Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams

Joao Gonçalves-Pereira, Pedro Póvoa, Joao Gonçalves-Pereira, Pedro Póvoa

Abstract

Introduction: Several reports have shown marked heterogeneity of antibiotic pharmacokinetics (PK) in patients admitted to ICUs, which might potentially affect outcomes. Therefore, the pharmacodynamic (PD) parameter of the efficacy of β-lactam antibiotics, that is, the time that its concentration is above the bacteria minimal inhibitory concentration (T > MIC), cannot be safely extrapolated from data derived from the PK of healthy volunteers.

Methods: We performed a full review of published studies addressing the PK of intravenous β-lactam antibiotics given to infected ICU patients. Study selection comprised a comprehensive bibliographic search of the PubMed database and bibliographic references in relevant reviews from January 1966 to December 2010. We selected only English-language articles reporting studies addressing β-lactam antibiotics that had been described in at least five previously published studies. Studies of the PK of patients undergoing renal replacement therapy were excluded.

Results: A total of 57 studies addressing six different β-lactam antibiotics (meropenem, imipenem, piperacillin, cefpirome, cefepime and ceftazidime) were selected. Significant PK heterogeneity was noted, with a broad, more than twofold variation both of volume of distribution and of drug clearance (Cl). The correlation of antibiotic Cl with creatinine clearance was usually reported. Consequently, in ICU patients, β-lactam antibiotic half-life and T > MIC were virtually unpredictable, especially in those patients with normal renal function. A better PD profile was usually obtained by prolonged or even continuous infusion. Tissue penetration was also found to be compromised in critically ill patients with septic shock.

Conclusions: The PK of β-lactam antibiotics are heterogeneous and largely unpredictable in ICU patients. Consequently, the dosing of antibiotics should be supported by PK concepts, including data derived from studies of the PK of ICU patients and therapeutic drug monitoring.

Figures

Figure 1
Figure 1
ICU patients present pharmacokinetic changes of antibiotics that may alter bacterial exposure. Concentration-time curve of antibiotics in healthy volunteers (left panel). A large volume of distribution (Vd) (middle panel) is often present in ICU patients, leading to decreased maximum concentration (Cmax) but a longer half-life (T1/2) and eventually higher time that the antibiotic concentration is above the bacteria minimum inhibitory concentration (T > MIC). The antibiotic area under the concentration time curve (AUC) remains virtually the same. An increase in drug clearance (Cl) (right) is associated with decreases in AUC, T1/2 and T > MIC. Straight dotted lines-bacteria minimum inhibitory concentration.
Figure 2
Figure 2
Flow diagram illustrating the selection of studies included in this review.
Figure 3
Figure 3
Heterogeneity of volume of distribution in litres of β-lactam antibiotics in ICU patients. Open circles: volume of distribution in healthy volunteers [44,51,89-92]; filled squares: weighted means of volume of distribution in the studies; straight lines: ranges of the means of volume of distribution in the studies.

