Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration

Adam M Staffaroni, Yann Cobigo, Sheng-Yang M Goh, John Kornak, Lynn Bajorek, Kevin Chiang, Brian Appleby, Jessica Bove, Yvette Bordelon, Patrick Brannelly, Danielle Brushaber, Christina Caso, Giovanni Coppola, Reilly Dever, Christina Dheel, Bradford C Dickerson, Susan Dickinson, Sophia Dominguez, Kimiko Domoto-Reilly, Kelly Faber, Jessica Ferrall, Julie A Fields, Ann Fishman, Jamie Fong, Tatiana Foroud, Leah K Forsberg, Ralitza Gavrilova, Debra Gearhart, Behnaz Ghazanfari, Nupur Ghoshal, Jill Goldman, Jonathan Graff-Radford, Neill Graff-Radford, Ian Grant, Murray Grossman, Dana Haley, Hilary W Heuer, Ging-Yuek Hsiung, Edward D Huey, David J Irwin, David T Jones, Lynne Jones, Kejal Kantarci, Anna Karydas, Daniel I Kaufer, Diana R Kerwin, David S Knopman, Ruth Kraft, Joel H Kramer, Walter K Kremers, Walter A Kukull, Irene Litvan, Peter A Ljubenkov, Diane Lucente, Codrin Lungu, Ian R Mackenzie, Miranda Maldonado, Masood Manoochehri, Scott M McGinnis, Emily McKinley, Mario F Mendez, Bruce L Miller, Namita Multani, Chiadi Onyike, Jaya Padmanabhan, Alex Pantelyat, Rodney Pearlman, Len Petrucelli, Madeline Potter, Rosa Rademakers, Eliana Marisa Ramos, Katherine P Rankin, Katya Rascovsky, Erik D Roberson, Emily Rogalski, Pheth Sengdy, Leslie M Shaw, Jeremy Syrjanen, M Carmela Tartaglia, Nadine Tatton, Joanne Taylor, Arthur Toga, John Q Trojanowski, Sandra Weintraub, Ping Wang, Bonnie Wong, Zbigniew Wszolek, Adam L Boxer, Brad F Boeve, Howard J Rosen, ARTFL/LEFFTDS consortium, Adam M Staffaroni, Yann Cobigo, Sheng-Yang M Goh, John Kornak, Lynn Bajorek, Kevin Chiang, Brian Appleby, Jessica Bove, Yvette Bordelon, Patrick Brannelly, Danielle Brushaber, Christina Caso, Giovanni Coppola, Reilly Dever, Christina Dheel, Bradford C Dickerson, Susan Dickinson, Sophia Dominguez, Kimiko Domoto-Reilly, Kelly Faber, Jessica Ferrall, Julie A Fields, Ann Fishman, Jamie Fong, Tatiana Foroud, Leah K Forsberg, Ralitza Gavrilova, Debra Gearhart, Behnaz Ghazanfari, Nupur Ghoshal, Jill Goldman, Jonathan Graff-Radford, Neill Graff-Radford, Ian Grant, Murray Grossman, Dana Haley, Hilary W Heuer, Ging-Yuek Hsiung, Edward D Huey, David J Irwin, David T Jones, Lynne Jones, Kejal Kantarci, Anna Karydas, Daniel I Kaufer, Diana R Kerwin, David S Knopman, Ruth Kraft, Joel H Kramer, Walter K Kremers, Walter A Kukull, Irene Litvan, Peter A Ljubenkov, Diane Lucente, Codrin Lungu, Ian R Mackenzie, Miranda Maldonado, Masood Manoochehri, Scott M McGinnis, Emily McKinley, Mario F Mendez, Bruce L Miller, Namita Multani, Chiadi Onyike, Jaya Padmanabhan, Alex Pantelyat, Rodney Pearlman, Len Petrucelli, Madeline Potter, Rosa Rademakers, Eliana Marisa Ramos, Katherine P Rankin, Katya Rascovsky, Erik D Roberson, Emily Rogalski, Pheth Sengdy, Leslie M Shaw, Jeremy Syrjanen, M Carmela Tartaglia, Nadine Tatton, Joanne Taylor, Arthur Toga, John Q Trojanowski, Sandra Weintraub, Ping Wang, Bonnie Wong, Zbigniew Wszolek, Adam L Boxer, Brad F Boeve, Howard J Rosen, ARTFL/LEFFTDS consortium

Abstract

Introduction: Some models of therapy for neurodegenerative diseases envision starting treatment before symptoms develop. Demonstrating that such treatments are effective requires accurate knowledge of when symptoms would have started without treatment. Familial frontotemporal lobar degeneration offers a unique opportunity to develop predictors of symptom onset.

