Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System?

Marc Desforges, Alain Le Coupanec, Philippe Dubeau, Andréanne Bourgouin, Louise Lajoie, Mathieu Dubé, Pierre J Talbot, Marc Desforges, Alain Le Coupanec, Philippe Dubeau, Andréanne Bourgouin, Louise Lajoie, Mathieu Dubé, Pierre J Talbot

Abstract

Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.

Keywords: CNS infection; acute and chronic neurological diseases; encephalitis; encephalopathy; human coronavirus; human respiratory virus; neuroinvasion; respiratory viral infection.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Illustration of the principal route of infection used by HCoV-OC43 for neuroinvasion in the central nervous system (CNS). (A) Schematic representation of intranasal injection of HCoV-OC43 in susceptible mice. (B) Histological examination of decalcified whole head allows to visualize virus spread in the CNS at 3 dpi. Left top panel represents the nasal cavity and right top panel represents a higher magnification of infected olfactory receptor neurons (ORN) in the neuroepithelium. Bottom panel represents viral dissemination in several regions of the brain from the olfactory bulb to the brainstem. The inset on the right represents a zoomed image of the area delimited by the red frame in left panel. The red arrow indicates the enlarged region in the red frame. In all regions of the brain, neurons are the main target of infection. Detection of viral S glycoprotein (green) and cell nucleus (DAPI; blue). Magnification is 20× and 63× for upper panels and 4× for the bottom panel. (C) Corresponding schematic representation of intranasal infection in humans. HCoV may infect the ORN, pass through the neuroepithelium and gain access to the olfactory bulb (OB) and eventually to other regions of the brain. The blue arrows indicate the direction of viral spreading. Schematic representations were assembled using the Motifolio Neuroscience Toolkit 2007.
Figure 2
Figure 2
Model of axonal transport and neuron-to-neuron or neuron-to-non-neuronal cells propagation. (A) Murine primary mixed neuronal cultures (PMNC) grown in Xonachip microfluidic compartmentalized chambers. These devices allow fluidic isolation of axons by establishing a volume difference between cell bodies (1) and axonal end (3) compartments and the high fluidic resistance of the microchannels (2) (where the axons grow) produces a sustained flow that counteracts diffusion. The blue dotted lines are there to separate the three different parts of the microfluidic device. This situation blocks the migration of free virus through the microchannels and makes it possible to use this system in viral infection studies in neuronal cultures. PMNC were infected in the cell body portion (1) and viral S glycoprotein (yellow/green) and neuronal marker (MAP2 protein; red) detection was performed on fixed cells at 24 hpi. Data are indicative of viral antigens and/or viral particles going from cell body (1) through the axon in the microchannel (2) and then towards the axonal end portion (3). (B) Electron microscopy images of infected PMNC grown on Aclar-33C embedding film (Electron Microscopy Sciences) and infected at an MOI of 0.03 for 48 h at 37 °C. Sliced embedded samples (EPON RESIN 828; Polysciences Inc., Warrington, PA, USA) observed with a Hitachi H 7100 electron microscope show viral particles (white arrows) in both cell bodies and axons at 48 hpi. Upper panel is a complete neuron (magnification 5000×), left lower panel is a representative neuronal cell body (magnification 10,000×) and lower right panel is a representative axonal portion (magnification 20,000×). Pictures were taken with an AMTXR-111 camera (Advanced Microscopy Techniques, Woburn, MA, USA). (C) Model of HCoV-OC43 propagation (neuron-to-neuron or neuron-to-non-neuronal cells) based on our data [269] and adapted from Tomishima and Enquist [291]. In this model, solid arrows represent fully assembled virus transport and dashed arrows represent subvirion assemblies [291]. Schematic representations were assembled with the Motifolio Neuroscience Toolkit, 2007.
Figure 3
Figure 3
Non-invasive imaging of viral neuroinvasion and dissemination within the CNS in living infected mice and associated clinical scores. A recombinant HCoV-OC43 harboring a luciferase reporter gene [292] was injected intra-nasally (I.N.) into mice. Virus spread was assessed by bioluminescence imaging (BLI) with the Xenogen VIVO Vision IVIS 100 imaging system (Perkin-Elmer) in infected anaesthetized mice placed in a light proof specimen chamber after intraperitoneal injection of d-luciferin. Images were taken with a CCD camera mounted in a light-tight imaging chamber, using the acquisition software Living Image version 4.3.1 (Caliper-LifeSciences). Evaluation of associated clinical scores: (levels 0 to 4: 0 is asymptomatic; 1 is mice with early hunched back; 2 is mice presenting slight social isolation, weight loss and abnormal gait; 3 is mice presenting total social isolation, ruffled fur, hunched back, weight loss and almost no movement; and 4 is mice moribund or dead (presented elsewhere; [266]), indicate that only mice with a positive signal at both the level of the brain and spinal cord were evaluated to be at level 2 to 3.

References

    1. Bale J.F., Jr. Virus and Immune-Mediated Encephalitides: Epidemiology, Diagnosis, Treatment, and Prevention. Pediatr. Neurol. 2015;53:3–12. doi: 10.1016/j.pediatrneurol.2015.03.013.
    1. Mailles A., Stahl J.P., Bloch K.C. Update and new insights in encephalitis. Clin. Microbiol. Infect. 2017;23:607–613. doi: 10.1016/j.cmi.2017.05.002.
    1. Big C., Reineck L.A., Aronoff D.M. Viral infections of the central nervous system: A case-based review. Clin. Med. Res. 2009;7:142–146. doi: 10.3121/cmr.2009.864.
    1. Tyler K.L. Acute Viral Encephalitis. N. Engl. J. Med. 2018;379:557–566. doi: 10.1056/NEJMra1708714.
    1. Griffin D.E. Emergence and re-emergence of viral diseases of the central nervous system. Prog. Neurobiol. 2010;91:95–101. doi: 10.1016/j.pneurobio.2009.12.003.
    1. John C.C., Carabin H., Montano S.M., Bangirana P., Zunt J.R., Peterson P.K. Global research priorities for infections that affect the nervous system. Nature. 2015;527:S178–S186. doi: 10.1038/nature16033.
    1. Vareille M., Kieninger E., Edwards M.R., Regamey N. The airway epithelium: Soldier in the fight against respiratory viruses. Clin. Microbiol. Rev. 2011;24:210–229. doi: 10.1128/CMR.00014-10.
    1. Bohmwald K., Galvez N.M.S., Rios M., Kalergis A.M. Neurologic Alterations Due to Respiratory Virus Infections. Front. Cell Neurosci. 2018;12:386. doi: 10.3389/fncel.2018.00386.
    1. Cesario T.C. Viruses associated with pneumonia in adults. Clin. Infect. Dis. 2012;55:107–113. doi: 10.1093/cid/cis297.
    1. Ison M.G., Hayden F.G. Viral infections in immunocompromised patients: What’s new with respiratory viruses? Curr. Opin. Infect. Dis. 2002;15:355–367. doi: 10.1097/00001432-200208000-00002.
    1. Jartti T., Jartti L., Ruuskanen O., Soderlund-Venermo M. New respiratory viral infections. Curr. Opin. Pulm. Med. 2012;18:271–278. doi: 10.1097/MCP.0b013e328351f8d4.
    1. Sloots T.P., Whiley D.M., Lambert S.B., Nissen M.D. Emerging respiratory agents: New viruses for old diseases? J. Clin. Virol. 2008;42:233–243. doi: 10.1016/j.jcv.2008.03.002.
    1. Brouard J., Vabret A., Nimal-Cuvillon D., Bach N., Bessiere A., Arion A., Freymuth F. Epidemiology of acute upper and lower respiratory tract infections in children. Rev. Prat. 2007;57:1759–1766.
    1. Nicholls J.M., Butany J., Poon L.L., Chan K.H., Beh S.L., Poutanen S., Peiris J.S., Wong M. Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med. 2006;3:e27. doi: 10.1371/journal.pmed.0030027.
    1. Talbot H.K., Falsey A.R. The diagnosis of viral respiratory disease in older adults. Clin. Infect. Dis. 2010;50:747–751. doi: 10.1086/650486.
    1. Tregoning J.S., Schwarze J. Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology. Clin. Microbiol. Rev. 2010;23:74–98. doi: 10.1128/CMR.00032-09.
    1. Pochon C., Voigt S. Respiratory Virus Infections in Hematopoietic Cell Transplant Recipients. Front. Microbiol. 2018;9:3294. doi: 10.3389/fmicb.2018.03294.
    1. Coverstone A.M., Wang L., Sumino K. Beyond Respiratory Syncytial Virus and Rhinovirus in the Pathogenesis and Exacerbation of Asthma: The Role of Metapneumovirus, Bocavirus and Influenza Virus. Immunol. Allergy Clin. North. Am. 2019;39:391–401. doi: 10.1016/j.iac.2019.03.007.
    1. Linden D., Guo-Parke H., Coyle P.V., Fairley D., McAuley D.F., Taggart C.C., Kidney J. Respiratory viral infection: A potential “missing link” in the pathogenesis of COPD. Eur. Respir. Rev. 2019;28 doi: 10.1183/16000617.0063-2018.
    1. Nichols W.G., Peck Campbell A.J., Boeckh M. Respiratory viruses other than influenza virus: Impact and therapeutic advances. Clin. Microbiol. Rev. 2008;21:274–290. doi: 10.1128/CMR.00045-07.
    1. Kustin T., Ling G., Sharabi S., Ram D., Friedman N., Zuckerman N., Bucris E.D., Glatman-Freedman A., Stern A., Mandelboim M. A method to identify respiratory virus infections in clinical samples using next-generation sequencing. Sci. Rep. 2019;9:2606. doi: 10.1038/s41598-018-37483-w.
    1. Berry M., Gamieldien J., Fielding B.C. Identification of new respiratory viruses in the new millennium. Viruses. 2015;7:996–1019. doi: 10.3390/v7030996.
    1. Paden C.R., Yusof M., Al Hammadi Z.M., Queen K., Tao Y., Eltahir Y.M., Elsayed E.A., Marzoug B.A., Bensalah O.K.A., Khalafalla A.I., et al. Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE. Zoonoses Public Health. 2018;65:322–333. doi: 10.1111/zph.12435.
    1. Vonesch N., Binazzi A., Bonafede M., Melis P., Ruggieri A., Iavicoli S., Tomao P. Emerging zoonotic viral infections of occupational health importance. Pathog. Dis. 2019;77 doi: 10.1093/femspd/ftz018.
