Metabolic Impacts of Confinement during the COVID-19 Pandemic Due to Modified Diet and Physical Activity Habits

María Martinez-Ferran, Fernando de la Guía-Galipienso, Fabián Sanchis-Gomar, Helios Pareja-Galeano, María Martinez-Ferran, Fernando de la Guía-Galipienso, Fabián Sanchis-Gomar, Helios Pareja-Galeano

Abstract

While the detrimental effects of a chronic positive energy balance due to a sedentary lifestyle have been well established, the impacts of a short period of abruptly reduced physical activity and overeating arising from strict confinement due to the COVID-19 pandemic will soon start to emerge. To reasonably anticipate major consequences according to the available evidence, we hereby review the literature for studies that have explored the health impacts of several weeks of a reduction in physical activity and daily step-count combined with modified eating habits. These studies identify as main metabolic consequences increases in insulin resistance, total body fat, abdominal fat and inflammatory cytokines. All these factors have been strongly associated with the development of metabolic syndrome, which in turn increases the risk of multiple chronic diseases. A plausible mechanism involved in these impacts could be a positive energy balance promoted by maintaining usual dietary intake while reducing energy expenditure. This means that just as calorie intake restriction could help mitigate the deleterious impacts of a bout of physical inactivity, overeating under conditions of home confinement is very likely to exacerbate these consequences. Moreover, hypertension, diabetes, and cardiovascular disease have been identified as potential risk factors for more severely ill patients with COVID-19. Thus, adequate control of metabolic disorders could be important to reduce the risk of severe COVID-19.

Keywords: COVID-19; acute sedentary lifestyle; insulin resistance; metabolic consequences; metabolic syndrome; positive energy balance; sarcopenia; step reduction.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Consequences of overfeeding and reduced physical activity.
Figure 2
Figure 2
Consequences of a short-term reduction in physical activity.

References

    1. Guthold R., Stevens G.A., Riley L.M., Bull F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Health. 2018;6:e1077–e1086. doi: 10.1016/S2214-109X(18)30357-7.
    1. Booth F.W., Roberts C.K., Laye M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012;2:1143–1211.
    1. Sanchis-Gomar F., Lucia A., Yvert T., Ruiz-Casado A., Pareja-Galeano H., Santos-Lozano A., Fiuza-Luces C., Garatachea N., Lippi G., Bouchard C., et al. Physical inactivity and low fitness deserve more attention to alter cancer risk and prognosis. Cancer Prev. Res. 2015;8:105–110. doi: 10.1158/1940-6207.CAPR-14-0320.
    1. Biswas A., Oh P.I., Faulkner G.E., Bajaj R.R., Silver M.A., Mitchell M.S., Alter D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults a systematic review and meta-analysis. Ann. Intern. Med. 2015;162:123–132. doi: 10.7326/M14-1651.
    1. Pareja-Galeano H., Sanchis-Gomar F., Santos-Lozano A., Fiuza-Luces C., Garatachea N., Ruiz-Casado A., Lucia A. Regular physical activity: A little is good, but is it good enough? Am. J. Clin. Nutr. 2015;101:1099–1101. doi: 10.3945/ajcn.115.108498.
    1. Pareja-Galeano H., Sanchis-Gomar F., García-Giménez J.L. Physical exercise and epigenetic modulation: Elucidating intricate mechanisms. Sports Med. 2014;44:429–436. doi: 10.1007/s40279-013-0138-6.
    1. Valenzuela P.L., Morales J.S., Pareja-Galeano H., Izquierdo M., Emanuele E., de la Villa P., Lucia A. Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res. Rev. 2018;47:80–88. doi: 10.1016/j.arr.2018.07.003.
