein H.P., Serlie M.J., Diamant M. Low-dose glucocorticoid treatment affects multiple aspects of intermediary metabolism in healthy humans: A randomized controlled trial. Diabetologia. 2011;54:2103–2112. doi: 10.1007/s00125-011-2174-9.
    1. Paquot N., Schneiter P., Jéquier E., Tappy L. Effects of glucocorticoids and sympathomimetic agents on basal and insulin-stimulated glucose metabolism. Clin. Physiol. 1995;15:231–240. doi: 10.1111/j.1475-097X.1995.tb00514.x.
    1. Ruzzin J., Wagman A.S., Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: Defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia. 2005;48:2119–2130. doi: 10.1007/s00125-005-1886-0.
    1. Burén J., Lai Y.C., Lundgren M., Eriksson J.W., Jensen J. Insulin action and signalling in fat and muscle from dexamethasone-treated rats. Arch. Biochem. Biophys. 2008;474:91–101. doi: 10.1016/j.abb.2008.02.034.
    1. Delarue J., Allain-Jeannic G., Guillerm S., Cruciani-Guglielmacci C., Magnan C., Moineau M.P., Le Guen V. Interaction of low dose of fish oil and glucocorticoids on insulin sensitivity and lipolysis in healthy humans: A randomized controlled study. Mol. Nutr. Food Res. 2016;60:886–896. doi: 10.1002/mnfr.201500469.
    1. Schneiter P., Tappy L. Kinetics of dexamethasone-induced alterations of glucose metabolism in healthy humans. Am. J. Physiol. 1998;275:E806–E813.
    1. Rafacho A., Giozzet V.A., Boschero A.C., Bosqueiro J.R. Functional alterations in endocrine pancreas of rats with different degrees of dexamethasone-induced insulin resistance. Pancreas. 2008;36:284–293. doi: 10.1097/MPA.0b013e31815ba826.
    1. Van Raalte D.H., Nofrate V., Bunck M.C., van Iersel T., Elassaiss Schaap J., Nässander U.K., Heine R.J., Mari A., Dokter W.H., Diamant M. Acute and 2-week exposure to prednisolone impair different aspects of beta-cell function in healthy men. Eur. J. Endocrinol. 2010;162:729–735. doi: 10.1530/EJE-09-1034.
    1. Rafacho A., Abrantes J.L., Ribeiro D.L., Paula F.M., Pinto M.E., Boschero A.C., Bosqueiro J.R. Morphofunctional alterations in endocrine pancreas of short- and long-term dexamethasone-treated rats. Horm. Metab. Res. 2011;43:275–281. doi: 10.1055/s-0030-1269896.
    1. Van Raalte D.H., van Genugten R.E., Linssen M.M., Ouwens D.M., Diamant M. Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care. 2011;34:412–417. doi: 10.2337/dc10-1677.
    1. Van Raalte D.H., Kwa K.A., van Genugten R.E., Tushuizen M.E., Holst J.J., Deacon C.F., Karemaker J.M., Heine R.J., Mari A., Diamant M. Islet-cell dysfunction induced by glucocorticoid treatment: Potential role for altered sympathovagal balance? Metabolism. 2013;62:568–577. doi: 10.1016/j.metabol.2012.10.007.
    1. Nosadini R., Del Prato S., Tiengo A., Valerio A., Muggeo M., Opocher G., Mantero F., Duner E., Marescotti C., Mollo F., et al. Insulin resistance in Cushing’s syndrome. J. Clin. Endocrinol. Metab. 1983;57:529–536. doi: 10.1210/jcem-57-3-529.
    1. Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int. J. Biochem. Cell Biol. 2012;44:33–45. doi: 10.1016/j.biocel.2011.10.001.
    1. Margolis R.N., Curnow R.T. Effects of dexamethasone administration on hepatic glycogen synthesis and accumulation in adrenalectomized fasted rats. Endocrinology. 1984;115:625–629. doi: 10.1210/endo-115-2-625.
    1. Wajngot A., Khan A., Giacca A., Vranic M., Efendic S. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects. Am. J. Physiol. 1990;259:E626–E632.
    1. Wajngot A., Giacca A., Grill V., Vranic M., Efendic S. The diabetogenic effects of glucocorticoids are more pronounced in low- than in high-insulin responders. Proc. Natl. Acad. Sci. USA. 1992;89:6035–6039. doi: 10.1073/pnas.89.13.6035.