    1. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., Wang H., Crameri G., Hu Z., Zhang H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–679. doi: 10.1126/science.1118391.
    1. Corman V.M., Muth D., Niemeyer D., Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv. Virus. Res. 2018;100:163–188.
    1. Sayed A., Bottu A., Qaisar M., Mane M.P., Acharya Y. Nipah virus: A narrative review of viral characteristics and epidemiological determinants. Public Health. 2019;173:97–104. doi: 10.1016/j.puhe.2019.05.019.
    1. Borkenhagen L.K., Salman M.D., Ma M.J., Gray G.C. Animal Influenza Virus Infections in Humans: A Commentary. Int. J. Infect. Dis. 2019;88:113–119. doi: 10.1016/j.ijid.2019.08.002.
    1. Lyons J., McArthur J. Emerging infections of the central nervous system. Curr. Infect. Dis. Rep. 2013;15:576–582. doi: 10.1007/s11908-013-0377-6.
    1. Kalil A.C., Thomas P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care. 2019;23:258. doi: 10.1186/s13054-019-2539-x.
    1. Vabret A., Dina J., Brison E., Brouard J., Freymuth F. Human coronaviruses. Pathol. Biol. 2009;57:149–160. doi: 10.1016/j.patbio.2008.02.018.
    1. Antonucci R., Chiappe S., Porcella A., Rosatelli D., Fanos V. Bronchiolitis-associated encephalopathy in critically-ill infants: An underestimated complication? J. Matern Fetal Neonatal Med. 2010;23:431–436. doi: 10.3109/14767050903184181.
    1. Desforges M., Le Coupanec A., Brison E., Meessen-Pinard M., Talbot P.J. Neuroinvasive and neurotropic human respiratory coronaviruses: Potential neurovirulent agents in humans. Adv. Exp. Med. Biol. 2014;807:75–96.
    1. McGavern D.B., Kang S.S. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 2011;11:318–329. doi: 10.1038/nri2971.
    1. Koyuncu O.O., Hogue I.B., Enquist L.W. Virus infections in the nervous system. Cell Host Microbe. 2013;13:379–393. doi: 10.1016/j.chom.2013.03.010.
    1. Berth S.H., Leopold P.L., Morfini G.N. Virus-induced neuronal dysfunction and degeneration. Front. Biosci. 2009;14:5239–5259. doi: 10.2741/3595.
    1. Dahm T., Rudolph H., Schwerk C., Schroten H., Tenenbaum T. Neuroinvasion and Inflammation in Viral Central Nervous System Infections. Mediat. Inflamm. 2016;2016:8562805. doi: 10.1155/2016/8562805.
    1. Desforges M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., Talbot P.J. Human coronaviruses: Viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014;194:145–158. doi: 10.1016/j.virusres.2014.09.011.
    1. Schwerk C., Tenenbaum T., Kim K.S., Schroten H. The choroid plexus-a multi-role player during infectious diseases of the CNS. Front. Cell Neurosci. 2015;9:80. doi: 10.3389/fncel.2015.00080.
    1. Kim W.K., Corey S., Alvarez X., Williams K. Monocyte/macrophage traffic in HIV and SIV encephalitis. J. Leukoc. Biol. 2003;74:650–656. doi: 10.1189/jlb.0503207.
    1. Argyris E.G., Acheampong E., Wang F., Huang J., Chen K., Mukhtar M., Zhang H. The interferon-induced expression of APOBEC3G in human blood-brain barrier exerts a potent intrinsic immunity to block HIV-1 entry to central nervous system. Virology. 2007;367:440–451. doi: 10.1016/j.virol.2007.06.010.
    1. Atluri V.S., Hidalgo M., Samikkannu T., Kurapati K.R., Jayant R.D., Sagar V., Nair M.P. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: An update. Front. Cell Neurosci. 2015;9:212. doi: 10.3389/fncel.2015.00212.
    1. Wang H., Sun J., Goldstein H. Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood-brain barrier into the brain and the in vivo sensitivity of the blood-brain barrier to disruption by lipopolysaccharide. J. Virol. 2008;82:7591–7600. doi: 10.1128/JVI.00768-08.
    1. Sellner J., Simon F., Meyding-Lamade U., Leib S.L. Herpes-simplex virus encephalitis is characterized by an early MMP-9 increase and collagen type IV degradation. Brain Res. 2006;1125:155–162. doi: 10.1016/j.brainres.2006.09.093.
    1. Spindler K.R., Hsu T.H. Viral disruption of the blood-brain barrier. Trends Microbiol. 2012;20:282–290. doi: 10.1016/j.tim.2012.03.009.
    1. Bentz G.L., Jarquin-Pardo M., Chan G., Smith M.S., Sinzger C., Yurochko A.D. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J. Virol. 2006;80:11539–11555. doi: 10.1128/JVI.01016-06.
    1. Chan G., Nogalski M.T., Stevenson E.V., Yurochko A.D. Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: A strategy for viral dissemination. J. Leukoc. Biol. 2012;92:743–752. doi: 10.1189/jlb.0112040.
    1. Rhoades R.E., Tabor-Godwin J.M., Tsueng G., Feuer R. Enterovirus infections of the central nervous system. Virology. 2011;411:288–305. doi: 10.1016/j.virol.2010.12.014.
    1. Feuer R., Mena I., Pagarigan R.R., Harkins S., Hassett D.E., Whitton J.L. Coxsackievirus B3 and the neonatal CNS: The roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease. Am. J. Pathol. 2003;163:1379–1393. doi: 10.1016/S0002-9440(10)63496-7.
    1. Neal J.W. Flaviviruses are neurotropic, but how do they invade the CNS? J. Infect. 2014;69:203–215. doi: 10.1016/j.jinf.2014.05.010.
    1. Couderc T., Chretien F., Schilte C., Disson O., Brigitte M., Guivel-Benhassine F., Touret Y., Barau G., Cayet N., Schuffenecker I., et al. A mouse model for Chikungunya: Young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008;4:e29. doi: 10.1371/journal.ppat.0040029.
    1. Schneider H., Weber C.E., Schoeller J., Steinmann U., Borkowski J., Ishikawa H., Findeisen P., Adams O., Doerries R., Schwerk C., et al. Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier. Virus Res. 2012;170:66–74. doi: 10.1016/j.virusres.2012.08.019.
    1. Halfhide C.P., Flanagan B.F., Brearey S.P., Hunt J.A., Fonceca A.M., McNamara P.S., Howarth D., Edwards S., Smyth R.L. Respiratory syncytial virus binds and undergoes transcription in neutrophils from the blood and airways of infants with severe bronchiolitis. J. Infect. Dis. 2011;204:451–458. doi: 10.1093/infdis/jir280.
    1. Rohwedder A., Keminer O., Forster J., Schneider K., Schneider E., Werchau H. Detection of respiratory syncytial virus RNA in blood of neonates by polymerase chain reaction. J. Med. Virol. 1998;54:320–327. doi: 10.1002/(SICI)1096-9071(199804)54:4<320::AID-JMV13>;2-J.
    1. Mathieu C., Pohl C., Szecsi J., Trajkovic-Bodennec S., Devergnas S., Raoul H., Cosset F.L., Gerlier D., Wild T.F., Horvat B. Nipah virus uses leukocytes for efficient dissemination within a host. J. Virol. 2011;85:7863–7871. doi: 10.1128/JVI.00549-11.
    1. Escaffre O., Borisevich V., Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J. Infect. Dev. Ctries. 2013;7:308–311. doi: 10.3855/jidc.3648.
    1. Choi S.M., Xie H., Campbell A.P., Kuypers J., Leisenring W., Boudreault A.A., Englund J.A., Corey L., Boeckh M. Influenza viral RNA detection in blood as a marker to predict disease severity in hematopoietic cell transplant recipients. J. Infect. Dis. 2012;206:1872–1877. doi: 10.1093/infdis/jis610.
    1. Tse H., To K.K., Wen X., Chen H., Chan K.H., Tsoi H.W., Li I.W., Yuen K.Y. Clinical and virological factors associated with viremia in pandemic influenza A/H1N1/2009 virus infection. PLoS ONE. 2011;6:e22534. doi: 10.1371/journal.pone.0022534.
    1. Xu H., Yasui O., Tsuruoka H., Kuroda K., Hayashi K., Yamada A., Ishizaki T., Yamada Y., Watanabe T., Hosaka Y. Isolation of type B influenza virus from the blood of children. Clin. Infect. Dis. 1998;27:654–655. doi: 10.1086/517146.
    1. Imamura T., Suzuki A., Lupisan S., Kamigaki T., Okamoto M., Roy C.N., Olveda R., Oshitani H. Detection of enterovirus 68 in serum from pediatric patients with pneumonia and their clinical outcomes. Influenza Other Respir. Viruses. 2014;8:21–24. doi: 10.1111/irv.12206.
    1. Mori I. Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virol. 2015;59:338–349. doi: 10.4149/av_2015_04_338.
    1. Bryche B., Fretaud M., Saint-Albin Deliot A., Galloux M., Sedano L., Langevin C., Descamps D., Rameix-Welti M.A., Eleouet J.F., Le Goffic R., et al. Respiratory syncytial virus tropism for olfactory sensory neurons in mice. J. Neurochem. 2019:e14936. doi: 10.1111/jnc.14936.
    1. Dups J., Middleton D., Yamada M., Monaghan P., Long F., Robinson R., Marsh G.A., Wang L.F. A new model for Hendra virus encephalitis in the mouse. PLoS ONE. 2012;7:e40308. doi: 10.1371/journal.pone.0040308.
    1. Lochhead J.J., Kellohen K.L., Ronaldson P.T., Davis T.P. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci. Rep. 2019;9:2621. doi: 10.1038/s41598-019-39191-5.
    1. Lochhead J.J., Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug. Deliv. Rev. 2012;64:614–628. doi: 10.1016/j.addr.2011.11.002.
    1. Driessen A.K., Farrell M.J., Mazzone S.B., McGovern A.E. Multiple neural circuits mediating airway sensations: Recent advances in the neurobiology of the urge-to-cough. Respir. Physiol. Neurobiol. 2016;226:115–120. doi: 10.1016/j.resp.2015.09.017.
    1. Audrit K.J., Delventhal L., Aydin O., Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res. 2017;367:571–590. doi: 10.1007/s00441-016-2559-7.