    1. Martinez-Gomez D., Lavie C.J., Hamer M., Cabanas-Sanchez V., Garcia-Esquinas E., Pareja-Galeano H., Struijk E., Sadarangani K.P., Ortega F.B., Rodríguez-Artalejo F. Physical activity without weight loss reduces the development of cardiovascular disease risk factors—A prospective cohort study of more than one hundred thousand adults. Prog. Cardiovasc. Dis. 2019;62:522–530. doi: 10.1016/j.pcad.2019.11.010.
    1. Romagnoli M., Alis R., Aloe R., Salvagno G.L., Basterra J., Pareja-Galeano H., Sanchis-Gomar F., Lippi G. Influence of training and a maximal exercise test in analytical variability of muscular, hepatic, and cardiovascular biochemical variables. Scand. J. Clin. Lab. Investig. 2014;74:192–198. doi: 10.3109/00365513.2013.873948.
    1. Garatachea N., Pareja-Galeano H., Sanchis-Gomar F., Santos-Lozano A., Fiuza-Luces C., Morán M., Emanuele E., Joyner M.J., Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015;18:57–89. doi: 10.1089/rej.2014.1623.
    1. Inglés M., Serra-Añó P., Gambini J., Abu-Sharif F., Dromant M., Garcia-Valles R., Pareja-Galeano H., Garcia-Lucerga C., Gomez-Cabrera M.C. Active paraplegics are protected against exercise-induced oxidative damage through the induction of antioxidant enzymes. Spinal Cord. 2016;54:830–837. doi: 10.1038/sc.2016.5.
    1. Pareja-Galeano H., Brioche T., Sanchis-Gomar F., Montal A., Jovaní C., Martínez-Costa C., Gomez-Cabrera M.C., Viña J. Impact of exercise training on neuroplasticity-related growth factors in adolescents. J. Musculoskelet. Neuronal Interact. 2013;13:368–371.
    1. Pareja-Galeano H., Garatachea N., Lucia A. Exercise as a Polypill for Chronic Diseases. 1st ed. Volume 135 Elsevier Inc.; Philadelphia, PA, USA: 2015.
    1. Pareja-Galeano H., Sanchis-Gomar F., Lucia A. Physical activity and depression: Type of exercise matters. JAMA Pediatr. 2015;169:288–289. doi: 10.1001/jamapediatrics.2014.3501.
    1. Pareja-Galeano H., Mayero S., Perales M., Garatachea N., Santos-Lozano A., Fiuza-Luces C., Emanuele E., Gálvez B.G., Sanchis-Gomar F., Lucia A. Biological Rationale for Regular Physical Exercise as an Effective Intervention for the Prevention and Treatment of Depressive Disorders. Curr. Pharm. Des. 2016;22:3764–3775. doi: 10.2174/1381612822666160322144537.
    1. Santos-Lozano A., Pareja-Galeano H., Sanchis-Gomar F., Quindós-Rubial M., Fiuza-Luces C., Cristi-Montero C., Emanuele E., Garatachea N., Lucia A. Physical Activity and Alzheimer Disease: A Protective Association. Mayo Clin. Proc. 2016;91:999–1020. doi: 10.1016/j.mayocp.2016.04.024.
    1. Thyfault J.P., Krogh-Madsen R. Metabolic disruptions induced by reduced ambulatory activity in free-living humans. J. Appl. Physiol. 2011;111:1218–1224. doi: 10.1152/japplphysiol.00478.2011.
    1. López-Otín C., Galluzzi L., Freije J.M.P., Madeo F., Kroemer G. Metabolic Control of Longevity. Cell. 2016;166:802–821. doi: 10.1016/j.cell.2016.07.031.
    1. Olsen R.H., Krogh-Madsen R., Thomsen C., Booth F., Pedersen B. Metabolic Responses to Reduced Daily Steps in Healthy Nonexercising Men. JAMA J. Am. Med. Assoc. 2008;299:1261–1263. doi: 10.1001/jama.299.11.1259.
