Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway

Xiangyang Cheng, Jing Hu, Ya Wang, Hongwei Ye, Xiaohong Li, Qin Gao, Zhenghong Li, Xiangyang Cheng, Jing Hu, Ya Wang, Hongwei Ye, Xiaohong Li, Qin Gao, Zhenghong Li

Abstract

Objective: The present study was designed to determine whether dexmedetomidine (DEX) exerts cardioprotection against myocardial I/R injury in diabetic hearts and the mechanisms involved.

Methods: A total of 30 diabetic rats induced by high-glucose-fat diet and streptozotocin (STZ) were randomly assigned to five groups: diabetic sham-operated group (DM-S), diabetic I/R group (DM-I/R), diabetic DEX group (DM-D), diabetic DEX + Wort group (DM-DW), and diabetic Wort group (DM-W). Another 12 age-matched male normal SD rats were randomly divided into two groups: sham-operated group (S) and I/R group (I/R). All rats were subjected to 30 min myocardial ischemia followed by 120 min reperfusion except sham groups. Plasmas were collected to measure the malondialdehyde (MDA), creatine kinase isoenzymes (CK-MB), and lactate dehydrogenase (LDH) levels and superoxide dismutase (SOD) activity at the end of reperfusion. Pathologic changes in myocardial tissues were observed by H-E staining. The total and phosphorylated form of Akt and GSK-3β protein expressions were measured by western blot. The ratio of Bcl-2/Bax at mRNA level was detected by reverse transcription-polymerase chain reaction (RT-PCR).

Results: DEX significantly reduced plasma CK-MB, MDA concentration, and LDH level and increased SOD activity caused by I/R. The phosphorylation of Akt and GSK-3β was increased, Bcl-2 mRNA and the Bcl-2/Bax ratio was increased, and Bax mRNA was decreased in the DEX group as compared to the I/R group, while posttreatment with Wort attenuated the effects induced by DEX.

Conclusion: The results of this study suggest that DEX postconditioning may increase the phosphorylation of GSK-3β by activating the PI3K/Akt signaling pathway and may inhibit apoptosis and oxidative stress of the myocardium, thus exerting protective effects in diabetic rat hearts suffering from I/R injury.

Figures

Figure 1
Figure 1
The levels of CK-MB (a), LDH (b), SOD (c), and MDA (d) in the serum of rats from each group (mean ± SD, n = 6). ∗∗P < 0.01 compared with S; #P < 0.05; ##P < 0.01 compared with DM-S; ∧P < 0.05; ∧∧P < 0.01 compared with DM-I/R; &P < 0.05 compared with DM-D; S: sham-operated group; I/R: ischemia/reperfusion group; DM-S: diabetic sham-operated group; DM-I/R: diabetic ischemia/reperfusion group; DM-D: diabetic dexmedetomidine group; DM-DW: diabetic dexmedetomidine + wortmannin group; DM-W: diabetic wortmannin group.
Figure 2
Figure 2
Expression levels of p-Akt in heart tissue (mean ± SD, n = 4) ∗∗P < 0.01 compared with S; #P < 0.05 compared with DM-S.
Figure 3
Figure 3
Expression levels of p-Akt in heart tissue (mean ± SD, n = 4) ∗∗P < 0.01 compared with DM-I/R; ##P < 0.01 compared with DM-D.
Figure 4
Figure 4
Expression levels of p-GSK-3β (Ser9) in heart tissue (mean ± SD, n = 4). ∗P < 0.05 compared with S; ##P < 0.01 compared with DM-S.
Figure 5
Figure 5
Expression levels of p-GSK-3β (Ser9) in heart tissue (mean ± SD, n = 4). ∗P < 0.05 compared with DM-I/R; #P < 0.05 compared with DM-D.
Figure 6
Figure 6
The expressions of Bcl-2 and Bax mRNA in heart tissue (mean ± SD, n = 4). ∗P < 0.05; ∗∗P < 0.01 compared with S; #P < 0.05; ##P < 0.01 compared with DM-S; ∧P < 0.05; ∧∧P < 0.01 compared with DM-I/R; &P < 0.05 compared with DM-D.
Figure 7
Figure 7
The result of hematoxylin and eosin (H-E) staining cardiomyocytes (original magnification: ×400). (a) S group, (b) I/R group, (c) DM-S group, (d) DM-I/R group, (e) DM-D group, (f) DM-DW group, and (g) DM-W group.