    1. Park C.H., Ishinaka M., Takada A., Kida H., Kimura T., Ochiai K., Umemura T. The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice. Arch. Virol. 2002;147:1425–1436. doi: 10.1007/s00705-001-0750-x.
    1. Matsuda K., Park C.H., Sunden Y., Kimura T., Ochiai K., Kida H., Umemura T. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet. Pathol. 2004;41:101–107. doi: 10.1354/vp.41-2-101.
    1. Bookstaver P.B., Mohorn P.L., Shah A., Tesh L.D., Quidley A.M., Kothari R., Bland C.M., Weissman S. Management of Viral Central Nervous System Infections: A Primer for Clinicians. J. Cent. Nerv. Syst. Dis. 2017;9 doi: 10.1177/1179573517703342.
    1. Kennedy P.G. Viral encephalitis: Causes, differential diagnosis, and management. J. Neurol. Neurosurg. Psychiatry. 2004;75:i10–i15. doi: 10.1136/jnnp.2003.034280.
    1. Kennedy P.G. Viral encephalitis. J. Neurol. 2005;252:268–272. doi: 10.1007/s00415-005-0770-7.
    1. Costa B.K.D., Sato D.K. Viral encephalitis: A practical review on diagnostic approach and treatment. J. Pediatr. 2019 doi: 10.1016/j.jped.2019.07.006.
    1. Giraudon P., Bernard A. Inflammation in neuroviral diseases. J. Neural Transm. 2010;117:899–906. doi: 10.1007/s00702-010-0402-y.
    1. Whitley R.J., Gnann J.W. Viral encephalitis: Familiar infections and emerging pathogens. Lancet. 2002;359:507–513. doi: 10.1016/S0140-6736(02)07681-X.
    1. Koskiniemi M., Rautonen J., Lehtokoski-Lehtiniemi E., Vaheri A. Epidemiology of encephalitis in children: A 20-year survey. Ann. Neurol. 1991;29:492–497. doi: 10.1002/ana.410290508.
    1. Hankins D.G., Rosekrans J.A. Overview, prevention, and treatment of rabies. Mayo Clin. Proc. 2004;79:671–676. doi: 10.4065/79.5.671.
    1. Stahl J.P., Mailles A. Herpes simplex virus encephalitis update. Curr. Opin. Infect. Dis. 2019;32:239–243. doi: 10.1097/QCO.0000000000000554.
    1. Steiner I., Benninger F. Manifestations of Herpes Virus Infections in the Nervous System. Neurol. Clin. 2018;36:725–738. doi: 10.1016/j.ncl.2018.06.005.
    1. Kennedy P.G., Chaudhuri A. Herpes simplex encephalitis. J. Neurol. Neurosurg Psychiatry. 2002;73:237–238. doi: 10.1136/jnnp.73.3.237.
    1. Aurelian L. HSV-induced apoptosis in herpes encephalitis. Curr. Top. Microbiol. Immunol. 2005;289:79–111.
    1. Beckham J.D., Tyler K.L. Arbovirus Infections. Continuum (Minneap Minn) 2015;21:1599–1611. doi: 10.1212/CON.0000000000000240.
    1. Ronca S.E., Dineley K.T., Paessler S. Neurological Sequelae Resulting from Encephalitic Alphavirus Infection. Front. Microbiol. 2016;7:959. doi: 10.3389/fmicb.2016.00959.
    1. Yun S.I., Lee Y.M. Zika virus: An emerging flavivirus. J. Microbiol. 2017;55:204–219. doi: 10.1007/s12275-017-7063-6.
    1. Ritter J.M., Martines R.B., Zaki S.R. Zika Virus: Pathology from the Pandemic. Arch. Pathol. Lab. Med. 2017;141:49–59. doi: 10.5858/arpa.2016-0397-SA.
    1. Sips G.J., Wilschut J., Smit J.M. Neuroinvasive flavivirus infections. Rev. Med. Virol. 2012;22:69–87. doi: 10.1002/rmv.712.
    1. Mackenzie J.S., Gubler D.J., Petersen L.R. Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med. 2004;10:S98–S109. doi: 10.1038/nm1144.
    1. Mueller S., Wimmer E., Cello J. Poliovirus and poliomyelitis: A tale of guts, brains, and an accidental event. Virus Res. 2005;111:175–193. doi: 10.1016/j.virusres.2005.04.008.
    1. Mattson M.P., Haughey N.J., Nath A. Cell death in HIV dementia. Cell Death Differ. 2005;12:893–904. doi: 10.1038/sj.cdd.4401577.
    1. Pandey H.S., Seth P. Friends Turn Foe-Astrocytes Contribute to Neuronal Damage in NeuroAIDS. J. Mol. Neurosci. 2019;69:286–297. doi: 10.1007/s12031-019-01357-1.
    1. Balcom E.F., Roda W.C., Cohen E.A., Li M.Y., Power C. HIV-1 persistence in the central nervous system: Viral and host determinants during antiretroviral therapy. Curr. Opin. Virol. 2019;38:54–62. doi: 10.1016/j.coviro.2019.06.004.
    1. Nath A., Berger J. HIV Dementia. Curr. Treat. Options Neurol. 2004;6:139–151. doi: 10.1007/s11940-004-0023-6.
    1. Gordon J., Gallia G.L., Del Valle L., Amini S., Khalili K. Human polyomavirus JCV and expression of myelin genes. J. Neurovirol. 2000;6:S92–S97.
    1. Weissert R. Progressive multifocal leukoencephalopathy. J. Neuroimmunol. 2011;231:73–77. doi: 10.1016/j.jneuroim.2010.09.021.
    1. Wollebo H.S., White M.K., Gordon J., Berger J.R., Khalili K. Persistence and pathogenesis of the neurotropic polyomavirus JC. Ann. Neurol. 2015;77:560–570. doi: 10.1002/ana.24371.
    1. Kaplan J.E., Osame M., Kubota H., Igata A., Nishitani H., Maeda Y., Khabbaz R.F., Janssen R.S. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J. Acquir. Immune Defic. Syndr. 1990;3:1096–1101.
    1. Schoini P., Karampitsakos T., Avdikou M., Athanasopoulou A., Tsoukalas G., Tzouvelekis A. Measles pneumonitis. Adv. Respir. Med. 2019;87:63–67. doi: 10.5603/ARM.a2019.0010.
    1. Albarello F., Cristofaro M., Busi Rizzi E., Giancola M.L., Nicastri E., Schinina V. Pulmonary measles disease: Old and new imaging tools. Radiol. Med. 2018;123:935–943. doi: 10.1007/s11547-018-0919-y.
    1. O’Donnell L.A., Rall G.F. Blue moon neurovirology: The merits of studying rare CNS diseases of viral origin. J. Neuroimmune Pharmacol. 2010;5:443–455. doi: 10.1007/s11481-010-9200-4.
    1. Wilson M.R., Ludlow M., Duprex W.P. Human Paramyxoviruses and Infections of the Central Nervous System. In: Singh S.K., Ruzek D., editors. Neuroviral Infections. RNA Viruses and Retroviruses. CRC Press/Taylor and Francis; Boca Raton, FL, USA: 2013. pp. 341–372.
    1. Leibovitch E.C., Jacobson S. Viruses in chronic progressive neurologic disease. Mult. Scler. 2018;24:48–52. doi: 10.1177/1352458517737392.
    1. Itzhaki R.F., Dobson C.B., Wozniak M.A. Herpes simplex virus type 1 and Alzheimer’s disease. Ann. Neurol. 2004;55:299–300. doi: 10.1002/ana.10852. author reply 300-1.
    1. Ludlow M., Kortekaas J., Herden C., Hoffmann B., Tappe D., Trebst C., Griffin D.E., Brindle H.E., Solomon T., Brown A.S., et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 2016;131:159–184. doi: 10.1007/s00401-015-1511-3.
    1. Majde J.A. Neuroinflammation resulting from covert brain invasion by common viruses-a potential role in local and global neurodegeneration. Med. Hypotheses. 2010;75:204–213. doi: 10.1016/j.mehy.2010.02.023.
    1. Lebov J.F., Brown L.M., MacDonald P.D.M., Robertson K., Bowman N.M., Hooper S.R., Becker-Dreps S. Review: Evidence of Neurological Sequelae in Children With Acquired Zika Virus Infection. Pediatr. Neurol. 2018;85:16–20. doi: 10.1016/j.pediatrneurol.2018.03.001.
    1. Weatherhead J.E., Miller V.E., Garcia M.N., Hasbun R., Salazar L., Dimachkie M.M., Murray K.O. Long-term neurological outcomes in West Nile virus-infected patients: An observational study. Am. J. Trop. Med. Hyg. 2015;92:1006–1012. doi: 10.4269/ajtmh.14-0616.
    1. Athar P., Hasbun R., Nolan M.S., Salazar L., Woods S.P., Sheikh K., Murray K.O. Long-term neuromuscular outcomes of west nile virus infection: A clinical and electromyographic evaluation of patients with a history of infection. Muscle Nerve. 2018;57:77–82. doi: 10.1002/mus.25660.
    1. Edridge A.W.D., Deijs M., van Zeggeren I.E., Kinsella C.M., Jebbink M.F., Bakker M., van de Beek D., Brouwer M.C., van der Hoek L. Viral Metagenomics on Cerebrospinal Fluid. Genes. 2019;10:332. doi: 10.3390/genes10050332.
    1. Granerod J., Cunningham R., Zuckerman M., Mutton K., Davies N.W., Walsh A.L., Ward K.N., Hilton D.A., Ambrose H.E., Clewley J.P., et al. Causality in acute encephalitis: Defining aetiologies. Epidemiol. Infect. 2010;138:783–800. doi: 10.1017/S0950268810000725.
    1. Granerod J., Tam C.C., Crowcroft N.S., Davies N.W., Borchert M., Thomas S.L. Challenge of the unknown. A systematic review of acute encephalitis in non-outbreak situations. Neurology. 2010;75:924–932. doi: 10.1212/WNL.0b013e3181f11d65.
    1. Schibler M., Brito F., Zanella M.C., Zdobnov E.M., Laubscher F., L’Huillier A.G., Ambrosioni J., Wagner N., Posfay-Barbe K.M., Docquier M., et al. Viral Sequences Detection by High-Throughput Sequencing in Cerebrospinal Fluid of Individuals with and without Central Nervous System Disease. Genes. 2019;10:625. doi: 10.3390/genes10080625.