Methods: We created dementia risk scores in 268 familial frontotemporal lobar degeneration family members by entering covariate-adjusted standardized estimates of brain atrophy into a logistic regression to classify asymptomatic versus demented participants. The score's predictive value was tested in a separate group who were followed up longitudinally (stable vs. converted to dementia) using Cox proportional regressions with dementia risk score as the predictor.

Results: Cross-validated logistic regression achieved good separation of asymptomatic versus demented (accuracy = 90%, SE = 0.06). Atrophy scores predicted conversion from asymptomatic or mildly/questionably symptomatic to dementia (HR = 1.51, 95% CI: [1.16,1.98]).

Discussion: Individualized quantification of baseline brain atrophy is a promising predictor of progression in asymptomatic familial frontotemporal lobar degeneration mutation carriers.

Keywords: Frontotemporal dementia; Genetics; Magnetic resonance imaging (MRI); TDP-43; Tau.

© 2019 The Authors. Alzheimer's & Dementia published by Wiley Periodicals, Inc. on behalf of Alzheimer's Association.

Figures

Fig. 1.
Fig. 1.
Steps to create W-score maps, W-volume masks, and W-burden masks. A linear regression was performed on a healthy control group (1A and 1B). A raw W-score map was then created for each subject (1C). Finally, each patient’s W-map was thresholded to produce the W-burden and W-volume masks (1D).
Fig. 2.
Fig. 2.
Individual W-maps for familial FTLD mutation carriers with CDR® plus NACC FTLD = 1. Axial slices displaying W-scores for 6 f-FTLD mutation carriers with (A) MAPT, (B) GRN, and (C) C9orf72 mutations. Abbreviations: FTLD, Frontotemporal lobar degeneration; CDR, Clinical Dementia Rating Scale; NACC, National Alzheimer’s Coordinating Center.
Fig. 3.
Fig. 3.
Distribution of weights in each ROI resulting from the optimization of the logistic regression model. This figure displays the fitted weights (coefficients) associated with each ROI in the logistic regression model. These weights were subsequently used to calculate prediction scores for the survival analysis. Abbreviation: ROI, Region of interest.
Fig. 4.
Fig. 4.
Prediction scores derived from the logistic regression model. Abbreviations: FTLD, frontotemporal lobar degeneration; CDR, Clinical Dementia Rating Scale.
Fig. 5.
Fig. 5.
Kaplan-Meier curve representing survival from CDR® plus NACC FTLD = (0 or 0.5) to 1+. Note: Hash marks indicate censored observations. Abbreviations: FTLD, Frontotemporal lobar degeneration; CDR, Clinical Dementia Rating Scale; NACC, National Alzheimer’s Coordinating Center.