    1. Krogh-Madsen R., Thyfault J.P., Broholm C., Mortensen O.H., Olsen R.H., Mounier R., Plomgaard P., Van Hall G., Booth F.W., Pedersen B.K., et al. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J. Appl. Physiol. 2010;108:1034–1040. doi: 10.1152/japplphysiol.00977.2009.
    1. Mikus C.R., Oberlin D.J., Libla J.L., Taylor A.M., Booth F.W., Thyfault J.P. Lowering Physical Activity Impairs Glycemic Control in Healthy Volunteers. Med. Sci. Sports Exerc. 2017;25:1032–1057. doi: 10.1249/MSS.0b013e31822ac0c0.
    1. Knudsen S.H., Hansen L.S., Pedersen M., Dejgaard T., Hansen J., Van Hall G., Thomsen C., Solomon T.P.J., Pedersen B.K., Krogh-Madsen R. Changes in insulin sensitivity precede changes in body composition during 14 days of step reduction combined with overfeeding in healthy young men. J. Appl. Physiol. 2012;113:7–15. doi: 10.1152/japplphysiol.00189.2011.
    1. Winn N.C., Pettit-Mee R., Walsh L.K., Restaino R.M., Ready S.T., Padilla J., Kanaley J.A. Metabolic Implications of Diet and Energy Intake during Physical Inactivity. Med. Sci. Sports Exerc. 2019;51:995–1005. doi: 10.1249/MSS.0000000000001892.
    1. Bowden Davies K.A., Sprung V.S., Norman J.A., Thompson A., Mitchell K.L., Halford J.C.G., Harrold J.A., Wilding J.P.H., Kemp G.J., Cuthbertson D.J. Short-term decreased physical activity with increased sedentary behaviour causes metabolic derangements and altered body composition: Effects in individuals with and without a first-degree relative with type 2 diabetes. Diabetologia. 2018;61:1282–1294. doi: 10.1007/s00125-018-4603-5.
    1. Dixon N.C., Hurst T.L., Talbot D.C.S., Tyrrell R.M., Thompson D. Effect of short-term reduced physical activity on cardiovascular risk factors in active lean and overweight middle-aged men. Metabolism. 2013;62:361–368. doi: 10.1016/j.metabol.2012.08.006.
    1. Bowden Davies K.A., Sprung V.S., Norman J.A., Thompson A., Mitchell K.L., Harrold J.A., Finlayson G., Gibbons C., Wilding J.P.H., Kemp G.J., et al. Physical Activity and Sedentary Time: Association with Metabolic Health and Liver Fat. Med. Sci. Sports Exerc. 2019;51:1169–1177. doi: 10.1249/MSS.0000000000001901.
    1. Lavie C.J., Ozemek C., Carbone S., Katzmarzyk P.T., Blair S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019;124:799–815. doi: 10.1161/CIRCRESAHA.118.312669.
    1. Marzetti E., Calvani R., Tosato M., Cesari M., Di Bari M., Cherubini A., Collamati A., D’Angelo E., Pahor M., Bernabei R., et al. Sarcopenia: An overview. Aging Clin. Exp. Res. 2017;29:11–17. doi: 10.1007/s40520-016-0704-5.
    1. Donato K.A. Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch. Intern. Med. 1998;158:1855–1867.
    1. Breen L., Stokes K.A., Churchward-Venne T.A., Moore D.R., Baker S.K., Smith K., Atherton P.J., Phillips S.M. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J. Clin. Endocrinol. Metab. 2013;98:2604–2612. doi: 10.1210/jc.2013-1502.
    1. McGlory C., Von Allmen M.T., Stokes T., Morton R.W., Hector A.J., Lago B.A., Raphenya A.R., Smith B.K., McArthur A.G., Steinberg G.R., et al. Failed recovery of glycemic control and myofibrillar protein synthesis with 2 wk of physical inactivity in overweight, prediabetic older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018;73:1070–1077. doi: 10.1093/gerona/glx203.
    1. Walhin J.P., Richardson J.D., Betts J.A., Thompson D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J. Physiol. 2013;591:6231–6243. doi: 10.1113/jphysiol.2013.262709.