    1. King A.M.Q., Lefkowitz E.J., Mushegian A.R., Adams M.J., Dutilh B.E., Gorbalenya A.E., Harrach B., Harrison R.L., Junglen S., Knowles N.J., et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018) Arch. Virol. 2018;163:2601–2631. doi: 10.1007/s00705-018-3847-1.
    1. Nair H., Nokes D.J., Gessner B.D., Dherani M., Madhi S.A., Singleton R.J., O’Brien K.L., Roca A., Wright P.F., Bruce N., et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet. 2010;375:1545–1555. doi: 10.1016/S0140-6736(10)60206-1.
    1. Stensballe L.G., Devasundaram J.K., Simoes E.A. Respiratory syncytial virus epidemics: The ups and downs of a seasonal virus. Pediatr. Infect. Dis. J. 2003;22:S21–S32. doi: 10.1097/01.inf.0000053882.70365.c9.
    1. Nam H.H., Ison M.G. Respiratory syncytial virus infection in adults. BMJ. 2019;366 doi: 10.1136/bmj.l5021.
    1. Picone S., Mondi V., Di Palma F., Martini L., Paolillo P. Neonatal Encephalopathy and SIADH during RSV Infection. Am. J. Perinatol. 2019;36:S106–S109. doi: 10.1055/s-0039-1692132.
    1. Bohmwald K., Espinoza J.A., Gonzalez P.A., Bueno S.M., Riedel C.A., Kalergis A.M. Central nervous system alterations caused by infection with the human respiratory syncytial virus. Rev. Med. Virol. 2014;24:407–419. doi: 10.1002/rmv.1813.
    1. Morichi S., Kawashima H., Ioi H., Yamanaka G., Kashiwagi Y., Hoshika A., Nakayama T., Watanabe Y. Classification of acute encephalopathy in respiratory syncytial virus infection. J. Infect. Chemother. 2011;17:776–781. doi: 10.1007/s10156-011-0259-5.
    1. Kawashima H., Ioi H., Ushio M., Yamanaka G., Matsumoto S., Nakayama T. Cerebrospinal fluid analysis in children with seizures from respiratory syncytial virus infection. Scand. J. Infect. Dis. 2009;41:228–231. doi: 10.1080/00365540802669543.
    1. Zlateva K.T., Van Ranst M. Detection of subgroup B respiratory syncytial virus in the cerebrospinal fluid of a patient with respiratory syncytial virus pneumonia. Pediatr. Infect. Dis. J. 2004;23:1065–1066. doi: 10.1097/01.inf.0000143654.12493.c9.
    1. Millichap J.J., Wainwright M.S. Neurological complications of respiratory syncytial virus infection: Case series and review of literature. J. Child. Neurol. 2009;24:1499–1503. doi: 10.1177/0883073808331362.
    1. Ng Y.T., Cox C., Atkins J., Butler I.J. Encephalopathy associated with respiratory syncytial virus bronchiolitis. J. Child. Neurol. 2001;16:105–108. doi: 10.1177/088307380101600207.
    1. Hirayama K., Sakazaki H., Murakami S., Yonezawa S., Fujimoto K., Seto T., Tanaka K., Hattori H., Matsuoka O., Murata R. Sequential MRI, SPECT and PET in respiratory syncytial virus encephalitis. Pediatr. Radiol. 1999;29:282–286. doi: 10.1007/s002470050589.
    1. Morton R.E., Dinwiddie R., Marshall W.C., Matthew D.J. Respiratory syncytial virus infection causing neurological disorder in neonates. Lancet. 1981;1:1426–1427. doi: 10.1016/S0140-6736(81)92609-X.
    1. Cappel R., Thiry L., Clinet G. Viral antibodies in the CSF after acute CNS infections. Arch. Neurol. 1975;32:629–631. doi: 10.1001/archneur.1975.00490510085008.
    1. Wallace S.J., Zealley H. Neurological, electroencephalographic, and virological findings in febrile cheldren. Arch. Dis. Child. 1970;45:611–623. doi: 10.1136/adc.45.243.611.
    1. Espinoza J.A., Bohmwald K., Cespedes P.F., Gomez R.S., Riquelme S.A., Cortes C.M., Valenzuela J.A., Sandoval R.A., Pancetti F.C., Bueno S.M., et al. Impaired learning resulting from respiratory syncytial virus infection. Proc. Natl. Acad. Sci. USA. 2013;110:9112–9117. doi: 10.1073/pnas.1217508110.
    1. Van den Hoogen B.G., de Jong J.C., Groen J., Kuiken T., de Groot R., Fouchier R.A., Osterhaus A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001;7:719–724. doi: 10.1038/89098.
    1. Edwards K.M., Zhu Y., Griffin M.R., Weinberg G.A., Hall C.B., Szilagyi P.G., Staat M.A., Iwane M., Prill M.M., Williams J.V., et al. Burden of human metapneumovirus infection in young children. N. Engl. J. Med. 2013;368:633–643. doi: 10.1056/NEJMoa1204630.
    1. Jeannet N., van den Hoogen B.G., Schefold J.C., Suter-Riniker F., Sommerstein R. Cerebrospinal Fluid Findings in an Adult with Human Metapneumovirus-Associated Encephalitis. Emerg. Infect. Dis. 2017;23:370. doi: 10.3201/eid2302.161337.
    1. Fok A., Mateevici C., Lin B., Chandra R.V., Chong V.H. Encephalitis-Associated Human Metapneumovirus Pneumonia in Adult, Australia. Emerg. Infect. Dis. 2015;21:2074–2076. doi: 10.3201/eid2111.150608.
    1. Tan Y.L., Wee T.C. Adult human metapneumovirus encephalitis: A case report highlighting challenges in clinical management and functional outcome. Med. J. Malays. 2017;72:372–373.
    1. Schildgen O., Glatzel T., Geikowski T., Scheibner B., Matz B., Bindl L., Born M., Viazov S., Wilkesmann A., Knopfle G., et al. Human metapneumovirus RNA in encephalitis patient. Emerg. Infect. Dis. 2005;11:467–470. doi: 10.3201/eid1103.040676.
    1. Sanchez Fernandez I., Rebollo Polo M., Munoz-Almagro C., Monfort Carretero L., Fernandez Urena S., Rueda Munoz A., Colome Roura R., Perez Duenas B. Human Metapneumovirus in the Cerebrospinal Fluid of a Patient With Acute Encephalitis. Arch. Neurol. 2012;69:649–652. doi: 10.1001/archneurol.2011.1094.
    1. Dawes B.E., Freiberg A.N. Henipavirus infection of the central nervous system. Pathog Dis. 2019;77 doi: 10.1093/femspd/ftz023.
    1. Escaffre O., Borisevich V., Carmical J.R., Prusak D., Prescott J., Feldmann H., Rockx B. Henipavirus pathogenesis in human respiratory epithelial cells. J. Virol. 2013;87:3284–3294. doi: 10.1128/JVI.02576-12.
    1. Ochani R.K., Batra S., Shaikh A., Asad A. Nipah virus-the rising epidemic: A review. Infez. Med. 2019;27:117–127.
    1. Ang B.S.P., Lim T.C.C., Wang L. Nipah Virus Infection. J. Clin. Microbiol. 2018;56:e01875-17. doi: 10.1128/JCM.01875-17.
    1. Wong K.T., Robertson T., Ong B.B., Chong J.W., Yaiw K.C., Wang L.F., Ansford A.J., Tannenberg A. Human Hendra virus infection causes acute and relapsing encephalitis. Neuropathol. Appl. Neurobiol. 2009;35:296–305. doi: 10.1111/j.1365-2990.2008.00991.x.
    1. Wong K.T., Shieh W.J., Kumar S., Norain K., Abdullah W., Guarner J., Goldsmith C.S., Chua K.B., Lam S.K., Tan C.T., et al. Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 2002;161:2153–2167. doi: 10.1016/S0002-9440(10)64493-8.
    1. Sejvar J.J., Hossain J., Saha S.K., Gurley E.S., Banu S., Hamadani J.D., Faiz M.A., Siddiqui F.M., Mohammad Q.D., Mollah A.H., et al. Long-term neurological and functional outcome in Nipah virus infection. Ann. Neurol. 2007;62:235–242. doi: 10.1002/ana.21178.
    1. Ng B.Y., Lim C.C., Yeoh A., Lee W.L. Neuropsychiatric sequelae of Nipah virus encephalitis. J. Neuropsychiatry Clin. Neurosci. 2004;16:500–504. doi: 10.1176/jnp.16.4.500.
    1. Wong K.T., Tan C.T. Clinical and pathological manifestations of human henipavirus infection. Curr. Top. Microbiol. Immunol. 2012;359:95–104.
    1. Munster V.J., Prescott J.B., Bushmaker T., Long D., Rosenke R., Thomas T., Scott D., Fischer E.R., Feldmann H., de Wit E. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci. Rep. 2012;2:736. doi: 10.1038/srep00736.
    1. Liu J., Coffin K.M., Johnston S.C., Babka A.M., Bell T.M., Long S.Y., Honko A.N., Kuhn J.H., Zeng X. Nipah virus persists in the brains of nonhuman primate survivors. JCI Insight. 2019;4 doi: 10.1172/jci.insight.129629.
    1. Tan C.T., Goh K.J., Wong K.T., Sarji S.A., Chua K.B., Chew N.K., Murugasu P., Loh Y.L., Chong H.T., Tan K.S., et al. Relapsed and late-onset Nipah encephalitis. Ann. Neurol. 2002;51:703–708. doi: 10.1002/ana.10212.
    1. Kuiken T., Riteau B., Fouchier R.A., Rimmelzwaan G.F. Pathogenesis of influenza virus infections: The good, the bad and the ugly. Curr. Opin. Virol. 2012;2:276–286. doi: 10.1016/j.coviro.2012.02.013.
    1. Asha K., Kumar B. Emerging Influenza D Virus Threat: What We Know so Far! J. Clin. Med. 2019;8:192. doi: 10.3390/jcm8020192.
    1. Nicholson K.G., Wood J.M., Zambon M. Influenza. Lancet. 2003;362:1733–1745. doi: 10.1016/S0140-6736(03)14854-4.
    1. Popescu C.P., Florescu S.A., Lupulescu E., Zaharia M., Tardei G., Lazar M., Ceausu E., Ruta S.M. Neurologic Complications of Influenza B Virus Infection in Adults, Romania. Emerg. Infect. Dis. 2017;23:574–581. doi: 10.3201/eid2304.161317.