References

    1. Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med. 2000;26(Suppl 1):S64–S74.
    1. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y. EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–2329. doi: 10.1001/jama.2009.1754.
    1. Póvoa P. Serum markers in community-acquired pneumonia and ventilator-associated pneumonia. Curr Opin Infect Dis. 2008;21:157–162. doi: 10.1097/QCO.0b013e3282f47c32.
    1. Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of β-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17:479–501. doi: 10.1016/S0891-5520(03)00065-5.
    1. Estes L. Review of pharmacokinetics and pharmacodynamics of antimicrobial agents. Mayo Clin Proc. 1998;73:1114–1122. doi: 10.4065/73.11.1114.
    1. Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet. 2005;44:1009–1034. doi: 10.2165/00003088-200544100-00002.
    1. Mehrotra R, De Gaudio R, Palazzo M. Antibiotic pharmacokinetic and pharmacodynamic considerations in critical illness. Intensive Care Med. 2004;30:2145–2156. doi: 10.1007/s00134-004-2428-9.
    1. Fuster-Lluch O, Gerónimo-Pardo M, Peyró-García R, Lizán-García M. Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care. 2008;36:674–680.
    1. Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, Lipman J. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care. 2011;15:R139. doi: 10.1186/cc10262.
    1. Verdant C, De Backer D. How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care. 2005;11:240–244. doi: 10.1097/01.ccx.0000158849.94225.11.
    1. Levitt DG. The pharmacokinetics of the interstitial space in humans. BMC Clin Pharmacol. 2003;3:3.
    1. Triginer C, Izquierdo I, Fernandez R, Rello J, Torrent J, Benito S, Net A. Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med. 1990;16:303–306. doi: 10.1007/BF01706354.
    1. Hansen M, Christrup LL, Jarløv JO, Kampmann JP, Bonde J. Gentamicin dosing in critically ill patients. Acta Anaesthesiol Scand. 2001;45:734–740. doi: 10.1034/j.1399-6576.2001.045006734.x.
    1. Roberts JA, Lipman J. Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet. 2006;45:755–773. doi: 10.2165/00003088-200645080-00001.
    1. Drusano GL. Pharmacokinetics and pharmacodynamics of antimicrobials. Clin Infect Dis. 2007;45(Suppl 1):S89–S95.
    1. Mouton JW. Impact of pharmacodynamics on breakpoint selection for susceptibility testing. Infect Dis Clin North Am. 2003;17:579–598. doi: 10.1016/S0891-5520(03)00062-X.
    1. Choi G, Gomersall CD, Tian Q, Joynt GM, Li AM, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Blood Purif. 2010;30:195–212. doi: 10.1159/000321488.
    1. Shah PM. Parenteral carbapenems. Clin Microbiol Infect. 2008;14:175–180. doi: 10.1111/j.1469-0691.2007.01868.x.
    1. de Stoppelaar F, Stolk L, van Tiel F, Beysens A, van der Geest S, de Leeuw P. Meropenem pharmacokinetics and pharmacodynamics in patients with ventilator-associated pneumonia. J Antimicrob Chemother. 2000;46:150–151. doi: 10.1093/jac/46.1.150.
    1. Jaruratanasirikul S, Sriwiriyajan S, Punyo J. Comparison of the pharmacodynamics of meropenem in patients with ventilator-associated pneumonia following administration by 3-hour infusion or bolus injection. Antimicrob Agents Chemother. 2005;49:1337–1339. doi: 10.1128/AAC.49.4.1337-1339.2005.
    1. Kitzes-Cohen R, Farin D, Piva G, De Myttenaere-Bursztein SA. Pharmacokinetics and pharmacodynamics of meropenem in critically ill patients. Int J Antimicrob Agents. 2002;19:105–110. doi: 10.1016/S0924-8579(01)00474-5.
    1. Lovering AM, Vickery CJ, Watkin DS, Leaper D, McMullin CM, White LO, Reeves DS, MacGowan AP. The pharmacokinetics of meropenem in surgical patients with moderate or severe infections. J Antimicrob Chemother. 1995;36:165–172. doi: 10.1093/jac/36.1.165.
    1. Taccone FS, Laterre PF, Dugernier T, Spapen H, Delattre I, Witebolle X, De Backer D, Layeux B, Wallemacq P, Vincent JL, Jacobs F. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care. 2010;14:R126. doi: 10.1186/cc9091.
