The Fetal Modified Myocardial Performance Index: Is Automation the Future?

Priya Maheshwari, Amanda Henry, Alec W Welsh, Priya Maheshwari, Amanda Henry, Alec W Welsh

Abstract

The fetal modified myocardial performance index (Mod-MPI) is a noninvasive, pulsed-wave Doppler-derived measure of global myocardial function. This review assesses the progress in technical refinements of its measurement and the potential for automation to be the crucial next step. The Mod-MPI is a ratio of isovolumetric to ejection time cardiac time intervals, and the potential for the left ventricular Mod-MPI as a tool to clinically assess fetal cardiac function is well-established. However, there are wide variations in published reference ranges, as (1) a standardised method of selecting cardiac time intervals used in Mod-MPI calculation has not been established; (2) cardiac time interval measurement currently requires manual, inherently subjective placement of callipers on Doppler ultrasound waveforms; and (3) ultrasound machine settings and ultrasound system type have been found to affect Mod-MPI measurement. Collectively these factors create potential for significant inter- and intraobserver measurement variability. Automated measurement of the Mod-MPI may be the next key development which propels the Mod-MPI into routine clinical use. A novel automated system of Mod-MPI measurement is briefly presented and its implications for the future of the Mod-MPI in fetal cardiology are discussed.

Figures

Figure 1
Figure 1
Positioning of the Doppler sample volume for acquisition of the left MPI. Modified from OpenStax College (2013) [6].
Figure 2
Figure 2
The schematic diagram at top left shows placement of the Doppler sample volume (SV) in left Mod-MPI measurement. The corresponding Doppler waveform is shown at bottom and the 2D echocardiograph is at top right. LV: left ventricle; LA: left atrium; RV: right ventricle; RA: right atrium; AO: aortic outflow tract; adapted from Hernandez-Andrade et al. (2005) [5].
Figure 3
Figure 3
Time interval measurements are based upon the echoes from valve movements.
Figure 4
Figure 4
The main stages of evolution of the MPI since 1995.
Figure 5
Figure 5
Gestational age-adjusted mean values for fetal left MPI in studies published from 1999 to 2012; adapted from Cruz-Martinez et al. (2012) [45, 46].
Figure 6
Figure 6
Left Mod-MPI Doppler waveform, showing the time intervals [47].
Figure 7
Figure 7
Schematic representation of valve clicks for the left Mod-MPI Doppler waveform, with a focus for time intervals on the original mitral valve closure click for simplicity; adapted from Meriki and Welsh [47].