    1. Jang H., Boltz D., Sturm-Ramirez K., Shepherd K.R., Jiao Y., Webster R., Smeyne R.J. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc. Natl. Acad. Sci. USA. 2009;106:14063–14068. doi: 10.1073/pnas.0900096106.
    1. Kuiken T., Taubenberger J.K. Pathology of human influenza revisited. Vaccine. 2008;26:D59–D66. doi: 10.1016/j.vaccine.2008.07.025.
    1. Sivadon-Tardy V., Orlikowski D., Porcher R., Sharshar T., Durand M.C., Enouf V., Rozenberg F., Caudie C., Annane D., van der Werf S., et al. Guillain-Barre syndrome and influenza virus infection. Clin. Infect. Dis. 2009;48:48–56. doi: 10.1086/594124.
    1. Millichap J.G., Millichap J.J. Role of viral infections in the etiology of febrile seizures. Pediatr. Neurol. 2006;35:165–172. doi: 10.1016/j.pediatrneurol.2006.06.004.
    1. Ozkale Y., Erol I., Ozkale M., Demir S., Alehan F. Acute disseminated encephalomyelitis associated with influenza A H1N1 infection. Pediatr. Neurol. 2012;47:62–64. doi: 10.1016/j.pediatrneurol.2012.03.019.
    1. Toovey S. Influenza-associated central nervous system dysfunction: A literature review. Travel Med. Infect. Dis. 2008;6:114–124. doi: 10.1016/j.tmaid.2008.03.003.
    1. Wang G.F., Li W., Li K. Acute encephalopathy and encephalitis caused by influenza virus infection. Curr. Opin. Neurol. 2010;23:305–311. doi: 10.1097/WCO.0b013e328338f6c9.
    1. Zeng H., Quinet S., Huang W., Gan Y., Han C., He Y., Wang Y. Clinical and MRI features of neurological complications after influenza A (H1N1) infection in critically ill children. Pediatr. Radiol. 2013;43:1182–1189. doi: 10.1007/s00247-013-2682-5.
    1. Shinya K., Makino A., Hatta M., Watanabe S., Kim J.H., Hatta Y., Gao P., Ozawa M., Le Q.M., Kawaoka Y. Subclinical brain injury caused by H5N1 influenza virus infection. J. Virol. 2011;85:5202–5207. doi: 10.1128/JVI.00239-11.
    1. Hosseini S., Wilk E., Michaelsen-Preusse K., Gerhauser I., Baumgartner W., Geffers R., Schughart K., Korte M. Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. J. Neurosci. 2018;38:3060–3080. doi: 10.1523/JNEUROSCI.1740-17.2018.
    1. Beraki S., Aronsson F., Karlsson H., Ogren S.O., Kristensson K. Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice. Mol. Psychiatry. 2005;10:299–308. doi: 10.1038/sj.mp.4001545.
    1. Jurgens H.A., Amancherla K., Johnson R.W. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J. Neurosci. 2012;32:3958–3968. doi: 10.1523/JNEUROSCI.6389-11.2012.
    1. Chen Q., Liu Y., Lu A., Ni K., Xiang Z., Wen K., Tu W. Influenza virus infection exacerbates experimental autoimmune encephalomyelitis disease by promoting type I T cells infiltration into central nervous system. J. Autoimmun. 2017;77:1–10. doi: 10.1016/j.jaut.2016.10.006.
    1. Oikonen M., Laaksonen M., Aalto V., Ilonen J., Salonen R., Eralinna J.P., Panelius M., Salmi A. Temporal relationship between environmental influenza A and Epstein-Barr viral infections and high multiple sclerosis relapse occurrence. Mult. Scler. 2011;17:672–680. doi: 10.1177/1352458510394397.
    1. Edwards S., Zvartau M., Clarke H., Irving W., Blumhardt L.D. Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis. J. Neurol. Neurosurg Psychiatry. 1998;64:736–741. doi: 10.1136/jnnp.64.6.736.
    1. Andres C., Vila J., Gimferrer L., Pinana M., Esperalba J., Codina M.G., Barnes M., Martin M.C., Fuentes F., Rubio S., et al. Surveillance of enteroviruses from paediatric patients attended at a tertiary hospital in Catalonia from 2014 to 2017. J. Clin. Virol. 2019;110:29–35. doi: 10.1016/j.jcv.2018.11.004.
    1. Rao S., Messacar K., Torok M.R., Rick A.M., Holzberg J., Montano A., Bagdure D., Curtis D.J., Oberste M.S., Nix W.A., et al. Enterovirus D68 in Critically Ill Children: A Comparison With Pandemic H1N1 Influenza. Pediatr. Crit. Care Med. 2016;17:1023–1031. doi: 10.1097/PCC.0000000000000922.
    1. Lei X., Xiao X., Wang J. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction. Viruses. 2016;8:22. doi: 10.3390/v8010022.
    1. Tebruegge M., Curtis N. Enterovirus infections in neonates. Semin. Fetal Neonatal Med. 2009;14:222–227. doi: 10.1016/j.siny.2009.02.002.
    1. Hazama K., Shiihara T., Tsukagoshi H., Matsushige T., Dowa Y., Watanabe M. Rhinovirus-associated acute encephalitis/encephalopathy and cerebellitis. Brain Dev. 2019;41:551–554. doi: 10.1016/j.braindev.2019.02.014.
    1. Anastasina M., Domanska A., Palm K., Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J. Gen. Virol. 2017;98:1145–1158. doi: 10.1099/jgv.0.000780.
    1. Helfferich J., Knoester M., Van Leer-Buter C.C., Neuteboom R.F., Meiners L.C., Niesters H.G., Brouwer O.F. Acute flaccid myelitis and enterovirus D68: Lessons from the past and present. Eur. J. Pediatr. 2019;178:1305–1315. doi: 10.1007/s00431-019-03435-3.
    1. Christy A., Messacar K. Acute Flaccid Myelitis Associated With Enterovirus D68: A Review. J. Child. Neurol. 2019;34:511–516. doi: 10.1177/0883073819838376.
    1. Khan F. Enterovirus D68: Acute respiratory illness and the 2014 outbreak. Emerg. Med. Clin. N. Am. 2015;33:e19–e32. doi: 10.1016/j.emc.2014.12.011.
    1. Pons-Salort M., Parker E.P., Grassly N.C. The epidemiology of non-polio enteroviruses: Recent advances and outstanding questions. Curr. Opin. Infect. Dis. 2015;28:479–487. doi: 10.1097/QCO.0000000000000187.
    1. Brian D.A., Baric R.S. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 2005;287:1–30.
    1. Greig A.S., Mitchell D., Corner A.H., Bannister G.L., Meads E.B., Julian R.J. A Hemagglutinating Virus Producing Encephalomyelitis in Baby Pigs. Can. J. Comp. Med. Vet. Sci. 1962;26:49–56.
    1. Foley J.E., Lapointe J.M., Koblik P., Poland A., Pedersen N.C. Diagnostic features of clinical neurologic feline infectious peritonitis. J. Vet. Intern. Med. 1998;12:415–423. doi: 10.1111/j.1939-1676.1998.tb02144.x.
    1. Foley J.E., Rand C., Leutenegger C. Inflammation and changes in cytokine levels in neurological feline infectious peritonitis. J. Feline Med. Surg. 2003;5:313–322. doi: 10.1016/S1098-612X(03)00048-2.
    1. Lampert P.W., Sims J.K., Kniazeff A.J. Mechanism of demyelination in JHM virus encephalomyelitis. Electron microscopic studies. Acta Neuropathol. 1973;24:76–85. doi: 10.1007/BF00691421.
    1. Bender S.J., Weiss S.R. Pathogenesis of murine coronavirus in the central nervous system. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2010;5:336–354. doi: 10.1007/s11481-010-9202-2.
    1. Cowley T.J., Weiss S.R. Murine coronavirus neuropathogenesis: Determinants of virulence. J. Neurovirology. 2010;16:427–434. doi: 10.1007/BF03210848.
    1. Hosking M.P., Lane T.E. The pathogenesis of murine coronavirus infection of the central nervous system. Crit. Rev. Immunol. 2010;30:119–130. doi: 10.1615/CritRevImmunol.v30.i2.20.
    1. Myint S.H. Human Coronavirus Infections. In: Siddell S.G., editor. The Coronaviridae. Plenum Press; New York, NY, USA: 1995. pp. 389–401.
    1. Tyrrell D.A., Bynoe M.L. Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures. Br. Med. J. 1965;1:1467–1470. doi: 10.1136/bmj.1.5448.1467.
    1. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 1966;121:190–193. doi: 10.3181/00379727-121-30734.
    1. McIntosh K., Becker W.B., Chanock R.M. Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc. Natl. Acad. Sci. USA. 1967;58:2268–2273. doi: 10.1073/pnas.58.6.2268.
    1. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747.
    1. Fouchier R.A., Kuiken T., Schutten M., van Amerongen G., van Doornum G.J., van den Hoogen B.G., Peiris M., Lim W., Stohr K., Osterhaus A.D. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature. 2003;423:240. doi: 10.1038/423240a.
    1. Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781.
    1. Van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W., Berkhout R.J., Wolthers K.C., Wertheim-van Dillen P.M., Kaandorp J., Spaargaren J., Berkhout B. Identification of a new human coronavirus. Nat. Med. 2004;10:368–373. doi: 10.1038/nm1024.
    1. Woo P.C., Lau S.K., Chu C.M., Chan K.H., Tsoi H.W., Huang Y., Wong B.H., Poon R.W., Cai J.J., Luk W.K., et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 2005;79:884–895. doi: 10.1128/JVI.79.2.884-895.2005.
    1. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367:1814–1820. doi: 10.1056/NEJMoa1211721.
    1. Cabeca T.K., Granato C., Bellei N. Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza Other Respir. Viruses. 2013;7:1040–1047. doi: 10.1111/irv.12101.
    1. Gaunt E.R., Hardie A., Claas E.C., Simmonds P., Templeton K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010;48:2940–2947. doi: 10.1128/JCM.00636-10.
    1. Larson H.E., Reed S.E., Tyrrell D.A. Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J. Med. Virol. 1980;5:221–229. doi: 10.1002/jmv.1890050306.
    1. Chiu S.S., Chan K.H., Chu K.W., Kwan S.W., Guan Y., Poon L.L., Peiris J.S. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin. Infect. Dis. 2005;40:1721–1729. doi: 10.1086/430301.