    1. Saad M.J., Folli F., Kahn J.A., Kahn C.R. Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J. Clin. Investig. 1993;92:2065–2072. doi: 10.1172/JCI116803.
    1. Nader N., Ng S.S., Wang Y., Abel B.S., Chrousos G.P., Kino T. Liver X receptors regulate the transcriptional activity of the glucocorticoid receptor: Implications for the carbohydrate metabolism. PLoS ONE. 2012;7:24. doi: 10.1371/journal.pone.0026751.
    1. Olefsky J.M., Johnson J., Liu F., Jen P., Reaven G.M. The effects of acute and chronic dexamethasone administration on insulin binding to isolated rat hepatocytes and adipocytes. Metabolism. 1975;24:517–527. doi: 10.1016/0026-0495(75)90076-1.
    1. Shamoon H., Soman V., Sherwin R.S. The influence of acute physiological increments of cortisol on fuel metabolism and insulin binding to monocytes in normal humans. J. Clin. Endocrinol. Metab. 1980;50:495–501. doi: 10.1210/jcem-50-3-495. Retraction in: Felig, P.; Sherwin, R.S. J. Clin. Endocrinol. Metab.1980, 51, 1201.
    1. Rafacho A., Ortsäter H., Nadal A., Quesada I. Glucocorticoid treatment and endocrine pancreas function: Implications for glucose homeostasis, insulin resistance and diabetes. J. Endocrinol. 2014;223:R49–R62. doi: 10.1530/JOE-14-0373.
    1. Ahrén B. Evidence that autonomic mechanisms contribute to the adaptive increase in insulin secretion during dexamethasone-induced insulin resistance in humans. Diabetologia. 2008;51:1018–1024. doi: 10.1007/s00125-008-0995-y.
    1. Campbell J.E., Peckett A.J., D’souza A.M., Hawke T.J., Riddell M.C. Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am. J. Physiol. Cell Physiol. 2011;300:C198–C209. doi: 10.1152/ajpcell.00045.2010.
    1. Rafacho A., Cestari T.M., Taboga S.R., Boschero A.C., Bosqueiro J.R. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am. J. Physiol. Endocrinol. Metab. 2009;296:E681–E689. doi: 10.1152/ajpendo.90931.2008.
    1. Petersons C.J., Mangelsdorf B.L., Jenkins A.B., Poljak A., Smith M.D., Greenfield J.R., Thompson C.H., Burt M.G. Effects of low-dose prednisolone on hepatic and peripheral insulin sensitivity, insulin secretion, and abdominal adiposity in patients with inflammatory rheumatologic disease. Diabetes Care. 2013;36:2822–2829. doi: 10.2337/dc12-2617.
    1. Binnert C., Ruchat S., Nicod N., Tappy L. Dexamethasone-induced insulin resistance shows no gender difference in healthy humans. Diabetes Metab. 2004;30:321–326. doi: 10.1016/S1262-3636(07)70123-4.
    1. Den Uyl D., van Raalte D.H., Nurmohamed M.T., Lems W.F., Bijlsma J.W., Hoes J.N., Dijkmans B.A., Diamant M. Metabolic effects of high-dose prednisolone treatment in early rheumatoid arthritis: Balance between diabetogenic effects and inflammation reduction. Arthritis Rheum. 2012;64:639–646. doi: 10.1002/art.33378.
    1. Martínez-Martínez M.U., Martínez-Lozano J., Abud-Mendoza C. Hyperglycemia and methylprednisolone: Comment on the article by den Uyl et al. Arthritis Rheum. 2012;64:3822–3833. doi: 10.1002/art.34641.
    1. Frijters R., Fleuren W., Toonen E.J., Tuckermann J.P., Reichardt H.M., van der Maaden H., van Elsas A., van Lierop M.J., Dokter W., de Vlieg J., et al. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor. BMC Genomics. 2010;5:24. doi: 10.1186/1471-2164-11-359.
    1. Feng B., He Q., Xu H. FOXO1-dependent up-regulation of MAP kinase phosphatase 3 (MKP-3) mediates glucocorticoid-induced hepatic lipid accumulation in mice. Mol. Cell. Endocrinol. 2014;393:46–55. doi: 10.1016/j.mce.2014.06.001.