    1. Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother. 2009;64:142–150. doi: 10.1093/jac/dkp139.
    1. Karjagin J, Lefeuvre S, Oselin K, Kipper K, Marchand S, Tikkerberi A, Starkopf J, Couet W, Sawchuk RJ. Pharmacokinetics of meropenem determined by microdialysis in the peritoneal fluid of patients with severe peritonitis associated with septic shock. Clin Pharmacol Ther. 2008;83:452–459. doi: 10.1038/sj.clpt.6100312.
    1. Rhomberg PR, Jones RN. Contemporary activity of meropenem and comparator broad-spectrum agents: MYSTIC program report from the United States component (2005) Diagn Microbiol Infect Dis. 2007;57:207–215. doi: 10.1016/j.diagmicrobio.2006.07.009.
    1. Thalhammer F, Traunmüller F, El Menyawi I, Frass M, Hollenstein UM, Locker GJ, Stoiser B, Staudinger T, Thalhammer-Scherrer R, Burgmann H. Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother. 1999;43:523–527. doi: 10.1093/jac/43.4.523.
    1. Belzberg H, Zhu J, Cornwell EE, Murray JA, Sava J, Salim A, Velmahos GC, Gill MA. Imipenem levels are not predictable in the critically ill patient. J Trauma. 2004;56:111–117. doi: 10.1097/01.TA.0000056164.26493.28.
    1. Novelli A, Adembri C, Livi P, Fallani S, Mazzei T, De Gaudio AR. Pharmacokinetic evaluation of meropenem and imipenem in critically ill patients with sepsis. Clin Pharmacokinet. 2005;44:539–549. doi: 10.2165/00003088-200544050-00007.
    1. Jaruratanasirikul S, Sudsai T. Comparison of the pharmacodynamics of imipenem in patients with ventilator-associated pneumonia following administration by 2 or 0.5 h infusion. J Antimicrob Chemother. 2009;63:560–563. doi: 10.1093/jac/dkn543.
    1. Sakka SG, Glauner AK, Bulitta JB, Kinzig-Schippers M, Pfister W, Drusano GL, Sörgel F. Population pharmacokinetics and pharmacodynamics of continuous versus short-term infusion of imipenem-cilastatin in critically ill patients in a randomized, controlled trial. Antimicrob Agents Chemother. 2007;51:3304–3310. doi: 10.1128/AAC.01318-06.
    1. Tegeder I, Schmidtko A, Bräutigam L, Kirschbaum A, Geisslinger G, Lötsch J. Tissue distribution of imipenem in critically ill patients. Clin Pharmacol Ther. 2002;71:325–333. doi: 10.1067/mcp.2002.122526.
    1. Dahyot C, Marchand S, Bodin M, Debeane B, Mimoz O, Couet W. Application of basic pharmacokinetic concepts to analysis of microdialysis data: illustration with imipenem muscle distribution. Clin Pharmacokinet. 2008;47:181–189. doi: 10.2165/00003088-200847030-00004.
    1. McKindley DS, Boucher BA, Hess MM, Croce MA, Fabian TC. Pharmacokinetics of aztreonam and imipenem in critically ill patients with pneumonia. Pharmacotherapy. 1996;16:924–931.
    1. Muller-Serieys C, Bergogne-Berezin E, Rowan C, Dombret MC. Imipenem penetration into bronchial secretions. J Antimicrob Chemother. 1987;20:618–619. doi: 10.1093/jac/20.4.618.
    1. Shikuma LR, Ackerman BH, Weaver RH, Solem LD, Strate RG, Cerra FB, Zaske DE. Effects of treatment and the metabolic response to injury on drug clearance: a prospective study with piperacillin. Crit Care Med. 1990;18:37–41.
    1. Conil JM, Georges B, Mimoz O, Dieye E, Ruiz S, Cougot P, Samii K, Houin G, Saivin S. Influence of renal function on trough serum concentrations of piperacillin in intensive care unit patients. Intensive Care Med. 2006;32:2063–2066. doi: 10.1007/s00134-006-0421-1.
    1. Bourget P, Lesne-Hulin A, Le Reveillé R, Le Bever H, Carsin H. Clinical pharmacokinetics of piperacillin-tazobactam combination in patients with major burns and signs of infection. Antimicrob Agents Chemother. 1996;40:139–145.
    1. Langgartner J, Lehn N, Glück T, Herzig H, Kees F. Comparison of the pharmacokinetics of piperacillin and sulbactam during intermittent and continuous intravenous infusion. Chemotherapy. 2007;53:370–377. doi: 10.1159/000107725.
    1. Rafati MR, Rouini MR, Mojtahedzadeh M, Najafi A, Tavakoli H, Gholami K, Fazeli MR. Clinical efficacy of continuous infusion of piperacillin compared with intermittent dosing in septic critically ill patients. Int J Antimicrob Agents. 2006;28:122–127. doi: 10.1016/j.ijantimicag.2006.02.020.