    1. Mackay I.M., Arden K.E., Speicher D.J., O’Neil N.T., McErlean P.K., Greer R.M., Nissen M.D., Sloots T.P. Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004. Viruses. 2012;4:637–653. doi: 10.3390/v4040637.
    1. Theamboonlers A., Samransamruajkit R., Thongme C., Amonsin A., Chongsrisawat V., Poovorawan Y. Human coronavirus infection among children with acute lower respiratory tract infection in Thailand. Intervirology. 2007;50:71–77. doi: 10.1159/000097392.
    1. Oong X.Y., Ng K.T., Takebe Y., Ng L.J., Chan K.G., Chook J.B., Kamarulzaman A., Tee K.K. Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: Phylogenetic, spatiotemporal and transmission network analyses. Emerg. Microbes Infect. 2017;6:e3. doi: 10.1038/emi.2016.132.
    1. Zhang Y., Li J., Xiao Y., Zhang J., Wang Y., Chen L., Paranhos-Baccala G., Ren L., Wang J. Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination. J. Infect. 2015;70:641–650. doi: 10.1016/j.jinf.2014.12.005.
    1. Dominguez S.R., Sims G.E., Wentworth D.E., Halpin R.A., Robinson C.C., Town C.D., Holmes K.V. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination. J. Gen. Virol. 2012;93:2387–2398. doi: 10.1099/vir.0.044628-0.
    1. Gerna G., Campanini G., Rovida F., Percivalle E., Sarasini A., Marchi A., Baldanti F. Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J. Med. Virol. 2006;78:938–949. doi: 10.1002/jmv.20645.
    1. Lau S.K., Lee P., Tsang A.K., Yip C.C., Tse H., Lee R.A., So L.Y., Lau Y.L., Chan K.H., Woo P.C., et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J. Virol. 2011;85:11325–11337. doi: 10.1128/JVI.05512-11.
    1. Vabret A., Dina J., Mourez T., Gouarin S., Petitjean J., van der Werf S., Freymuth F. Inter- and intra-variant genetic heterogeneity of human coronavirus OC43 strains in France. J. Gen. Virol. 2006;87:3349–3353. doi: 10.1099/vir.0.82065-0.
    1. Vijgen L., Lemey P., Keyaerts E., Van Ranst M. Genetic variability of human respiratory coronavirus OC43. J. Virol. 2005;79:3223–3224. doi: 10.1128/JVI.79.5.3223-3225.2005. author reply 3224–3225.
    1. Woo P.C., Lau S.K., Yip C.C., Huang Y., Tsoi H.W., Chan K.H., Yuen K.Y. Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. J. Virol. 2006;80:7136–7145. doi: 10.1128/JVI.00509-06.
    1. Talbot P.J., Jacomy H., Desforges M. Pathogenesis of Human Coronaviruses other than Severe Acute Respiratory Syndrome Coronavirus. In: Perlman S., Gallagher T., Snijder E.J., editors. Nidoviruses. ASM Press; Washington, DC, USA: 2008. pp. 313–324.
    1. Greenberg S.B. Update on Human Rhinovirus and Coronavirus Infections. Semin. Respir. Crit. Care Med. 2016;37:555–571. doi: 10.1055/s-0036-1584797.
    1. Lee J., Storch G.A. Characterization of human coronavirus OC43 and human coronavirus NL63 infections among hospitalized children <5 years of age. Pediatr. Infect. Dis. J. 2014;33:814–820.
    1. Self W.H., Williams D.J., Zhu Y., Ampofo K., Pavia A.T., Chappell J.D., Hymas W.C., Stockmann C., Bramley A.M., Schneider E., et al. Respiratory Viral Detection in Children and Adults: Comparing Asymptomatic Controls and Patients With Community-Acquired Pneumonia. J. Infect. Dis. 2016;213:584–591. doi: 10.1093/infdis/jiv323.
    1. Ogimi C., Englund J.A., Bradford M.C., Qin X., Boeckh M., Waghmare A. Characteristics and Outcomes of Coronavirus Infection in Children: The Role of Viral Factors and an Immunocompromised State. J. Pediatric Infect. Dis. Soc. 2019;8:21–28. doi: 10.1093/jpids/pix093.
    1. Ogimi C., Greninger A.L., Waghmare A.A., Kuypers J.M., Shean R.C., Xie H., Leisenring W.M., Stevens-Ayers T.L., Jerome K.R., Englund J.A., et al. Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution. J. Infect. Dis. 2017;216:203–209. doi: 10.1093/infdis/jix264.
    1. Ogimi C., Waghmare A.A., Kuypers J.M., Xie H., Yeung C.C., Leisenring W.M., Seo S., Choi S.M., Jerome K.R., Englund J.A., et al. Clinical Significance of Human Coronavirus in Bronchoalveolar Lavage Samples From Hematopoietic Cell Transplant Recipients and Patients with Hematologic Malignancies. Clin. Infect. Dis. 2017;64:1532–1539. doi: 10.1093/cid/cix160.
    1. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., Luo S.W., Li P.H., Zhang L.J., Guan Y.J., et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:276–278. doi: 10.1126/science.1087139.
    1. Braden C.R., Dowell S.F., Jernigan D.B., Hughes J.M. Progress in global surveillance and response capacity 10 years after severe acute respiratory syndrome. Emerg. Infect. Dis. 2013;19:864–869. doi: 10.3201/eid1906.130192.
    1. Cherry J.D. The chronology of the 2002-2003 SARS mini pandemic. Paediatr. Respir. Rev. 2004;5:262–269. doi: 10.1016/j.prrv.2004.07.009.
    1. Cherry J.D., Krogstad P. SARS: The first pandemic of the 21st century. Pediatr. Res. 2004;56:1–5. doi: 10.1203/01.PDR.0000129184.87042.FC.
    1. Van den Brand J.M., Haagmans B.L., van Riel D., Osterhaus A.D., Kuiken T. The Pathology and Pathogenesis of Experimental Severe Acute Respiratory Syndrome and Influenza in Animal Models. J. Comp. Pathol. 2014;151:83–112. doi: 10.1016/j.jcpa.2014.01.004.
    1. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., Zou W., Zhan J., Wang S., Xie Z., et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005;202:415–424. doi: 10.1084/jem.20050828.
    1. Raj V.S., Osterhaus A.D., Fouchier R.A., Haagmans B.L. MERS: Emergence of a novel human coronavirus. Curr. Opin. Virol. 2014;5:58–62. doi: 10.1016/j.coviro.2014.01.010.
    1. Coleman C.M., Frieman M.B. Emergence of the Middle East respiratory syndrome coronavirus. PLoS Pathog. 2013;9:e1003595. doi: 10.1371/journal.ppat.1003595.
    1. de Groot R.J., Baker S.C., Baric R.S., Brown C.S., Drosten C., Enjuanes L., Fouchier R.A., Galiano M., Gorbalenya A.E., Memish Z., et al. Middle East Respiratory Syndrome Coronavirus (MERS-CoV); Announcement of the Coronavirus Study Group. J. Virol. 2013;5:13–15. doi: 10.1128/JVI.01244-13.
    1. Cotten M., Watson S.J., Kellam P., Al-Rabeeah A.A., Makhdoom H.Q., Assiri A., Al-Tawfiq J.A., Alhakeem R.F., Madani H., AlRabiah F.A., et al. Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study. Lancet. 2013;382:1993–2002. doi: 10.1016/S0140-6736(13)61887-5.
    1. Cotten M., Watson S.J., Zumla A.I., Makhdoom H.Q., Palser A.L., Ong S.H., Al Rabeeah A.A., Alhakeem R.F., Assiri A., Al-Tawfiq J.A., et al. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio. 2014:5. doi: 10.1128/mBio.01062-13.
    1. Memish Z.A., Cotten M., Watson S.J., Kellam P., Zumla A., Alhakeem R.F., Assiri A., Rabeeah A.A., Al-Tawfiq J.A. Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: A descriptive genomic study. Int. J. Infect. Dis. 2014;23:63–68. doi: 10.1016/j.ijid.2014.03.1372.
    1. Al-Tawfiq J.A., Assiri A., Memish Z.A. Middle East respiratory syndrome novel corona MERS-CoV infection. Epidemiology and outcome update. Saudi. Med. J. 2013;34:991–994.
    1. Assiri A., Al-Tawfiq J.A., Al-Rabeeah A.A., Al-Rabiah F.A., Al-Hajjar S., Al-Barrak A., Flemban H., Al-Nassir W.N., Balkhy H.H., Al-Hakeem R.F., et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. Lancet Infect. Dis. 2013;13:752–761. doi: 10.1016/S1473-3099(13)70204-4.
    1. Assiri A., McGeer A., Perl T.M., Price C.S., Al Rabeeah A.A., Cummings D.A., Alabdullatif Z.N., Assad M., Almulhim A., Makhdoom H., et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 2013;369:407–416. doi: 10.1056/NEJMoa1306742.
    1. Haagmans B.L., Osterhaus A.D. Neutralizing the MERS coronavirus threat. Sci. Transl. Med. 2014;6:235fs19. doi: 10.1126/scitranslmed.3009132.
    1. Cho S.Y., Kang J.M., Ha Y.E., Park G.E., Lee J.Y., Ko J.H., Lee J.Y., Kim J.M., Kang C.I., Jo I.J., et al. MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study. Lancet. 2016;388:994–1001. doi: 10.1016/S0140-6736(16)30623-7.
    1. Park H.Y., Lee E.J., Ryu Y.W., Kim Y., Kim H., Lee H., Yi S.J. Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015. Euro Surveill. 2015;20:1–6. doi: 10.2807/1560-7917.ES2015.20.25.21169.
    1. Hemida M.G. Middle East Respiratory Syndrome Coronavirus and the One Health concept. PeerJ. 2019;7:e7556. doi: 10.7717/peerj.7556.
    1. Al-Omari A., Rabaan A.A., Salih S., Al-Tawfiq J.A., Memish Z.A. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn. Microbiol. Infect. Dis. 2019;93:265–285. doi: 10.1016/j.diagmicrobio.2018.10.011.
    1. Mackay I.M., Arden K.E. An Opportunistic Pathogen Afforded Ample Opportunities: Middle East Respiratory Syndrome Coronavirus. Viruses. 2017;9:369. doi: 10.3390/v9120369.