References

    1. Reiman EM. Alzheimer disease in 2016: Putting AD treatments and biomarkers to the test. Nat Rev Neurol 2017;13:74–6.
    1. Tsai RM, Boxer AL. Therapy and clinical trials in frontotemporal dementia: past, present, and future. J Neurochem 2016;138:211–21.
    1. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s Disease. N Engl J Med 2012;367:795–804.
    1. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 2010;9:119–28.
    1. Das P, Verbeeck C, Minter L, Chakrabarty P, Felsenstein K, Kukar T, et al. Transient pharmacologic lowering of Aβ production prior to deposition results in sustained reduction of amyloid plaque pathology. Mol Neurodegener 2012;7:39.
    1. McDade E, Bateman RJ. Stop Alzheimer’s before it starts. Nature 2017;547:153–5.
    1. Aguirre-Acevedo DC, Lopera F, Henao E, Tirado V, Muñoz C, Giraldo M, et al. Cognitive decline in a Colombian kindred with autosomal dominant Alzheimer disease. JAMA Neurol 2016;73:431–8.
    1. Carrillo MC, Brashear HR, Logovinsky V, Ryan JM, Feldman HH, Siemers ER, et al. Can we prevent Alzheimer’s disease? Secondary “prevention” trials in Alzheimer’s disease. Alzheimer’s Dement 2013;9:123–131.e1.
    1. Coyle-Gilchrist ITS, Dick KM, Patterson K, Vázquez Rodríquez P, Wehmann E, Wilcox A, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016; 86:1736–43.
    1. Roberson ED, Hesse JH, Rose KD, Slama H, Johnson JK, Yaffe K, et al. Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology 2005;65:719–25.
    1. Woollacott IOC, Rohrer JD. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. J Neurochem 2016;138:6–31.
    1. Leverenz JB, Yu CE, Montine TJ, Steinbart E, Bekris LM, Zabetian C, et al. A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain 2007;130:1360–74.
    1. Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC, et al. Symptom onset in autosomal dominant Alzheimer disease: A systematic review and meta-analysis. Neurology 2014;83:253–60.
    1. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, International Huntington’s Disease Collaborative Group. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 2004;65:267–77.
    1. Papma JM, Jiskoot LC, Panman JL, Dopper EG, den Heijer T, Donker Kaat L, et al. Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion. Neurology 2017; 89:1256–64.
    1. Rohrer JD, Nicholas JM, Cash DM, van Swieten J, Dopper E, Jiskoot L, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 2015;14:253–62.
    1. Yokoyama JS, Sirkis DW, Miller BL. C9ORF72 hexanucleotide repeats in behavioral and motor neuron disease: clinical heterogeneity and pathological diversity. Am J Neurodegener Dis 2014;3:1–18.
    1. Rohrer JD, Rosen HJ. Neuroimaging in frontotemporal dementia. Int Rev Psychiatry 2013;25:221–9.
    1. Whitwell JL, Boeve BF, Weigand SD, Senjem ML, Gunter JL, Baker MC, et al. Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images. Eur J Neurol 2015;22:745–52.
    1. Morris JC, Aisen PS, Bateman RJ, Benzinger TL, Cairns NJ, Fagan AM, et al. Developing an international network for Alzheimer’s research: the Dominantly Inherited Alzheimer Network. Clin Investig (Lond) 2012;2:975–84.
    1. Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, et al. The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 2011;95:629–35.
    1. Weintraub S, Besser L, Dodge HH, Teylan M, Ferris S, Goldstein FC, et al. Version 3 of the Alzheimer disease centers’ neuropsychological test battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord 2017;32:10–7.
    1. Knopman DS, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, Mendez MF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 2008; 131:2957–68.
    1. Gefen T, Ahmadian SS, Mao Q, Kim G, Seckin M, Bonakdarpour B, et al. Combined Pathologies in FTLD-TDP Types A and C. J Neuropathol Exp Neurol 2018;77:405–12.
    1. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:87–97.
    1. Ashburner J A fast diffeomorphic image registration algorithm. Neuroimage 2007;38:95–113.
    1. Ashburner J, Ridgway GR. Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci 2012;6:197.
    1. Jack CR, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 1997;49:786–94.
    1. La Joie R, Bejanin A, Fagan AM, Ayakta N, Baker SL, Bourakova V, et al. Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample. Neurology 2018;90:e282–90.
    1. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–80.
    1. Liu J, Chen J, Ye J. Large-scale sparse logistic regression. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’09 New York, New York, USA: ACM Press; 2009. p. 547.
    1. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011;12:2825–30.
    1. Defazio A, Bach F, Lacoste-Julien S. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. CoRR 2014.
    1. Fushiki T. Estimation of prediction error by using K-fold cross-validation. Stat Comput 2011;21:137–46.
    1. Liu X. Survival Analysis: Models and Applications 2012. West Sussex, United Kingdom: John Wiley & Sons Ltd; 2012.
    1. McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ, Holland D, Karow DS, et al. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 2009;251:195–205.
    1. McEvoy LK, Holland D, Hagler DJ, Fennema-Notestine C, Brewer JB, Dale AM, et al. Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis. Radiology 2011;259:834–43.
    1. Feis RA, Bouts MJRJ, Panman JL, Jiskoot LC, Dopper EGP, Schouten TM, et al. Single-subject classification of presymptomatic frontotemporal dementia mutation carriers using multimodal MRI. Neuroimage Clin 2018;20:188–96.
    1. Ossenkoppele R, Cohn-Sheehy BI, La Joie R, Vogel JW, Möller C, Lehmann M, et al. Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer’s disease. Hum Brain Mapp 2015; 36:4421–37.

Source: PubMed

3
Abonneren