Safety and efficacy of normobaric oxygenation on rescuing acute intracerebral hemorrhage-mediated brain damage-a protocol of randomized controlled trial

Zhiying Chen, Jiayue Ding, Xiaoqin Wu, Bing Bao, Xianming Cao, Xiangbin Wu, Xiaoping Yin, Ran Meng, Zhiying Chen, Jiayue Ding, Xiaoqin Wu, Bing Bao, Xianming Cao, Xiangbin Wu, Xiaoping Yin, Ran Meng

Abstract

Background: All of the existing medication and surgical therapies currently cannot completely inhibit intracerebral hemorrhage (ICH)-mediated brain damage, resulting in disability in different degrees in the involved patients. Normobaric oxygenation (NBO) was reported attenuating ischemic brain injury. Herein, we aimed to explore the safety and efficacy of NBO on rescuing the damaged brain tissues secondary to acute ICH, especially those in the perihematoma area being threatened by ischemia and hypoxia.

Methods: A total of 150 patients confirmed as acute spontaneous ICH by computed tomography (CT) within 6 h after symptoms onset, will enroll in this study after signing the informed consent, and enter into the NBO group or control group randomly according to a random number. In the NBO group, patients will inhale high-flow oxygen (8 L/min, 1 h each time for 6 cycles daily) and intake low-flow oxygen (2 L/min) in intermittent periods by mask for a total of 7 days. While in the control group, patients will breathe in only low-flow oxygen (2 L/min) by mask for 7 consecutive days. Computed tomography and perfusion (CT/CTP) will be used to evaluate cerebral perfusion status and brain edema. CT and CTP maps in the two groups at baseline and day 7 and 14 after NBO or low-flow oxygen control will be compared. The primary endpoint is mRS at both Day14 post-ICH and the end of the 3rd month follow-up. The secondary endpoints include NIHSS and plasma biomarkers at baseline and Day-1, 7, and 14 after treatment, as well as the NIHSS at the end of the 3rd month post-ICH and the incidence of bleeding recurrence and the mortalities within 3 months post-ICH.

Discussion: This study will provide preliminary clinical evidence about the safety and efficacy of NBO on correcting acute ICH and explore some mechanisms accordingly, to offer reference for larger clinical trials in the future.

Trial registration: ClinicalTrials.gov NCT04144868 . Retrospectively registered on October 29, 2019.

Keywords: Cerebral perfusion; Intracerebral hemorrhage; Normobaric hyperoxia; Randomized controlled trial.

Conflict of interest statement

There are no conflicts of interest.

Figures

Fig. 1
Fig. 1
Flowchart of this study. NBO, normobaric oxygenation
Fig. 2
Fig. 2
Maps of CT and CTP in an ICH patient example. a Cerebral blood flow (CBF). b Cerebral blood volume (CBV). b Mean transition time (MTT). d Time to peak (TTP). e CT brain scanning