    1. Hui D.S., Memish Z.A., Zumla A. Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr. Opin. Pulm. Med. 2014;20:233–241. doi: 10.1097/MCP.0000000000000046.
    1. Peiris J.S., Guan Y., Yuen K.Y. Severe acute respiratory syndrome. Nat. Med. 2004;10:S88–S97. doi: 10.1038/nm1143.
    1. Jevsnik M., Steyer A., Pokorn M., Mrvic T., Grosek S., Strle F., Lusa L., Petrovec M. The Role of Human Coronaviruses in Children Hospitalized for Acute Bronchiolitis, Acute Gastroenteritis, and Febrile Seizures: A 2-Year Prospective Study. PLoS ONE. 2016;11:e0155555. doi: 10.1371/journal.pone.0155555.
    1. Riski H., Hovi T. Coronavirus infections of man associated with diseases other than the common cold. J. Med. Virol. 1980;6:259–265. doi: 10.1002/jmv.1890060309.
    1. Gerna G., Passarani N., Battaglia M., Rondanelli E.G. Human enteric coronaviruses: Antigenic relatedness to human coronavirus OC43 and possible etiologic role in viral gastroenteritis. J. Infect. Dis. 1985;151:796–803. doi: 10.1093/infdis/151.5.796.
    1. Resta S., Luby J.P., Rosenfeld C.R., Siegel J.D. Isolation and propagation of a human enteric coronavirus. Science. 1985;229:978–981. doi: 10.1126/science.2992091.
    1. Esper F., Ou Z., Huang Y.T. Human coronaviruses are uncommon in patients with gastrointestinal illness. J. Clin. Virol. 2010;48:131–133. doi: 10.1016/j.jcv.2010.03.007.
    1. Risku M., Lappalainen S., Rasanen S., Vesikari T. Detection of human coronaviruses in children with acute gastroenteritis. J. Clin. Virol. 2010;48:27–30. doi: 10.1016/j.jcv.2010.02.013.
    1. Morfopoulou S., Brown J.R., Davies E.G., Anderson G., Virasami A., Qasim W., Chong W.K., Hubank M., Plagnol V., Desforges M., et al. Human Coronavirus OC43 Associated with Fatal Encephalitis. N. Engl. J. Med. 2016;375:497–498. doi: 10.1056/NEJMc1509458.
    1. Arbour N., Day R., Newcombe J., Talbot P.J. Neuroinvasion by human respiratory coronaviruses. J. Virol. 2000;74:8913–8921. doi: 10.1128/JVI.74.19.8913-8921.2000.
    1. Cristallo A., Gambaro F., Biamonti G., Ferrante P., Battaglia M., Cereda P.M. Human coronavirus polyadenylated RNA sequences in cerebrospinal fluid from multiple sclerosis patients. New Microbiol. 1997;20:105–114.
    1. Fazzini E., Fleming J., Fahn S. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Mov. Disord. 1992;7:153–158. doi: 10.1002/mds.870070210.
    1. Stewart J.N., Mounir S., Talbot P.J. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology. 1992;191:502–505. doi: 10.1016/0042-6822(92)90220-J.
    1. Yeh E.A., Collins A., Cohen M.E., Duffner P.K., Faden H. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics. 2004;113:e73–e76.
    1. Chilvers M.A., McKean M., Rutman A., Myint B.S., Silverman M., O’Callaghan C. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur. Respir. J. 2001;18:965–970. doi: 10.1183/09031936.01.00093001.
    1. Dijkman R., Jebbink M.F., Koekkoek S.M., Deijs M., Jonsdottir H.R., Molenkamp R., Ieven M., Goossens H., Thiel V., van der Hoek L. Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism. J. Virol. 2013;87:6081–6090. doi: 10.1128/JVI.03368-12.
    1. Desforges M., Miletti T.C., Gagnon M., Talbot P.J. Activation of human monocytes after infection by human coronavirus 229E. Virus Res. 2007;130:228–240. doi: 10.1016/j.virusres.2007.06.016.
    1. Collins A.R. In vitro detection of apoptosis in monocytes/macrophages infected with human coronavirus. Clin. Diagn Lab. Immunol. 2002;9:1392–1395. doi: 10.1128/CDLI.9.6.1392-1395.2002.
    1. Mesel-Lemoine M., Millet J., Vidalain P.O., Law H., Vabret A., Lorin V., Escriou N., Albert M.L., Nal B., Tangy F. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J. Virol. 2012;86:7577–7587. doi: 10.1128/JVI.00269-12.
    1. Wentworth D.E., Tresnan D.B., Turner B.C., Lerman I.R., Bullis B., Hemmila E.M., Levis R., Shapiro L.H., Holmes K.V. Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo. Virology. 2005;335:185–197. doi: 10.1016/j.virol.2005.02.023.
    1. Spiegel M., Weber F. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus. Virol. J. 2006;3:17. doi: 10.1186/1743-422X-3-17.
    1. Reuter J.D., Gomez D.L., Wilson J.H., Van Den Pol A.N. Systemic immune deficiency necessary for cytomegalovirus invasion of the mature brain. J. Virol. 2004;78:1473–1487. doi: 10.1128/JVI.78.3.1473-1487.2004.
    1. Lassnig C., Sanchez C.M., Egerbacher M., Walter I., Majer S., Kolbe T., Pallares P., Enjuanes L., Muller M. Development of a transgenic mouse model susceptible to human coronavirus 229E. Proc. Natl. Acad. Sci. USA. 2005;102:8275–8280. doi: 10.1073/pnas.0408589102.
    1. Mori I., Nishiyama Y., Yokochi T., Kimura Y. Olfactory transmission of neurotropic viruses. J. Neurovirology. 2005;11:129–137. doi: 10.1080/13550280590922793.
    1. Durrant D.M., Ghosh S., Klein R.S. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chem. Neurosci. 2016;7:464–469. doi: 10.1021/acschemneuro.6b00043.
    1. Jacomy H., Talbot P.J. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology. 2003;315:20–33. doi: 10.1016/S0042-6822(03)00323-4.
    1. McCray P.B., Jr., Pewe L., Wohlford-Lenane C., Hickey M., Manzel L., Shi L., Netland J., Jia H.P., Halabi C., Sigmund C.D., et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 2007;81:813–821. doi: 10.1128/JVI.02012-06.
    1. Butler N., Pewe L., Trandem K., Perlman S. Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated. Virology. 2006;347:410–421. doi: 10.1016/j.virol.2005.11.044.
    1. St-Jean J.R., Jacomy H., Desforges M., Vabret A., Freymuth F., Talbot P.J. Human respiratory coronavirus OC43: Genetic stability and neuroinvasion. J. Virol. 2004;78:8824–8834. doi: 10.1128/JVI.78.16.8824-8834.2004.
    1. Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 2008;82:7264–7275. doi: 10.1128/JVI.00737-08.
    1. Le Coupanec A., Desforges M., Meessen-Pinard M., Dube M., Day R., Seidah N.G., Talbot P.J. Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System. PLoS Pathog. 2015;11:e1005261. doi: 10.1371/journal.ppat.1005261.
    1. Jacomy H., St-Jean J.R., Brison E., Marceau G., Desforges M., Talbot P.J. Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination. J. Neurovirology. 2010;16:279–293. doi: 10.3109/13550284.2010.497806.
    1. Brison E., Jacomy H., Desforges M., Talbot P.J. Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J. Virol. 2011;85:12464–12473. doi: 10.1128/JVI.05576-11.
    1. Dube M., Le Coupanec A., Wong A.H.M., Rini J.M., Desforges M., Talbot P.J. Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. J. Virol. 2018;92 doi: 10.1128/JVI.00404-18.
    1. Xu J., Zhong S., Liu J., Li L., Li Y., Wu X., Li Z., Deng P., Zhang J., Zhong N., et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clin. Infect. Dis. 2005;41:1089–1096. doi: 10.1086/444461.
    1. Turgay C., Emine T., Ozlem K., Muhammet S.P., Haydar A.T. A rare cause of acute flaccid paralysis: Human coronaviruses. J. Pediatr. Neurosci. 2015;10:280–281. doi: 10.4103/1817-1745.165716.
    1. Lau K.K., Yu W.C., Chu C.M., Lau S.T., Sheng B., Yuen K.Y. Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis. 2004;10:342–344. doi: 10.3201/eid1002.030638.
    1. Sharma K., Tengsupakul S., Sanchez O., Phaltas R., Maertens P. Guillain-Barre syndrome with unilateral peripheral facial and bulbar palsy in a child: A case report. SAGE Open Med. Case Rep. 2019;7 doi: 10.1177/2050313X19838750.
    1. Principi N., Bosis S., Esposito S. Effects of coronavirus infections in children. Emerg. Infect. Dis. 2010;16:183–188. doi: 10.3201/eid1602.090469.
    1. Tsai L.K., Hsieh S.T., Chang Y.C. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol. Taiwan. 2005;14:113–119.
    1. Algahtani H., Subahi A., Shirah B. Neurological Complications of Middle East Respiratory Syndrome Coronavirus: A Report of Two Cases and Review of the Literature. Case Rep. Neurol. Med. 2016;2016:3502683. doi: 10.1155/2016/3502683.
    1. Arabi Y.M., Harthi A., Hussein J., Bouchama A., Johani S., Hajeer A.H., Saeed B.T., Wahbi A., Saedy A., AlDabbagh T., et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) Infection. 2015;43:495–501. doi: 10.1007/s15010-015-0720-y.
    1. Kim K.H., Tandi T.E., Choi J.W., Moon J.M., Kim M.S. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications. J. Hosp. Infect. 2017;95:207–213. doi: 10.1016/j.jhin.2016.10.008.
    1. Li Y., Li H., Fan R., Wen B., Zhang J., Cao X., Wang C., Song Z., Li S., Li X., et al. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children. Intervirology. 2016;59:163–169. doi: 10.1159/000453066.
    1. Murray R.S., Brown B., Brian D., Cabirac G.F. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann. Neurol. 1992;31:525–533. doi: 10.1002/ana.410310511.
    1. Sibley W.A., Bamford C.R., Clark K. Clinical viral infections and multiple sclerosis. Lancet. 1985;1:1313–1315. doi: 10.1016/S0140-6736(85)92801-6.
    1. Johnson-Lussenburg C.M., Zheng Q. Coronavirus and multiple sclerosis: Results of a case/control longitudinal serological study. Adv. Exp. Med. Biol. 1987;218:421–429.