    1. Rafacho A., Gonçalves-Neto L.M., Santos-Silva J.C., Alonso-Magdalena P., Merino B., Taboga S.R., Carneiro E.M., Boschero A.C., Nadal A., Quesada I. Pancreatic alpha-cell dysfunction contributes to the disruption of glucose homeostasis and compensatory insulin hypersecretion in glucocorticoid-treated rats. PLoS ONE. 2014;9:24. doi: 10.1371/journal.pone.0093531.
    1. DeFronzo R.A., Jacot E., Jequier E., Maeder E., Wahren J., Felber J.P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30:1000–1007. doi: 10.2337/diab.30.12.1000.
    1. Schonberg M., Smith T.J., Krichevsky A., Bilezikian J.P. Glucocorticoids enhance glucose uptake and affect differentiation and beta-adrenergic responsiveness in muscle cell cultures. Cell Differ. 1981;10:101–107. doi: 10.1016/0045-6039(81)90018-X.
    1. Haber R.S., Weinstein S.P. Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes. 1992;41:728–735. doi: 10.2337/diab.41.6.728.
    1. Kennedy B., Elayan H., Ziegler M.G. Glucocorticoid induction of epinephrine synthesizing enzyme in rat skeletal muscle and insulin resistance. J. Clin. Investig. 1993;92:303–307. doi: 10.1172/JCI116567.
    1. Weinstein S.P., Paquin T., Pritsker A., Haber R.S. Glucocorticoid-induced insulin resistance: Dexamethasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin- and non-insulin-related stimuli. Diabetes. 1995;44:441–445. doi: 10.2337/diab.44.4.441.
    1. Weinstein S.P., Wilson C.M., Pritsker A., Cushman S.W. Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism. 1998;47:3–6. doi: 10.1016/S0026-0495(98)90184-6.
    1. Ruzzin J., Jensen J. Contraction activates glucose uptake and glycogen synthase normally in muscles from dexamethasone-treated rats. Am. J. Physiol. Endocrinol. Metab. 2005;289:E241–E250. doi: 10.1152/ajpendo.00587.2004.
    1. Kuo T., Lew M.J., Mayba O., Harris C.A., Speed T.P., Wang J.C. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc. Natl. Acad. Sci. USA. 2012;109:11160–11165. doi: 10.1073/pnas.1111334109.
    1. Ishizuka T., Yamamoto M., Nagashima T., Kajita K., Taniguchi O., Yasuda K., Miura K. Effect of dexamethasone and prednisolone on insulin-induced activation of protein kinase C in rat adipocytes and soleus muscles. Metabolism. 1995;44:298–306. doi: 10.1016/0026-0495(95)90158-2.
    1. Tomlinson J.W., Walker E.A., Bujalska I.J., Draper N., Lavery G.G., Cooper M.S., Hewison M., Stewart P.M. 11beta-hydroxysteroid dehydrogenase type 1: A tissue-specific regulator of glucocorticoid response. Endocr. Rev. 2004;25:831–866. doi: 10.1210/er.2003-0031.
    1. Morgan S.A., Sherlock M., Gathercole L.L., Lavery G.G., Lenaghan C., Bujalska I.J., Laber D., Yu A., Convey G., Mayers R., et al. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes. 2009;58:2506–2515. doi: 10.2337/db09-0525.
    1. Arnaldi G., Scandali V.M., Trementino L., Cardinaletti M., Appolloni G., Boscaro M. Pathophysiology of dyslipidemia in Cushing’s syndrome. Neuroendocrinology. 2010;92(Suppl. 1):86–90. doi: 10.1159/000314213.
    1. Geer E.B., Shen W., Gallagher D., Punyanitya M., Looker H.C., Post K.D., Freda P.U. MRI assessment of lean and adipose tissue distribution in female patients with Cushing’s disease. Clin. Endocrinol. 2010;73:469–475. doi: 10.1111/j.1365-2265.2010.03829.x.
    1. Urbanet R., Pilon C., Calcagno A., Peschechera A., Hubert E.-L., Giacchetti G., Gomez-Sanchez C., Mulatero P., Toffanin M., Sonino N., et al. Analysis of insulin sensitivity in adipose tissue of patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 2010;95:4037–4042. doi: 10.1210/jc.2010-0097.