    1. Boselli E, Breilh D, Cannesson M, Xuereb F, Rimmelé T, Chassard D, Saux MC, Allaouchiche B. Steady-state plasma and intrapulmonary concentrations of piperacillin/tazobactam 4 g/0.5 g administered to critically ill patients with severe nosocomial pneumonia. Intensive Care Med. 2004;30:976–979. doi: 10.1007/s00134-004-2222-8.
    1. Jehl F, Muller-Serieys C, de Larminat V, Monteil H, Bergogne-Berezin E. Penetration of piperacillin-tazobactam into bronchial secretions after multiple doses to intensive care patients. Antimicrob Agents Chemother. 1994;38:2780–2784.
    1. Boselli E, Breilh D, Rimmelé T, Guillaume C, Xuereb F, Saux MC, Bouvet L, Chassard D, Allaouchiche B. Alveolar concentrations of piperacillin/tazobactam administered in continuous infusion to patients with ventilator-associated pneumonia. Crit Care Med. 2008;36:1500–1506. doi: 10.1097/CCM.0b013e318170ba21.
    1. Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Siostrzonek P, Eichler HG, Müller M. Impaired target site penetration of β-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med. 2001;29:385–391. doi: 10.1097/00003246-200102000-00030.
    1. Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Piperacillin penetration into tissue of critically ill patients with sepsis: bolus versus continuous administration? Crit Care Med. 2009;37:926–933. doi: 10.1097/CCM.0b013e3181968e44.
    1. Roberts JA, Kirkpatrick CM, Roberts MS, Dalley AJ, Lipman J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents. 2009;35:156–163.
    1. Jacolot A, Incagnoli P, Edouard AR, Tod M, Petitjean O, Samii K, Mimoz O. Pharmacokinetics of cefpirome during the posttraumatic systemic inflammatory response syndrome. Intensive Care Med. 1999;25:486–491. doi: 10.1007/s001340050885.
    1. Lipman J, Wallis SC, Rickard CM, Fraenkel D. Low cefpirome levels during twice daily dosing in critically ill septic patients: pharmacokinetic modelling calls for more frequent dosing. Intensive Care Med. 2001;27:363–370. doi: 10.1007/s001340000741.
    1. Lipman J, Wallis SC, Boots RJ. Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg. 2003;97:1149–1154.
    1. Roos JF, Lipman J, Kirkpatrick CM. Population pharmacokinetics and pharmacodynamics of cefpirome in critically ill patients against Gram-negative bacteria. Intensive Care Med. 2007;33:781–788. doi: 10.1007/s00134-007-0573-7.
    1. Sauermann R, Delle-Karth G, Marsik C, Steiner I, Zeitlinger M, Mayer-Helm BX, Georgopoulos A, Müller M, Joukhadar C. Pharmacokinetics and pharmacodynamics of cefpirome in subcutaneous adipose tissue of septic patients. Antimicrob Agents Chemother. 2005;49:650–655. doi: 10.1128/AAC.49.2.650-655.2005.
    1. Joukhadar C, Klein N, Mayer BX, Kreischitz N, Delle-Karth G, Palkovits P, Heinz G, Müller M. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med. 2002;30:1478–1482. doi: 10.1097/00003246-200207000-00013.
    1. Kieft H, Hoepelman AI, Knupp CA, van Dijk A, Branger JM, Struyvenberg A, Verhoef J. Pharmacokinetics of cefepime in patients with the sepsis syndrome. J Antimicrob Chemother. 1993;32(Suppl B):117–122.
    1. Conil JM, Georges B, Lavit M, Seguin T, Tack I, Samii K, Chabanon G, Houin G, Saivin S. Pharmacokinetics of ceftazidime and cefepime in burn patients: the importance of age and creatinine clearance. Int J Clin Pharmacol Ther. 2007;45:529–538.
    1. Chapuis TM, Giannoni E, Majcherczyk PA, Chioléro R, Schaller MD, Berger MM, Bolay S, Décosterd LA, Bugnon D, Moreillon P. Prospective monitoring of cefepime in intensive care unit adult patients. Crit Care. 2010;14:R51. doi: 10.1186/cc8941.
    1. Lipman J, Wallis SC, Rickard C. Low plasma cefepime levels in critically ill septic patients: pharmacokinetic modeling indicates improved troughs with revised dosing. Antimicrob Agents Chemother. 1999;43:2559–2561.
    1. Bonapace CR, White RL, Friedrich LV, Norcross ED, Bosso JA. Pharmacokinetics of cefepime in patients with thermal burn injury. Antimicrob Agents Chemother. 1999;43:2848–2854.