    1. Fehr A.R., Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015;1282:1–23.
    1. Tseng S.S. SARS, avian flu, bioterror: Infection control awareness for the optometrist. Clin. Exp. Optom. 2007;90:31–35. doi: 10.1111/j.1444-0938.2006.00086.x.
    1. Severance E.G., Dickerson F.B., Viscidi R.P., Bossis I., Stallings C.R., Origoni A.E., Sullens A., Yolken R.H. Coronavirus immunoreactivity in individuals with a recent onset of psychotic symptoms. Schizophr. Bull. 2011;37:101–107. doi: 10.1093/schbul/sbp052.
    1. Jean A., Quach C., Yung A., Semret M. Severity and outcome associated with human coronavirus OC43 infections among children. Pediatr. Infect. Dis. J. 2013;32:325–329. doi: 10.1097/INF.0b013e3182812787.
    1. Jacomy H., Fragoso G., Almazan G., Mushynski W.E., Talbot P.J. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006;349:335–346. doi: 10.1016/j.virol.2006.01.049.
    1. Do Carmo S., Jacomy H., Talbot P.J., Rassart E. Neuroprotective effect of apolipoprotein D against human coronavirus OC43-induced encephalitis in mice. J. Neurosci. 2008;28:10330–10338. doi: 10.1523/JNEUROSCI.2644-08.2008.
    1. Brison E., Jacomy H., Desforges M., Talbot P.J. Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J. Virol. 2014;88:1548–1563. doi: 10.1128/JVI.02972-13.
    1. Kim J.E., Heo J.H., Kim H.O., Song S.H., Park S.S., Park T.H., Ahn J.Y., Kim M.K., Choi J.P. Neurological Complications during Treatment of Middle East Respiratory Syndrome. J. Clin. Neurol. 2017;13:227–233. doi: 10.3988/jcn.2017.13.3.227.
    1. Tomishima M.J., Enquist L.W. In vivo egress of an alphaherpesvirus from axons. J. Virol. 2002;76:8310–8317. doi: 10.1128/JVI.76.16.8310-8317.2002.
    1. Shen L., Yang Y., Ye F., Liu G., Desforges M., Talbot P.J., Tan W. Safe and Sensitive Antiviral Screening Platform Based on Recombinant Human Coronavirus OC43 Expressing the Luciferase Reporter Gene. Antimicrob. Agents Chemother. 2016;60:5492–5503. doi: 10.1128/AAC.00814-16.
    1. Shen L., Niu J., Wang C., Huang B., Wang W., Zhu N., Deng Y., Wang H., Ye F., Cen S., et al. High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses. J. Virol. 2019;93 doi: 10.1128/JVI.00023-19.
    1. Niu J., Shen L., Huang B., Ye F., Zhao L., Wang H., Deng Y., Tan W. Non-invasive bioluminescence imaging of HCoV-OC43 infection and therapy in the central nervous system of live mice. Antivir. Res. 2020;173:104646. doi: 10.1016/j.antiviral.2019.104646.
    1. Desforges M., Desjardins J., Zhang C., Talbot P.J. The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus. J. Virol. 2013;87:3097–3107. doi: 10.1128/JVI.02699-12.
    1. Stodola J.K., Dubois G., Le Coupanec A., Desforges M., Talbot P.J. The OC43 human coronavirus envelope protein is critical for infectious virus production and propagation in neuronal cells and is a determinant of neurovirulence and CNS pathology. Virology. 2018;515:134–149. doi: 10.1016/j.virol.2017.12.023.
    1. Arbour N., Cote G., Lachance C., Tardieu M., Cashman N.R., Talbot P.J. Acute and persistent infection of human neural cell lines by human coronavirus OC43. J. Virol. 1999;73:3338–3350.
    1. Arbour N., Ekande S., Cote G., Lachance C., Chagnon F., Tardieu M., Cashman N.R., Talbot P.J. Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. J. Virol. 1999;73:3326–3337.
    1. Vasek M.J., Garber C., Dorsey D., Durrant D.M., Bollman B., Soung A., Yu J., Perez-Torres C., Frouin A., Wilton D.K., et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538–543. doi: 10.1038/nature18283.
    1. Agner S.C., Klein R.S. Viruses have multiple paths to central nervous system pathology. Curr. Opin. Neurol. 2018;31:313–317. doi: 10.1097/WCO.0000000000000556.
    1. Kurtzke J.F. Epidemiologic evidence for multiple sclerosis as an infection. Clin. Microbiol. Rev. 1993;6:382–427. doi: 10.1128/CMR.6.4.382.
    1. Cusick M.F., Libbey J.E., Fujinami R.S. Multiple sclerosis: Autoimmunity and viruses. Curr. Opin. Rheumato. 2013;25:496–501. doi: 10.1097/BOR.0b013e328362004d.
    1. Gilden D.H. Infectious causes of multiple sclerosis. Lancet Neurol. 2005;4:195–202. doi: 10.1016/S1474-4422(05)70023-5.
    1. Kakalacheva K., Munz C., Lunemann J.D. Viral triggers of multiple sclerosis. Biochim. Biophys Acta. 2011;1812:132–140. doi: 10.1016/j.bbadis.2010.06.012.
    1. Saberi A., Akhondzadeh S., Kazemi S. Infectious agents and different course of multiple sclerosis: A systematic review. Acta Neurol. Belg. 2018;118:361–377. doi: 10.1007/s13760-018-0976-y.
    1. Smatti M.K., Cyprian F.S., Nasrallah G.K., Al Thani A.A., Almishal R.O., Yassine H.M. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11:762. doi: 10.3390/v11080762.
    1. Desforges M., Favreau D.J., Brison E., Desjardins J., Meessen-Pinard M., Jacomy H., Talbot P.J. Human Coronaviruses. Respiratory Pathogens Revisited as Infectious Neuroinvasive, Neurtropic, and Neurovirulent Agents. In: Singh S.K., Ruzek D., editors. Neuroviral Infections. RNA Viruses and Retroviruses. CRC Press/Taylor and Francis; Boca Raton, FL, USA: 2013. pp. 93–121.
    1. Boucher A., Desforges M., Duquette P., Talbot P.J. Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients. Clin. Immunol. 2007;123:258–267. doi: 10.1016/j.clim.2007.02.002.
    1. Talbot P.J., Paquette J.S., Ciurli C., Antel J.P., Ouellet F. Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Ann. Neurol. 1996;39:233–240. doi: 10.1002/ana.410390213.
    1. Amor S., Puentes F., Baker D., van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129:154–169. doi: 10.1111/j.1365-2567.2009.03225.x.
    1. Carmen J., Rothstein J.D., Kerr D.A. Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res. 2009;1263:143–154. doi: 10.1016/j.brainres.2009.01.040.
    1. Favreau D.J., Desforges M., St-Jean J.R., Talbot P.J. A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus. Virology. 2009;395:255–267. doi: 10.1016/j.virol.2009.09.026.
    1. Favreau D.J., Meessen-Pinard M., Desforges M., Talbot P.J. Human coronavirus-induced neuronal programmed cell death is cyclophilin d dependent and potentially caspase dispensable. J. Virol. 2012;86:81–93. doi: 10.1128/JVI.06062-11.
    1. Meessen-Pinard M., Le Coupanec A., Desforges M., Talbot P.J. Pivotal Role of Receptor-Interacting Protein Kinase 1 and Mixed Lineage Kinase Domain-Like in Neuronal Cell Death Induced by the Human Neuroinvasive Coronavirus OC43. J. Virol. 2017;91 doi: 10.1128/JVI.01513-16.
    1. Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H., Blagosklonny M.V., Dawson T.M., Dawson V.L., El-Deiry W.S., Fulda S., et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–120. doi: 10.1038/cdd.2011.96.
    1. Cruz J.L., Sola I., Becares M., Alberca B., Plana J., Enjuanes L., Zuniga S. Coronavirus gene 7 counteracts host defenses and modulates virus virulence. PLoS Pathog. 2011;7:e1002090. doi: 10.1371/journal.ppat.1002090.
    1. Zhao L., Birdwell L.D., Wu A., Elliott R., Rose K.M., Phillips J.M., Li Y., Grinspan J., Silverman R.H., Weiss S.R. Cell-type-specific activation of the oligoadenylate synthetase-RNase L pathway by a murine coronavirus. J. Virol. 2013;87:8408–8418. doi: 10.1128/JVI.00769-13.
    1. Zhao L., Jha B.K., Wu A., Elliott R., Ziebuhr J., Gorbalenya A.E., Silverman R.H., Weiss S.R. Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe. 2012;11:607–616. doi: 10.1016/j.chom.2012.04.011.
    1. Zhao L., Rose K.M., Elliott R., Van Rooijen N., Weiss S.R. Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus. J. Virol. 2011;85:10058–10068. doi: 10.1128/JVI.05075-11.
    1. Talbot P.J., Desforges M., Brison E., Jacomy H. Coronaviruses as Encephalitis-inducing infectious agents. In: Tkachev S., editor. Non-Flavirus Encephalitis. In-Tech; London, UK: 2011. pp. 185–202.
    1. Wilson M.R., Sample H.A., Zorn K.C., Arevalo S., Yu G., Neuhaus J., Federman S., Stryke D., Briggs B., Langelier C., et al. Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis. N. Engl. J. Med. 2019;380:2327–2340. doi: 10.1056/NEJMoa1803396.
    1. Souza L.D.C., Blawid R., Silva J.M.F., Nagata T. Human virome in nasopharynx and tracheal secretion samples. Mem. Inst. Oswaldo Cruz. 2019;114:e190198. doi: 10.1590/0074-02760190198.
    1. Koch R. The Aetiology of Tuberculosis (Translation of Die Aetiologie der Tuberculose (1882) Dover Publications; New York, NY, USA: 1942.
    1. Fredericks D.N., Relman D.A. Sequence-based identification of microbial pathogens: A reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 1996;9:18–33. doi: 10.1128/CMR.9.1.18.
    1. Hill A.B. The Environment and Disease: Association or Causation? Proc. R. Soc. Med. 1965;58:295–300. doi: 10.1177/003591576505800503.
    1. Giovannoni G., Cutter G.R., Lunemann J., Martin R., Munz C., Sriram S., Steiner I., Hammerschlag M.R., Gaydos C.A. Infectious causes of multiple sclerosis. Lancet Neurol. 2006;5:887–894. doi: 10.1016/S1474-4422(06)70577-4.

Source: PubMed

3
Abonneren