    1. Carey D.G., Jenkins A.B., Campbell L.V., Freund J., Chisholm D.J. Abdominal fat and insulin resistance in normal and overweight women: Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes. 1996;45:633–638. doi: 10.2337/diab.45.5.633.
    1. Han T.S., Lean M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016;5 doi: 10.1177/2048004016633371.
    1. Djurhuus C.B., Gravholt C.H., Nielsen S., Pedersen S.B., Møller N., Schmitz O. Additive effects of cortisol and growth hormone on regional and systemic lipolysis in humans. Am. J. Physiol. Endocrinol. Metab. 2004;286:E488–E494. doi: 10.1152/ajpendo.00199.2003.
    1. Divertie G.D., Jensen M.D., Miles J.M. Stimulation of lipolysis in humans by physiological hypercortisolemia. Diabetes. 1991;40:1228–1232. doi: 10.2337/diab.40.10.1228.
    1. Xu C., He J., Jiang H., Zu L., Zhai W., Pu S., Xu G. Direct Effect of Glucocorticoids on Lipolysis in Adipocytes. Mol. Endocrinol. 2009;23:1161–1170. doi: 10.1210/me.2008-0464.
    1. Christ-Crain M., Kola B., Lolli F., Fekete C., Seboek D., Wittmann G., Feltrin D., Igreja S.C., Ajodha S., Harvey-White J., et al. AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: A novel mechanism in Cushing’s syndrome. FASEB J. 2008;22:1672–1683. doi: 10.1096/fj.07-094144.
    1. Fried S.K., Russell C.D., Grauso N.L., Brolin R.E. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J. Clin. Investig. 1993;92:2191–2198. doi: 10.1172/JCI116821.
    1. Appel B., Fried S.K. Effects of insulin and dexamethasone on lipoprotein lipase in human adipose tissue. Am. J. Physiol. 1992;262:E695–E699.
    1. Peckett A.J., Wright D.C., Riddell M.C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism. 2011;60:1500–1510. doi: 10.1016/j.metabol.2011.06.012.
    1. Lee M.J., Pramyothin P., Karastergiou K., Fried S.K. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim. Biophys. Acta. 2014;1842:473–481. doi: 10.1016/j.bbadis.2013.05.029.
    1. Bikman B.T., Summers S.A. Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Investig. 2011;121:4222–4230. doi: 10.1172/JCI57144.
    1. Massart J., Zierath J.R., Chibalin A.V. A simple and rapid method to characterize lipid fate in skeletal muscle. BMC Res. Notes. 2014;7:24. doi: 10.1186/1756-0500-7-391.
    1. Dong Y., Silva K.A.S., Dong Y., Zhang L. Glucocorticoids increase adipocytes in muscle by affecting IL-4 regulated FAP activity. FASEB J. 2014;28:4123–4132. doi: 10.1096/fj.14-254011.
    1. Randle P.J., Garland P.B., Hales C.N., Newsholme E.A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;13:785–789. doi: 10.1016/S0140-6736(63)91500-9.
    1. Van Raalte D.H., Ouwens D.M., Diamant M. Novel insights into glucocorticoid-mediated diabetogenic effects: Towards expansion of therapeutic options? Eur. J. Clin. Investig. 2009;39:81–93. doi: 10.1111/j.1365-2362.2008.02067.x.
    1. Szendroedi J., Yoshimura T., Phielix E., Koliaki C., Marcucci M., Zhang D., Jelenik T., Müller J., Herder C., Nowotny P., et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl. Acad. Sci. USA. 2014;111:9597–9602. doi: 10.1073/pnas.1409229111.
    1. Shpilberg Y., Beaudry J.L., D’Souza A., Campbell J.E., Peckett A., Riddell M.C. A rodent model of rapid-onset diabetes induced by glucocorticoids and high-fat feeding. Dis. Model. Mech. 2012;5:671–680. doi: 10.1242/dmm.008912.
    1. Taskinen M.R., Nikkilä E.A., Pelkonen R., Sane T. Plasma lipoproteins, lipolytic enzymes, and very low density lipoprotein triglyceride turnover in Cushing’s syndrome. J. Clin. Endocrinol. Metab. 1983;57:619–626. doi: 10.1210/jcem-57-3-619.