References

    1. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–1644. doi: 10.1016/S0140-6736(09)60371-8.
    1. Lim-Hing K, Rincon F. Secondary hematoma expansion and perihemorrhagic edema after intracerebral hemorrhage: from bench work to practical aspects. Front Neurol. 2017;8:74. doi: 10.3389/fneur.2017.00074.
    1. Gioia LC, Kate M, McCourt R, Gould B, Coutts SB, Dowlatshahi D, Asdaghi N, Jeerakathil T, Hill MD, Demchuk AM, et al. Perihematoma cerebral blood flow is unaffected by statin use in acute intracerebral hemorrhage patients. J Cereb Blood Flow Metab. 2015;35(7):1175–1180. doi: 10.1038/jcbfm.2015.36.
    1. Zhou J, Zhang H, Gao P, Lin Y, Li X. Assessment of perihematomal hypoperfusion injury in subacute and chronic intracerebral hemorrhage by CT perfusion imaging. Neurol Res. 2010;32(6):642–649. doi: 10.1179/016164109X12445616596328.
    1. Tamm AS, McCourt R, Gould B, Kate M, Kosior JC, Jeerakathil T, Gioia LC, Dowlatshahi D, Hill MD, Coutts SB, et al. Cerebral perfusion pressure is maintained in acute intracerebral hemorrhage: a CT perfusion study. AJNR Am J Neuroradiol. 2016;37(2):244–251. doi: 10.3174/ajnr.A4532.
    1. Tiwari YV, Jiang Z, Sun Y, Du F, Rodriguez P, Shen Q, Duong TQ. Effects of stroke severity and treatment duration in normobaric hyperoxia treatment of ischemic stroke. Brain Res. 2016;1635:121–129. doi: 10.1016/j.brainres.2016.01.030.
    1. Churchill S, Weaver LK, Deru K, Russo AA, Handrahan D, Orrison WJ, Foley JF, Elwell HA. A prospective trial of hyperbaric oxygen for chronic sequelae after brain injury (HYBOBI) Undersea Hyperb Med. 2013;40(2):165–193.
    1. Liang J, Qi Z, Liu W, Wang P, Shi W, Dong W, Ji X, Luo Y, Liu KJ. Normobaric hyperoxia slows blood-brain barrier damage and expands the therapeutic time window for tissue-type plasminogen activator treatment in cerebral ischemia. Stroke. 2015;46(5):1344–1351. doi: 10.1161/STROKEAHA.114.008599.
    1. Geng X, Sy CA, Kwiecien TD, Ji X, Peng C, Rastogi R, Cai L, Du H, Brogan D, Singh S, et al. Reduced cerebral monocarboxylate transporters and lactate levels by ethanol and normobaric oxygen therapy in severe transient and permanent ischemic stroke. Brain Res. 2015;1603:65–75. doi: 10.1016/j.brainres.2015.01.040.
    1. Taccone FS, Crippa IA, Vincent JL. Normobaric hyperoxia after stroke: a word of caution. Expert Rev Neurother. 2018;18(2):91–93. doi: 10.1080/14737175.2018.1414600.
    1. Chazalviel L, David HN, Haelewyn B, Blatteau JE, Vallee N, Risso JJ, Besnard S, Abraini JH. The underestimated effect of normobaric hyperoxia on cerebral blood flow and its relationship to neuroprotection. Brain. 2016;139(11):e62. doi: 10.1093/brain/aww178.
    1. You P, Lin M, Li K, Ye X, Zheng J. Normobaric oxygen therapy inhibits HIF-1alpha and VEGF expression in perihematoma and reduces neurological function defects. Neuroreport. 2016;27(5):329–336.
    1. Yang D, Ma L, Wang P, Yang D, Zhang Y, Zhao X, Lv J, Zhang J, Zhang Z, Gao F. Normobaric oxygen inhibits AQP4 and NHE1 expression in experimental focal ischemic stroke. Int J Mol Med. 2019;43(3):1193–1202.
    1. Umahara T, Uchihara T, Hirokawa K, Hirao K, Shimizu S, Hashimoto T, Terasi H, Hanyu H. Time-dependent and lesion-dependent HMGB1-selective localization in brains of patients with cerebrovascular diseases. Histol Histopathol. 2018;33(2):215–222.
    1. Shi S, Qi Z, Ma Q, Pan R, Timmins GS, Zhao Y, Shi W, Zhang Y, Ji X, Liu KJ. Normobaric hyperoxia reduces blood occludin fragments in rats and patients with acute ischemic stroke. Stroke. 2017;48(10):2848–2854. doi: 10.1161/STROKEAHA.117.017713.
    1. Xu J, Zhang Y, Liang Z, Wang T, Li W, Ren L, Huang S, Liu W. Normobaric hyperoxia retards the evolution of ischemic brain tissue toward infarction in a rat model of transient focal cerebral ischemia. Neurol Res. 2016;38(1):75–79. doi: 10.1080/01616412.2015.1135558.
    1. Fischer U, Arnold M, Nedeltchev K, Brekenfeld C, Ballinari P, Remonda L, Schroth G, Mattle HP. NIHSS score and arteriographic findings in acute ischemic stroke. Stroke. 2005;36(10):2121–2125. doi: 10.1161/01.STR.0000182099.04994.fc.
    1. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20. doi: 10.1056/NEJMoa1411587.
    1. Campbell BC, Mitchell PJ. Endovascular therapy for ischemic stroke. N Engl J Med. 2015;372(24):2365–2366.
    1. Saver JL, Filip B, Hamilton S, Yanes A, Craig S, Cho M, Conwit R, Starkman S. Improving the reliability of stroke disability grading in clinical trials and clinical practice: the Rankin focused assessment (RFA) Stroke. 2010;41(5):992–995. doi: 10.1161/STROKEAHA.109.571364.
    1. Hong KS, Saver JL. Quantifying the value of stroke disability outcomes: WHO global burden of disease project disability weights for each level of the modified Rankin scale. Stroke. 2009;40(12):3828–3833. doi: 10.1161/STROKEAHA.109.561365.
    1. Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42(6):1781–1786. doi: 10.1161/STROKEAHA.110.596718.
    1. Ironside N, Chen CJ, Ding D, Mayer SA, Connolly EJ. Perihematomal edema after spontaneous intracerebral hemorrhage. Stroke. 2019;50(6):1626–1633. doi: 10.1161/STROKEAHA.119.024965.
    1. Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus. 2012;32(4):E8. doi: 10.3171/2012.1.FOCUS11366.
    1. Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J Stroke. 2020;22(1):29–46. doi: 10.5853/jos.2019.02236.
    1. Buletko AB, Thacker T, Cho SM, Mathew J, Thompson NR, Organek N, Frontera JA, Uchino K. Cerebral ischemia and deterioration with lower blood pressure target in intracerebral hemorrhage. Neurology. 2018;91(11):e1058–e1066. doi: 10.1212/WNL.0000000000006156.
    1. Kelestemur T, Beker MC, Caglayan AB, Caglayan B, Altunay S, Kutlu S, Kilic E. Normobaric oxygen treatment improves neuronal survival functional recovery and axonal plasticity after newborn hypoxia-ischemia. Behav Brain Res. 2020;379:112338. doi: 10.1016/j.bbr.2019.112338.
    1. Dana R. Normobaric oxygen therapy. J Ophthalmic Vis Res. 2012;7(4):273–274.
    1. Dong W, Qi Z, Liang J, Shi W, Zhao Y, Luo Y, Ji X, Liu KJ. Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model. Exp Neurol. 2015;272:181–189. doi: 10.1016/j.expneurol.2015.04.005.
    1. Yuan Z, Liu W, Liu B, Schnell A, Liu KJ. Normobaric hyperoxia delays and attenuates early nitric oxide production in focal cerebral ischemic rats. Brain Res. 2010;1352:248–254. doi: 10.1016/j.brainres.2010.07.010.
    1. Beynon C, Kiening KL, Orakcioglu B, Unterberg AW, Sakowitz OW. Brain tissue oxygen monitoring and hyperoxic treatment in patients with traumatic brain injury. J Neurotrauma. 2012;29(12):2109–2123. doi: 10.1089/neu.2012.2365.
    1. Ding J, Liu Y, Li X, Chen Z, Guan J, Jin K, Wang Z, Ding Y, Ji X, Meng R. Normobaric oxygen may ameliorate cerebral venous outflow disturbance-related neurological symptoms. Front Neurol. 2020;11:599985. doi: 10.3389/fneur.2020.599985.

Source: PubMed

3
Abonneren