    1. Hill J.O., Wyatt H.R., Peters J.C. The importance of energy balance. Eur. Endocrinol. 2013;9:111–115. doi: 10.17925/EE.2013.09.02.111.
    1. Dorling J., Broom D.R., Burns S.F., Clayton D.J., Deighton K., James L.J., King J.A., Miyashita M., Thackray A.E., Batterham R.L., et al. Acute and chronic effects of exercise on appetite, energy intake, and appetite-related hormones: The modulating effect of adiposity, sex, and habitual physical activity. Nutrients. 2018;10:1140. doi: 10.3390/nu10091140.
    1. Hopkins M., Blundell J.E. Energy balance, body composition, sedentariness and appetite regulation: Pathways to obesity. Clin. Sci. 2016;130:1615–1628. doi: 10.1042/CS20160006.
    1. Mayer J., Roy P., Mitra K.P. Relation between caloric intake, body weight, and physical work: Studies in an industrial male population in West Bengal. Am. J. Clin. Nutr. 1956;4:169–175. doi: 10.1093/ajcn/4.2.169.
    1. Stubbs R.J., Hughes D.A., Johnstone A.M., Horgan G.W., King N., Blundell J.E. A decrease in physical activity affects appetite, energy, and nutrient balance in lean men feeding ad libitum. Am. J. Clin. Nutr. 2004;79:62–69. doi: 10.1093/ajcn/79.1.62.
    1. Shook R.P., Hand G.A., Drenowatz C., Hebert J.R., Paluch A.E., Blundell J.E., Hill J.O., Katzmarzyk P.T., Church T.S., Blair S.N. Low levels of physical activity are associated with dysregulation of energy intake and fat mass gain over 1 year. Am. J. Clin. Nutr. 2015;102:1332–1338. doi: 10.3945/ajcn.115.115360.
    1. Chaput J.P., Klingenberg L., Astrup A., Sjödin A.M. Modern sedentary activities promote overconsumption of food in our current obesogenic environment. Obes. Rev. 2011;12:12–20. doi: 10.1111/j.1467-789X.2010.00772.x.
    1. Wei M., Brandhorst S., Shelehchi M., Mirzaei H., Cheng C.W., Budniak J., Groshen S., Mack W.J., Guen E., Di Biase S., et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 2017;9:eaai8700. doi: 10.1126/scitranslmed.aai8700.
    1. Redman L.M., Smith S.R., Burton J.H., Martin C.K., Il’yasova D., Ravussin E. Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab. 2018;27:805–815.e4. doi: 10.1016/j.cmet.2018.02.019.
    1. Sala V.P., Martínez F.D., Biescas A.P. Restricción calórica, un método eficaz, sencillo y saludable para perder peso. Nutr. Clin. Diet. Hosp. 2017;37:77–86.
    1. Wewege M.A., Thom J.M., Rye K.A., Parmenter B.J. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome. Atherosclerosis. 2018;274:162–171. doi: 10.1016/j.atherosclerosis.2018.05.002.
    1. Akins J.D., Crawford C.K., Burton H.M., Wolfe A.S., Vardarli E., Coyle E.F. Inactivity induces resistance to the metabolic benefits following acute exercise. J. Appl. Physiol. 2019;126:1088–1094. doi: 10.1152/japplphysiol.00968.2018.
    1. Saint-Maurice P.F., Troiano R.P., Bassett D.R., Graubard B.I., Carlson S.A., Shiroma E.J., Fulton J.E., Matthews C.E. Association of Daily Step Count and Step Intensity With Mortality Among US Adults. JAMA. 2020;323:1151–1160. doi: 10.1001/jama.2020.1382.
    1. Campbell B., Kreider R.B., Ziegenfuss T., La Bounty P., Roberts M., Burke D., Landis J., Lopez H., Antonio J. International Society of Sports Nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2007;4:8. doi: 10.1186/1550-2783-4-8.