    1. Rockall A.G., Sohaib S.A., Evans D., Kaltsas G., Isidori A.M., Monson J.P., Besser G.M., Grossman A.B., Reznek R.H. Hepatic steatosis in Cushing’s syndrome: A radiological assessment using computed tomography. Eur. J. Endocrinol. Eur. Fed. Endocr. Soc. 2003;149:543–548. doi: 10.1530/eje.0.1490543.
    1. D’souza A.M., Beaudry J.L., Szigiato A.A., Trumble S.J., Snook L.A., Bonen A., Giacca A., Riddell M.C. Consumption of a high-fat diet rapidly exacerbates the development of fatty liver disease that occurs with chronically elevated glucocorticoids. Am. J. Physiol. Gastrointest. Liver Physiol. 2012;302:G850–G863. doi: 10.1152/ajpgi.00378.2011.
    1. Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., Parks E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 2005;115:1343–1351. doi: 10.1172/JCI23621.
    1. Woods C.P., Hazlehurst J.M., Tomlinson J.W. Glucocorticoids and non-alcoholic fatty liver disease. J. Steroid Biochem. Mol. Biol. 2015;154:94–103. doi: 10.1016/j.jsbmb.2015.07.020.
    1. Sprangers F., Romijn J.A., Endert E., Ackermans M.T., Sauerwein H.P. The role of free fatty acids (FFA) in the regulation of intrahepatic fluxes of glucose and glycogen metabolism during short-term starvation in healthy volunteers. Clin. Nutr. Edinb. Scotl. 2001;20:177–179. doi: 10.1054/clnu.2000.0372.
    1. Allick G., Sprangers F., Weverling G.J., Ackermans M.T., Meijer A.J., Romijn J.A., Endert E., Bisschop P.H., Sauerwein H.P. Free fatty acids increase hepatic glycogen content in obese males. Metabolism. 2004;53:886–893. doi: 10.1016/j.metabol.2004.01.012.
    1. Perry R.J., Samuel V.T., Petersen K.F., Shulman G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510:84–91. doi: 10.1038/nature13478.
    1. Samuel V.T., Liu Z.-X., Qu X., Elder B.D., Bilz S., Befroy D., Romanelli A.J., Shulman G.I. Mechanism of Hepatic Insulin Resistance in Non-alcoholic Fatty Liver Disease. J. Biol. Chem. 2004;279:32345–32353. doi: 10.1074/jbc.M313478200.
    1. Lundgren M., Burén J., Ruge T., Myrnäs T., Eriksson J.W. Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J. Clin. Endocrinol. Metab. 2004;89:2989–2997. doi: 10.1210/jc.2003-031157.
    1. Motta K., Barbosa A.M., Bobinski F., Boschero A.C., Rafacho A. JNK and IKKβ phosphorylation is reduced by glucocorticoids in adipose tissue from insulin-resistant rats. J. Steroid Biochem. Mol. Biol. 2015;145:1–12. doi: 10.1016/j.jsbmb.2014.09.024.
    1. Munck A. Glucocorticoid inhibition of glucose uptake by peripheral tissues: Old and new evidence, molecular mechanisms, and physiological significance. Perspect. Biol. Med. 1971;14:265–269. doi: 10.1353/pbm.1971.0002.
    1. Hazlehurst J.M., Gathercole L.L., Nasiri M., Armstrong M.J., Borrows S., Yu J., Wagenmakers A.J.M., Stewart P.M., Tomlinson J.W. Glucocorticoids fail to cause insulin resistance in human subcutaneous adipose tissue in vivo. J. Clin. Endocrinol. Metab. 2013;98:1631–1640. doi: 10.1210/jc.2012-3523.
    1. Masuzaki H., Paterson J., Shinyama H., Morton N.M., Mullins J.J., Seckl J.R., Flier J.S. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–2170. doi: 10.1126/science.1066285.
    1. Morton N.M., Paterson J.M., Masuzaki H., Holmes M.C., Staels B., Fievet C., Walker B.R., Flier J.S., Mullins J.J., Seckl J.R. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes. 2004;53:931–938. doi: 10.2337/diabetes.53.4.931.
    1. Veilleux A., Rhéaume C., Daris M., Luu-The V., Tchernof A. Omental adipose tissue type 1 11 beta-hydroxysteroid dehydrogenase oxoreductase activity, body fat distribution, and metabolic alterations in women. J. Clin. Endocrinol. Metab. 2009;94:3550–3557. doi: 10.1210/jc.2008-2011.