    1. Georges B, Conil JM, Seguin T, Dieye E, Cougot P, Decun JF, Lavit M, Samii K, Houin G, Saivin S. Cefepime in intensive care unit patients: validation of a population pharmacokinetic approach and influence of covariables. Int J Clin Pharmacol Ther. 2008;46:157–164.
    1. Nicasio AM, Ariano RE, Zelenitsky SA, Kim A, Crandon JL, Kuti JL, Nicolau DP. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically ill patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2009;53:1476–1481. doi: 10.1128/AAC.01141-08.
    1. Roos JF, Bulitta J, Lipman J, Kirkpatrick CM. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother. 2006;58:987–993. doi: 10.1093/jac/dkl349.
    1. Sampol E, Jacquet A, Viggiano M, Bernini V, Manelli JC, Lacarelle B, Durand A. Plasma, urine and skin pharmacokinetics of cefepime in burns patients. J Antimicrob Chemother. 2000;46:315–317. doi: 10.1093/jac/46.2.315.
    1. Klekner A, Bágyi K, Bognár L, Gáspár A, Andrási M, Szabó J. Effectiveness of cephalosporins in the sputum of patients with nosocomial bronchopneumonia. J Clin Microbiol. 2006;44:3418–3421. doi: 10.1128/JCM.00893-06.
    1. Boselli E, Breilh D, Duflo F, Saux MC, Debon R, Chassard D, Allaouchiche B. Steady-state plasma and intrapulmonary concentrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit Care Med. 2003;31:2102–2106. doi: 10.1097/01.CCM.0000069734.38738.C8.
    1. Rondanelli R, Dionigi RV, Regazzi MB, Maurelli M, Calvi M, Mapelli A. Ceftazidime in the treatment of Pseudomonas infections in intensive-care patients. Int J Clin Pharmacol Ther Toxicol. 1986;24:457–459.
    1. Young RJ, Lipman J, Gin T, Gomersall CD, Joynt GM, Oh TE. Intermittent bolus dosing of ceftazidime in critically ill patients. J Antimicrob Chemother. 1997;40:269–273. doi: 10.1093/jac/40.2.269.
    1. Gómez CM, Cordingly JJ, Palazzo MG. Altered pharmacokinetics of ceftazidime in critically ill patients. Antimicrob Agents Chemother. 1999;43:1798–1802.
    1. Benko AS, Cappelletty DM, Kruse JA, Rybak MJ. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections. Antimicrob Agents Chemother. 1996;40:691–695.
    1. Lipman J, Gomersall CD, Gin T, Joynt GM, Young RJ. Continuous infusion ceftazidime in intensive care: a randomized controlled trial. J Antimicrob Chemother. 1999;43:309–311. doi: 10.1093/jac/43.2.309.
    1. Boselli E, Breilh D, Rimmelé T, Poupelin JC, Saux MC, Chassard D, Allaouchiche B. Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med. 2004;30:989–991. doi: 10.1007/s00134-004-2171-2.
    1. Hanes SD, Wood GC, Herring V, Croce MA, Fabian TC, Pritchard E, Boucher BA. Intermittent and continuous ceftazidime infusion for critically ill trauma patients. Am J Surg. 2000;179:436–440. doi: 10.1016/S0002-9610(00)00388-3.
    1. Angus BJ, Smith MD, Suputtamongkol Y, Mattie H, Walsh AL, Wuthiekanun V, Chaowagul W, White NJ. Pharmacokinetic-pharmacodynamic evaluation of ceftazidime continuous infusion vs intermittent bolus injection in septicaemic melioidosis. Br J Clin Pharmacol. 2000;50:184–191. doi: 10.1111/j.1365-2125.2000.00179.x.
    1. Aubert G, Carricajo A, Coudrot M, Guyomarc'h S, Auboyer C, Zeni F. Prospective determination of serum ceftazidime concentrations in intensive care units. Ther Drug Monit. 2010;32:517–519. doi: 10.1097/FTD.0b013e3181e60ca6.
    1. Georges B, Conil JM, Seguin T, Ruiz S, Minville V, Cougot P, Decun JF, Gonzalez H, Houin G, Fourcade O, Saivin S. Population pharmacokinetics of ceftazidime in intensive care unit patients: influence of glomerular filtration rate, mechanical ventilation, and reason for admission. Antimicrob Agents Chemother. 2009;53:4483–4489. doi: 10.1128/AAC.00430-09.
    1. Buijk SL, Gyssens IC, Mouton JW, Van Vliet A, Verbrugh HA, Bruining HA. Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intra-abdominal infections. J Antimicrob Chemother. 2002;49:121–128. doi: 10.1093/jac/49.1.121.