    1. Jäger R., Kerksick C.M., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., Purpura M., Ziegenfuss T.N., Ferrando A.A., Arent S.M., et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017;14:1–25. doi: 10.1186/s12970-017-0177-8.
    1. Witard O.C., Wardle S.L., Macnaughton L.S., Hodgson A.B., Tipton K.D. Protein considerations for optimising skeletal muscle mass in healthy young and older adults. Nutrients. 2016;8:181. doi: 10.3390/nu8040181.
    1. Jiménez-Pavón D., Carbonell-Baeza A., Lavie C.J. Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: Special focus in older people. Progress in Cardiovascular Diseases. Prog. Cardiovasc. Dis. 2020 in press.
    1. Fallon K. Exercise in the time of COVID-19. Aust. J. Gen. Pract. 2020;49 doi: 10.31128/AJGP-COVID-13.
    1. Kis O., Buch A., Stern N., Moran D.S. Minimally supervised home-based resistance training and muscle function in older adults: A meta-analysis. Arch. Gerontol. Geriatr. 2019;84:103909. doi: 10.1016/j.archger.2019.103909.
    1. Peterson M.D., Rhea M.R., Sen A., Gordon P.M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 2010;9:226–237. doi: 10.1016/j.arr.2010.03.004.
    1. Fragala M.S., Cadore E.L., Dorgo S., Izquierdo M., Kraemer W.J., Peterson M.D., Ryan E.D. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J. Strength Cond. Res. 2019;33:2019–2052. doi: 10.1519/JSC.0000000000003230.
    1. Marques E.A., Mota J., Carvalho J. Exercise effects on bone mineral density in older adults: A meta-analysis of randomized controlled trials. Age (Omaha) 2012;34:1493–1515. doi: 10.1007/s11357-011-9311-8.
    1. Kaur J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014;2014 doi: 10.1155/2014/943162.
    1. Zafar U., Khaliq S., Ahmad H.U., Manzoor S., Lone K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones. 2018;17:299–313. doi: 10.1007/s42000-018-0051-3.
    1. Oikonomou E.K., Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 2019;16:83–99. doi: 10.1038/s41569-018-0097-6.
    1. Gustafson B., Hammarstedt A., Andersson C.X., Smith U. Inflamed adipose tissue: A culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007;27:2276–2283. doi: 10.1161/ATVBAHA.107.147835.
    1. Eckel R.H., Grundy S.M., Zimmet P.Z. The metabolic syndrome. Lancet. 2005;366:1415–1428. doi: 10.1016/S0140-6736(05)66378-7.
    1. Rochlani Y., Naga V.P., Swathi K., Jawahar L.M. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017;11:215–225. doi: 10.1177/1753944717711379.
    1. Wannamethee S.G., Atkins J.L. Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. Proc. Nutr. Soc. 2015;74:405–412. doi: 10.1017/S002966511500169X.
    1. Gupta R., Ghosh A., Singh A.K., Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020;14:211–212. doi: 10.1016/j.dsx.2020.03.002.
    1. Bornstein S.R., Dalan R., Hopkins D., Mingrone G., Boehm B.O. Endocrine and metabolic link to coronavirus infection. Nat. Rev. Endocrinol. 2020;16:297–298. doi: 10.1038/s41574-020-0353-9.
    1. Li B., Yang J., Zhao F., Zhi L., Wang X., Liu L., Bi Z., Zhao Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020;109:531–538. doi: 10.1007/s00392-020-01626-9.
    1. Dietz W., Santos-Burgoa C. Obesity and its Implications for COVID-19 Mortality. Obesity. 2020 doi: 10.1002/oby.22818.
    1. Ryan D.H., Ravussin E., Heymsfield S. COVID 19 and the Patient with Obesity—The Editors Speak Out. Obesity. 2020 doi: 10.1002/oby.22808.

Source: PubMed

3
Abonneren