    1. Kang Y.E., Kim J.M., Joung K.H., Lee J.H., You B.R., Choi M.J., Ryu M.J., Ko Y.B., Lee M.A., Lee J., et al. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction. PLoS ONE. 2016;11:24. doi: 10.1371/journal.pone.0154003.
    1. Yamauchi T., Kamon J., Waki H., Terauchi Y., Kubota N., Hara K., Mori Y., Ide T., Murakami K., Tsuboyama-Kasaoka N., et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001;7:941–946. doi: 10.1038/90984.
    1. Fallo F., Scarda A., Sonino N., Paoletta A., Boscaro M., Pagano C., Federspil G., Vettor R. Effect of glucocorticoids on adiponectin: A study in healthy subjects and in Cushing’s syndrome. Eur. J. Endocrinol. 2004;150:339–344. doi: 10.1530/eje.0.1500339.
    1. Raff H., Bruder E.D. Adiponectin and resistin in the neonatal rat. Endocrine. 2006;29:341–344. doi: 10.1385/ENDO:29:2:341.
    1. Steppan C.M., Bailey S.T., Bhat S., Brown E.J., Banerjee R.R., Wright C.M., Patel H.R., Ahima R.S., Lazar M.A. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–312. doi: 10.1038/35053000.
    1. Krsek M., Rosická M., Nedvídková J., Kvasnicková H., Hána V., Marek J., Haluzík M., Lai E.W., Pacák K. Increased lipolysis of subcutaneous abdominal adipose tissue and altered noradrenergic activity in patients with Cushing’s syndrome: An in vivo microdialysis study. Physiol. Res. 2006;55:421–428.
    1. Kern P.A., Ranganathan S., Li C., Wood L., Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2001;280:E745–E751.
    1. Vicennati V., Vottero A., Friedman C., Papanicolaou D.A. Hormonal regulation of interleukin-6 production in human adipocytes. Int. J. Obes. Relat. Metab. Disord. 2002;26:905–911.
    1. Zilberfarb V., Siquier K., Strosberg A.D., Issad T. Effect of dexamethasone on adipocyte differentiation markers and tumour necrosis factor-alpha expression in human PAZ6 cells. Diabetologia. 2001;44:377–386. doi: 10.1007/s001250051630.
    1. Kahn S.E., Hull R.L., Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–846. doi: 10.1038/nature05482.
    1. Kahn S.E., Prigeon R.L., McCulloch D.K., Boyko E.J., Bergman R.N., Schwartz M.W., Neifing J.L., Ward W.K., Beard J.C., Palmer J.P. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–1672. doi: 10.2337/diab.42.11.1663.
    1. Burke S.J., Karlstad M.D., Collier J.J. Pancreatic Islet Responses to Metabolic Trauma. Shock. 2016 doi: 10.1097/SHK.0000000000000607. in press.
    1. Lambillotte C., Gilon P., Henquin J.C. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J. Clin. Investig. 1997;99:414–423. doi: 10.1172/JCI119175.
    1. Jeong I.K., Oh S.H., Kim B.J., Chung J.H., Min Y.K., Lee M.S., Lee M.K., Kim K.W. The effects of dexamethasone on insulin release and biosynthesis are dependent on the dose and duration of treatment. Diabetes Res. Clin. Pract. 2001;51:163–171. doi: 10.1016/S0168-8227(00)00229-1.
    1. Zawalich W.S., Tesz G.J., Yamazaki H., Zawalich K.C., Philbrick W. Dexamethasone suppresses phospholipase C activation and insulin secretion from isolated rat islets. Metabolism. 2006;55:35–42. doi: 10.1016/j.metabol.2005.06.023.
    1. Beard J.C., Halter J.B., Best J.D., Pfeifer M.A., Porte D., Jr. Dexamethasone-induced insulin resistance enhances B cell responsiveness to glucose level in normal men. Am. J. Physiol. 1984;247:E592–E596.
    1. Hollingdal M., Juhl C.B., Dall R., Sturis J., Veldhuis J.D., Schmitz O., Pørksen N. Glucocorticoid induced insulin resistance impairs basal but not glucose entrained high-frequency insulin pulsatility in humans. Diabetologia. 2002;45:49–55. doi: 10.1007/s125-002-8244-y.