References

    1. Ansley D. M., Wang B. Oxidative stress and myocardial injury in the diabetic heart. The Journal of Pathology. 2013;229(2):232–241. doi: 10.1002/path.4113.
    1. Hausenloy D. J., Yellon D. M. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovascular Research. 2004;61(3):448–460. doi: 10.1016/j.cardiores.2003.09.024.
    1. Sun Y., Jiang C., Jiang J., Qiu L. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway. Clinical and Experimental Pharmacology and Physiology. 2017;44(9):946–953. doi: 10.1111/1440-1681.12791.
    1. Miki T., Itoh T., Sunaga D., Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovascular Diabetology. 2012;11(1):p. 67. doi: 10.1186/1475-2840-11-67.
    1. de Mattos Matheus A. S., Tannus L. R. M., Cobas R. A., Sousa Palma C. C., Negrato C. A., de Brito Gomes M. Impact of diabetes on cardiovascular disease: an update. International Journal of Hypertension. 2013;2013:15. doi: 10.1155/2013/653789.653789
    1. Zhao B., Gao W.-W., Liu Y.-J., et al. The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus. Neural Regeneration Research. 2017;12(10):1632–1639. doi: 10.4103/1673-5374.217337.
    1. Zhao Z. Q., Vinten-Johansen J. Postconditioning: reduction of reperfusion-induced injury. Cardiovascular Research. 2006;70(2):200–211. doi: 10.1016/j.cardiores.2006.01.024.
    1. Baranyai T., Giricz Z., Varga Z. V., et al. In vivo MRI and ex vivo histological assessment of the cardioprotection induced by ischemic preconditioning, postconditioning and remote conditioning in a closed-chest porcine model of reperfused acute myocardial infarction: importance of microvasculature. Journal of Translational Medicine. 2017;15(1):p. 67. doi: 10.1186/s12967-017-1166-z.
    1. Burley D. S., Baxter G. F. Pharmacological targets revealed by myocardial postconditioning. Current Opinion in Pharmacology. 2009;9(2):177–188. doi: 10.1016/j.coph.2008.11.009.
    1. Kim H. S., Cho J. E., Hwang K. C., Shim Y. H., Lee J. H., Kwak Y. L. Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival. European Journal of Pharmacology. 2010;628(1–3):132–139. doi: 10.1016/j.ejphar.2009.11.032.
    1. Gross E. R., Hsu A. K., Gross G. J. Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3β. Diabetes. 2007;56(1):127–136. doi: 10.2337/db06-0907.
    1. Tai W., Shi E., Yan L., Jiang X., Ma H., Ai C. Diabetes abolishes the cardioprotection induced by sevoflurane postconditioning in the rat heart in vivo: roles of glycogen synthase kinase-3β and its upstream pathways. The Journal of Surgical Research. 2012;178(1):96–104. doi: 10.1016/j.jss.2012.02.021.
    1. Ma L.-L., Zhang F.-J., Qian L.-B., et al. Hypercholesterolemia blocked sevoflurane-induced cardioprotection against ischemia-reperfusion injury by alteration of the MG53/RISK/GSK3β signaling. International Journal of Cardiology. 2013;168(4):3671–3678. doi: 10.1016/j.ijcard.2013.06.037.
    1. Cheng X.-Y., Gu X. Y., Gao Q., Zong Q. F., Li X. H., Zhang Y. Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury. Molecular Medicine Reports. 2016;14(1):797–803. doi: 10.3892/mmr.2016.5345.
    1. Yoshitomi O., Cho S., Hara T., et al. Direct protective effects of dexmedetomidine against myocardial ischemia-reperfusion injury in anesthetized pigs. Shock. 2012;38(1):92–97. doi: 10.1097/SHK.0b013e318254d3fb.
    1. Wang D., Tian Y., Feng W., et al. Pseudolaric acid B induces endometrial cancer Ishikawa cell apoptosis and inhibits metastasis through AKT-GSK-3β and ERK1/2 signaling pathways. Anti-Cancer Drugs. 2017;28(6):603–612. doi: 10.1097/CAD.0000000000000500.
    1. Hu B., Wu Y., Liu J., et al. GSK-3beta inhibitor induces expression of Nrf2/TrxR2 signaling pathway to protect against renal ischemia/reperfusion injury in diabetic rats. Kidney Blood Pressure Research. 2016;41(6):937–946. doi: 10.1159/000452598.
    1. Zhang Y., Hu T., Zhou H., Zhang Y., Jin G., Yang Y. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules. 2016;83:126–132. doi: 10.1016/j.ijbiomac.2015.11.045.
    1. Lempiäinen J., Finckenberg P., Mervaala E. E., et al. Dexmedetomidine preconditioning ameliorates kidney ischemia-reperfusion injury. Pharmacology Research Perspectives. 2014;2(3, article e00045) doi: 10.1002/prp2.45.
    1. Zhu Y.-M., Wang C.-C., Chen L., et al. Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain Research. 2013;1494:1–8. doi: 10.1016/j.brainres.2012.11.047.
    1. Rong H., Zhao Z., Feng J., et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behavior and Immunity. 2017;64:195–207. doi: 10.1016/j.bbi.2017.03.006.