    1. Mouton JW, Punt N, Vinks AA. A retrospective analysis using Monte Carlo simulation to evaluate recommended ceftazidime dosing regimens in healthy volunteers, patients with cystic fibrosis, and patients in the intensive care unit. Clin Ther. 2005;27:762–772. doi: 10.1016/j.clinthera.2005.06.013.
    1. Langer M, Cantoni P, Bellosta C, Boccazzi A. Penetration of ceftazidime into bronchial secretions in critically ill patients. J Antimicrob Chemother. 1991;28:925–932. doi: 10.1093/jac/28.6.925.
    1. Bressolle F, de La Coussaye JE, Ayoub R, Fabre D, Gomeni R, Saissi G, Eledjam JJ, Galtier M. Endotracheal and aerosol administrations of ceftazidime in patients with nosocomial pneumonia: pharmacokinetics and absolute bioavailability. Antimicrob Agents Chemother. 1992;36:1404–1411.
    1. Fridkin SK, Steward CD, Edwards JR, Pryor ER, McGowan JE Jr, Archibald LK, Gaynes RP, Tenover FC. Project Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Hospitals. Surveillance of antimicrobial use and antimicrobial resistance in United States hospitals: Project ICARE Phase 2. Clin Infect Dis. 1999;29:245–252. doi: 10.1086/520193.
    1. Chatellier D, Jourdain M, Mangalaboyi J, Ader F, Chopin C, Derambure P, Fourrier F. Cefepime-induced neurotoxicity: an underestimated complication of antibiotherapy in patients with acute renal failure. Intensive Care Med. 2002;28:214–217. doi: 10.1007/s00134-001-1170-9.
    1. Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, Lipman J. Therapeutic drug monitoring of β-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents. 2010;36:332–339. doi: 10.1016/j.ijantimicag.2010.06.008.
    1. Nicasio AM, Eagye KJ, Nicolau DP, Shore E, Palter M, Pepe J, Kuti JL. Pharmacodynamic-based clinical pathway for empiric antibiotic choice in patients with ventilator-associated pneumonia. J Crit Care. 2010;25:69–77. doi: 10.1016/j.jcrc.2009.02.014.
    1. McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31:345–351. doi: 10.1016/j.ijantimicag.2007.12.009.
    1. Gentry LO, Rodriguez-Gomez G. Randomized comparison of cefepime and ceftazidime for treatment of skin, surgical wound, and complicated urinary tract infections in hospitalized subjects. Antimicrob Agents Chemother. 1991;35:2371–2374.
    1. Ariano RE, Nyhlén A, Donnelly JP, Sitar DS, Harding GK, Zelenitsky SA. Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann Pharmacother. 2005;39:32–38.
    1. Mouton JW, Vinks AA, Punt NC. Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion. Antimicrob Agents Chemother. 1997;41:733–738.
    1. Nicolau DP. Pharmacodynamic optimization of β-lactams in the patient care setting. Crit Care. 2008;12:S2.
    1. Kasiakou SK, Sermaides GJ, Michalopoulos A, Soteriades ES, Falagas ME. Continuous versus intermittent intravenous administration of antibiotics: a meta-analysis of randomised controlled trials. Lancet Infect Dis. 2005;5:581–589. doi: 10.1016/S1473-3099(05)70218-8.
    1. Roberts JA, Webb S, Paterson D, Ho KM, Lipman J. A systematic review on clinical benefits of continuous administration of β-lactam antibiotics. Crit Care Med. 2009;37:2071–2078. doi: 10.1097/CCM.0b013e3181a0054d.
    1. Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of meropenem and its metabolite in young and elderly healthy men. Antimicrob Agents Chemother. 1992;36:1437–1440.
    1. Drusano GL, Standiford HC, Bustamante C, Forrest A, Rivera G, Leslie J, Tatem B, Delaportas D, MacGregor RR, Schimpff SC. Multiple-dose pharmacokinetics of imipenem-cilastatin. Antimicrob Agents Chemother. 1984;26:715–721.
    1. Paradis D, Vallée F, Allard S, Bisson C, Daviau N, Drapeau C, Auger F, LeBel M. Comparative study of pharmacokinetics and serum bactericidal activities of cefpirome, ceftazidime, ceftriaxone, imipenem, and ciprofloxacin. Antimicrob Agents Chemother. 1992;36:2085–2092.
    1. Barbhaiya RH, Forgue ST, Gleason CR, Knupp CA, Pittman KA, Weidler DJ, Movahhed H, Tenney J, Martin RR. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother. 1992;36:552–557.
    1. Dawson-Saunders B, Trapp RG. Basic & Clinical Biostatistics. 2. Chicago: Appleton & Lange; 1994.

Source: PubMed

3
Abonneren