    1. Willi S.M., Kennedy A., Wallace P., Ganaway E., Rogers N.L., Garvey W.T. Troglitazone antagonizes metabolic effects of glucocorticoids in humans: Effects on glucose tolerance, insulin sensitivity, suppression of free fatty acids, and leptin. Diabetes. 2002;51:2895–2902. doi: 10.2337/diabetes.51.10.2895.
    1. Hoes J.N., van der Goes M.C., van Raalte D.H., van der Zijl N.J., den Uyl D., Lems W.F., Lafeber F.P., Jacobs J.W., Welsing P.M., Diamant M., et al. Glucose tolerance, insulin sensitivity and β-cell function in patients with rheumatoid arthritis treated with or without low-to-medium dose glucocorticoids. Ann. Rheum. Dis. 2011;70:1887–1894. doi: 10.1136/ard.2011.151464.
    1. Larsson H., Ahrén B. Insulin resistant subjects lack islet adaptation to short-term dexamethasone-induced reduction in insulin sensitivity. Diabetologia. 1999;42:936–943. doi: 10.1007/s001250051251.
    1. Besse C., Nicod N., Tappy L. Changes in insulin secretion and glucose metabolism induced by dexamethasone in lean and obese females. Obes. Res. 2005;13:306–311. doi: 10.1038/oby.2005.41.
    1. Jensen D.H., Aaboe K., Henriksen J.E., Vølund A., Holst J.J., Madsbad S., Krarup T. Steroid-induced insulin resistance and impaired glucose tolerance are both associated with a progressive decline of incretin effect in first-degree relatives of patients with type 2 diabetes. Diabetologia. 2012;55:1406–1416. doi: 10.1007/s00125-012-2459-7.
    1. Braun T., Challis J.R., Newnham J.P., Sloboda D.M. Early-life glucocorticoid exposure: The hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr. Rev. 2013;34:885–916. doi: 10.1210/er.2013-1012.
    1. Moisiadis V.G., Matthews S.G. Glucocorticoids and fetal programming part 2: Mechanisms. Nat. Rev. Endocrinol. 2014;10:403–411. doi: 10.1038/nrendo.2014.74.
    1. Karlsson S., Ostlund B., Myrsén-Axcrona U., Sundler F., Ahrén B. Beta cell adaptation to dexamethasone-induced insulin resistance in rats involves increased glucose responsiveness but not glucose effectiveness. Pancreas. 2001;22:148–156. doi: 10.1097/00006676-200103000-00007.
    1. Fransson L., Franzén S., Rosengren V., Wolbert P., Sjöholm Å., Ortsäter H. β-Cell adaptation in a mouse model of glucocorticoid-induced metabolic syndrome. J. Endocrinol. 2013;219:231–241. doi: 10.1530/JOE-13-0189.
    1. Protzek A.O., Costa-Júnior J.M., Rezende L.F., Santos G.J., Araújo T.G., Vettorazzi J.F., Ortis F., Carneiro E.M., Rafacho A., Boschero A.C. Augmented β-Cell Function and Mass in Glucocorticoid-Treated Rodents Are Associated with Increased Islet Ir-β/AKT/mTOR and Decreased AMPK/ACC and AS160 Signaling. Int. J. Endocrinol. 2014;2014:983453. doi: 10.1155/2014/983453.
    1. Rafacho A., Marroquí L., Taboga S.R., Abrantes J.L., Silveira L.R., Boschero A.C., Carneiro E.M., Bosqueiro J.R., Nadal A., Quesada I. Glucocorticoids in vivo induce both insulin hypersecretion and enhanced glucose sensitivity of stimulus-secretion coupling in isolated rat islets. Endocrinology. 2010;151:85–95. doi: 10.1210/en.2009-0704.
    1. Rafacho A., Quallio S., Ribeiro D.L., Taboga S.R., Paula F.M., Boschero A.C., Bosqueiro J.R. The adaptive compensations in endocrine pancreas from glucocorticoid-treated rats are reversible after the interruption of treatment. Acta Physiol. 2010;200:223–235. doi: 10.1111/j.1748-1716.2010.02146.x.
    1. Angelini N., Rafacho A., Boschero A.C., Bosqueiro J.R. Involvement of the cholinergic pathway in glucocorticoid-induced hyperinsulinemia in rats. Diabetes Res. Clin. Pract. 2010;87:184–191. doi: 10.1016/j.diabres.2009.11.008.