    1. Chen Z., Ding T., Ma C.-G. Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice. Biochemical and Biophysical Research Communications. 2017;493(2):1143–1150. doi: 10.1016/j.bbrc.2017.08.017.
    1. Arslan M., Comu F.-M., Kip G., et al. Effect of dexmedetomidine on erythrocyte deformability during ischaemia-reperfusion injury of heart in diabetic rats. Bratislavské Lekárske Listy. 2014;115(8):494–497.
    1. Kip G., Çelik A., Bilge M., et al. Dexmedetomidine protects from post-myocardial ischaemia reperfusion lung damage in diabetic rats. The Libyan Journal of Medicine. 2015;10(1, article 27828) doi: 10.3402/ljm.v10.27828.
    1. Chen L., Cai P., Cheng Z., Zhang Z., Fang J. Pharmacological postconditioning with atorvastatin calcium attenuates myocardial ischemia/reperfusion injury in diabetic rats by phosphorylating GSK3β. Experimental and Therapeutic Medicine. 2017;14(1):25–34. doi: 10.3892/etm.2017.4457.
    1. Mokhtari B., Badalzadeh R., Alihemmati A., Mohammadi M. Phosphorylation of GSK-3β and reduction of apoptosis as targets of troxerutin effect on reperfusion injury of diabetic myocardium. European Journal of Pharmacology. 2015;765:316–321. doi: 10.1016/j.ejphar.2015.08.056.
    1. Wang T., Mao X., Li H., et al. N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radical Biology & Medicine. 2013;63:291–303. doi: 10.1016/j.freeradbiomed.2013.05.043.
    1. Aasum E., Hafstad A. D., Severson D. L., Larsen T. S. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52(2):434–441. doi: 10.2337/diabetes.52.2.434.
    1. Folli F., Corradi D., Fanti P., et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Current Diabetes Reviews. 2011;7(5):313–324. doi: 10.2174/157339911797415585.
    1. Smith H. M., Hamblin M., Hill M. F. Greater propensity of diabetic myocardium for oxidative stress after myocardial infarction is associated with the development of heart failure. Journal of Molecular and Cellular Cardiology. 2005;39(4):657–665. doi: 10.1016/j.yjmcc.2005.07.004.
    1. Patel R. S., Ghasemzadeh N., Eapen D. J., et al. Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation. 2016;133(4):361–369. doi: 10.1161/CIRCULATIONAHA.115.019790.
    1. Zhang F., Ding T., Yu L., Zhong Y., Dai H., Yan M. Dexmedetomidine protects against oxygen-glucose deprivation-induced injury through the I2 imidazoline receptor-PI3K/AKT pathway in rat C6 glioma cells. The Journal of Pharmacy and Pharmacology. 2012;64(1):120–127. doi: 10.1111/j.2042-7158.2011.01382.x.
    1. Miura T., Tanno M. Mitochondria and GSK-3β in cardioprotection against ischemia/reperfusion injury. Cardiovascular Drugs and Therapy. 2010;24(3):255–263. doi: 10.1007/s10557-010-6234-z.
    1. Wu Q.-L., Shen T., Shao L.-L., Ma H., Wang J. K. Ischemic postconditioning mediates cardioprotection via PI3K/GSK-3β/β-catenin signaling pathway in ischemic rat myocardium. Shock. 2012;38(2):165–169. doi: 10.1097/SHK.0b013e31825b5633.
    1. Brinkmann K., Kashkar H. Targeting the mitochondrial apoptotic pathway: a preferred approach in hematologic malignancies? Cell Death & Disease. 2014;5(3, article e1098) doi: 10.1038/cddis.2014.61.
    1. Wu H., Ye M., Yang J., Ding J. Endoplasmic reticulum stress-induced apoptosis: a possible role in myocardial ischemia-reperfusion injury. International Journal of Cardiology. 2016;208:65–66. doi: 10.1016/j.ijcard.2016.01.119.
    1. Frances D. E., Ronco M. T., Monti J. A., et al. Hyperglycemia induces apoptosis in rat, liver through the increase of hydroxyl radical: new insights into the insulin effect. The Journal of Endocrinology. 2010;205(2):187–200. doi: 10.1677/JOE-09-0462.
    1. Zhao H., Yenari M. A., Cheng D., Sapolsky R. M., Steinberg G. K. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. Journal of Neurochemistry. 2003;85(4):1026–1036. doi: 10.1046/j.1471-4159.2003.01756.x.
    1. Zhang W. P., Zong Q. F., Gao Q., et al. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Molecular Medicine Reports. 2016;14(4):3992–3998. doi: 10.3892/mmr.2016.5695.
    1. Li Y., Zeng M., Chen W., et al. Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats. PLoS One. 2014;9(4, article e93639) doi: 10.1371/journal.pone.0093639.
    1. Lv J., Wei Y., Chen Y., et al. Dexmedetomidine attenuates propofol-induce neuroapoptosis partly via the activation of the PI3k/Akt/GSK3β pathway in the hippocampus of neonatal rats. Environmental Toxicology and Pharmacology. 2017;52:121–128. doi: 10.1016/j.etap.2017.03.017.

Source: PubMed

3
Abonneren