    1. Novelli M., De Tata V., Bombara M., Lorenzini A., Masini M., Pollera M., Bergamini E., Masiello P. Insufficient adaptive capability of pancreatic endocrine function in dexamethasone-treated ageing rats. J. Endocrinol. 1999;162:425–432. doi: 10.1677/joe.0.1620425.
    1. De Paula F.M., Boschero A.C., Carneiro E.M., Bosqueiro J.R., Rafacho A. Insulin signaling proteins in pancreatic islets of insulin-resistant rats induced by glucocorticoid. Biol. Res. 2011;44:251–257. doi: 10.4067/S0716-97602011000300006.
    1. Rafacho A., Roma L.P., Taboga S.R., Boschero A.C., Bosqueiro J.R. Dexamethasone-induced insulin resistance is associated with increased connexin 36 mRNA and protein expression in pancreatic rat islets. Can. J. Physiol. Pharmacol. 2007;85:536–545. doi: 10.1139/Y07-037.
    1. Dos Santos C., Ferreira F.B., Gonçalves-Neto L.M., Taboga S.R., Boschero A.C., Rafacho A. Age- and gender-related changes in glucose homeostasis in glucocorticoid-treated rats. Can. J. Physiol. Pharmacol. 2014;92:867–878. doi: 10.1139/cjpp-2014-0259.
    1. Protzek A.O., Rezende L.F., Costa-Júnior J.M., Ferreira S.M., Cappelli A.P., de Paula F.M., de Souza J.C., Kurauti M.A., Carneiro E.M., Rafacho A., et al. Hyperinsulinemia caused by dexamethasone treatment is associated with reduced insulin clearance and lower hepatic activity of insulin-degrading enzyme. J. Steroid Biochem. Mol. Biol. 2016;155:1–8. doi: 10.1016/j.jsbmb.2015.09.020.
    1. Ogawa A., Johnson J.H., Ohneda M., McAllister C.T., Inman L., Alam T., Unger R.H. Roles of insulin resistance and beta-cell dysfunction in dexamethasone-induced diabetes. J. Clin. Investig. 1992;90:497–504. doi: 10.1172/JCI115886.
    1. Khan A., Ostenson C.G., Berggren P.O., Efendic S. Glucocorticoid increases glucose cycling and inhibits insulin release in pancreatic islets of ob/ob mice. Am. J. Physiol. 1992;263:E663–E666.
    1. Khan A., Hong-Lie C., Landau B.R. Glucose-6-phosphatase activity in islets from ob/ob and lean mice and the effect of dexamethasone. Endocrinology. 1995;136:1934–1938.
    1. Davani B., Portwood N., Bryzgalova G., Reimer M.K., Heiden T., Ostenson C.G., Okret S., Ahren B., Efendic S., Khan A. Aged transgenic mice with increased glucocorticoid sensitivity in pancreatic beta-cells develop diabetes. Diabetes. 2004;53(Suppl. 1):S51–S59. doi: 10.2337/diabetes.53.2007.S51.
    1. Wise J.K., Hendler R., Felig P. Influence of glucocorticoids on glucagon secretion and plasma amino acid concentrations in man. J. Clin. Investig. 1973;52:2774–2782. doi: 10.1172/JCI107473.
    1. Cummings B.P., Bremer A.A., Kieffer T.J., D’Alessio D., Havel P.J. Investigation of the mechanisms contributing to the compensatory increase in insulin secretion during dexamethasone-induced insulin resistance in rhesus macaques. J. Endocrinol. 2013;216:207–215. doi: 10.1530/JOE-12-0459.
    1. Beaudry J.L., D’souza A.M., Teich T., Tsushima R., Riddell M.C. Exogenous glucocorticoids and a high-fat diet cause severe hyperglycemia and hyperinsulinemia and limit islet glucose responsiveness in young male Sprague-Dawley rats. Endocrinology. 2013;154:3197–3208. doi: 10.1210/en.2012-2114.
    1. Bowles N.P., Karatsoreos I.N., Li X., Vemuri V.K., Wood J.A., Li Z., Tamashiro K.L., Schwartz G.J., Makriyannis A.M., Kunos G., et al. A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc. Natl. Acad. Sci. USA. 2015;112:285–290. doi: 10.1073/pnas.1421420112.

Source: PubMed

3
Abonneren