References

    1. Friedman D., Buyon J., Kim M., Glickstein J. S. Fetal cardiac function assessed by Doppler myocardial performance index (Tei index) Ultrasound in Obstetrics & Gynecology. 2003;21(1):33–36. doi: 10.1002/uog.11.
    1. Moon-Grady A. J., Hirose S., Kesby G., Menahem S., Tworetzky W. The fetus as a cardiac patient: assessment and therapy of cardiovascular pathology before birth. International Journal of Pediatrics. 2010;2010:2. doi: 10.1155/2010/974520.974520
    1. Balasubramanian S., Tacy T. A. Functional imaging in fetal echocardiography: a review of conventional and novel approaches. Cardiovascular Engineering and Technology. 2013;4(3):276–285. doi: 10.1007/s13239-013-0132-z.
    1. Meriki N., Welsh A. W. Technical considerations for measurement of the fetal left modified myocardial performance index. Fetal Diagnosis and Therapy. 2012;31(1):76–80. doi: 10.1159/000334385.
    1. Hernandez-Andrade E., Lopez-Tenorio J., Figueroa-Diesel H., et al. A modified myocardial performance (Tei index) based on the use of valve clicks improves reproducibility of fetal left cardiac function assessment. Ultrasound in Obstetrics & Gynecology. 2005;26(3):227–232. doi: 10.1002/uog.1959.
    1. Open Stax College. 2916 Fetal Circulatory System-02. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons. 2013. .
    1. Tei C., Ling L. H., Hodge D. O., et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy. Journal of Cardiology. 1995;26(6):357–366.
    1. Tei C. New non-invasive index for combined systolic and diastolic ventricular function. Journal of Cardiology. 1995;26(2):135–136.
    1. Guyton A. C., Hall J. E. Guyton and Hall Textbook of Medical Physiology. 12th. Philadelphia, Pa, USA: Elsevier Saunders; 2011.
    1. Crispi F., Gratacs E. Fetal cardiac function: technical considerations and potential research and clinical applications. Fetal Diagnosis and Therapy. 2012;32(1-2):47–64. doi: 10.1159/000338003.
    1. Browne V. A., Stiffel V. M., Pearce W. J., Longo L. D., Gilbert R. D. Activator calcium and myocardial contractility in fetal sheep exposed to long-term high-altitude hypoxia. American Journal of Physiology—Heart and Circulatory Physiology. 1997;272(3):H1196–H1204.
    1. Tei C., Nishimura R. A., Seward J. B., Tajik A. J. Noninvasive doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. Journal of the American Society of Echocardiography. 1997;10(2):169–178. doi: 10.1016/S0894-7317(97)70090-7.
    1. Ishii M., Eto G., Tei C., et al. Quantitation of the global right ventricular function in children with normal heart and congenital heart disease: a right ventricular myocardial performance index. Pediatric Cardiology. 2000;21(5):416–421. doi: 10.1007/s002460010100.
    1. Mooradian S. J., Goldberg C. S., Crowley D. C., Ludomirsky A. Evaluation of a noninvasive index of global ventricular function to predict rejection after pediatric cardiac transplantation. American Journal of Cardiology. 2000;86(3):358–360. doi: 10.1016/S0002-9149(00)00935-8.
    1. Ichihashi K., Yada Y., Takahashi N., Honma Y., Momoi M. Utility of a Doppler-derived index combining systolic and diastolic performance (Tei index) for detecting hypoxic cardiac damage in newborns. Journal of Perinatal Medicine. 2005;33(6):549–552. doi: 10.1515/JPM.2005.098.
    1. Eidem B. W., Tei C., O'Leary P. W., Cotta F., Seward J. B. Nongeometric quantitative assessment of right and left ventricular function: myocardial performance index in normal children and patients with Ebstein anomaly. Journal of the American Society of Echocardiography. 1998;11(9):849–856. doi: 10.1016/S0894-7317(98)70004-5.
    1. Tsutsumi T., Ishii M., Eto G., Hota M., Kato H. Serial evaluation for myocardial performance in fetuses and neonates using a new Doppler index. Pediatrics International. 1999;41(6):722–727. doi: 10.1046/j.1442-200X.1999.01155.x.
    1. Falkensammer C. B., Paul J., Huhta J. C. Fetal congestive heart failure: correlation of Tei index and cardiovascular-score. Journal of Perinatal Medicine. 2001;29(5):390–398. doi: 10.1515/JPM.2001.055.
    1. Eidem B. W., Edwards J. M., Cetta F. Quantitative assessment of fetal ventricular function: establishing normal values of the myocardial performance index in the fetus. Echocardiography. 2001;18(1):9–13.
    1. Ichizuka K., Matsuoka R., Hasegawa J., et al. The Tei index for evaluation of fetal myocardial performance in sick fetuses. Early Human Development. 2005;81(3):273–279. doi: 10.1016/j.earlhumdev.2004.07.003.
    1. Raboisson M.-J., Bourdages M., Fouron J.-C. Measuring left ventricular myocardial performance index in fetuses. American Journal of Cardiology. 2003;91(7):919–921. doi: 10.1016/S0002-9149(03)00041-9.
    1. Niewiadomska-Jarosik K., Lipecka-Kidawska E., Kowalska-Koprek U., et al. Assessment of cardiac function in fetuses with intrauterine growth retardation using the Tei index. Developmental Period Medicine. 2005;9(2):153–160.
    1. Benavides-Serralde A., Scheier M., Cruz-Martinez R., et al. Changes in central and peripheral circulation in intrauterine growth-restricted fetuses at different stages of umbilical artery flow deterioration: new fetal cardiac and brain parameters. Gynecologic and Obstetric Investigation. 2011;71(4):274–280. doi: 10.1159/000323548.
    1. Comas M., Crispi F., Cruz-Martinez R., Martinez J. M., Figueras F., Gratacós E. Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. American Journal of Obstetrics & Gynecology. 2010;203(1):45.e1–45.e7. doi: 10.1016/j.ajog.2010.02.044.
    1. Crispi F., Hernandez-Andrade E., Pelsers M. M., et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. American Journal of Obstetrics & Gynecology. 2008;199(3):254.e1–254.e8. doi: 10.1016/j.ajog.2008.06.056.
    1. Garcia-Flores J., Jañez M., Gonzalez M. C., Martinez N., Espada M., Gonzalez A. Fetal myocardial morphological and functional changes associated with well-controlled gestational diabetes. European Journal of Obstetrics Gynecology and Reproductive Biology. 2011;154(1):24–26. doi: 10.1016/j.ejogrb.2010.08.002.
    1. Wong M. L., Wong W. H. S., Cheung Y. F. Fetal myocardial performance in pregnancies complicated by gestational impaired glucose tolerance. Ultrasound in Obstetrics & Gynecology. 2007;29(4):395–400. doi: 10.1002/uog.3957.
    1. Russell N. E., Foley M., Kinsley B. T., Firth R. G., Coffey M., McAuliffe F. M. Effect of pregestational diabetes mellitus on fetal cardiac function and structure. American Journal of Obstetrics & Gynecology. 2008;199(3):312.e1–312.e7. doi: 10.1016/j.ajog.2008.07.016.
    1. Campbell K., Thung S., Buhimschi C., Copel J., Bahtiyar O. OP16.02: the Tei index to assess myocardial performance in fetuses of diabetic mothers. Ultrasound in Obstetrics & Gynecology. 2011;38(S1):p. 101. doi: 10.1002/uog.9406.
    1. Russell N., Foley M., McAuliffe F. First trimester fetal cardiac function-is there a difference between the diabetic and non-diabetic population? American Journal of Obstetrics & Gynecology. 2006;195(6):p. S137.
    1. Van Mieghem T., Klaritsch P., Doné E., et al. Assessment of fetal cardiac function before and after therapy for twin-to-twin transfusion syndrome. American Journal of Obstetrics & Gynecology. 2009;200(4):400.e1–400.e7. doi: 10.1016/j.ajog.2009.01.051.
    1. Stirnemann J. J., Mougeot M., Proulx F., et al. Profiling fetal cardiac function in twin-twin transfusion syndrome. Ultrasound in Obstetrics & Gynecology. 2010;35(1):19–27. doi: 10.1002/uog.7488.
    1. Raboisson M. J., Fouron J. C., Lamoureux J., et al. Early intertwin differences in myocardial performance during the twin-to-twin transfusion syndrome. Circulation. 2004;110(19):3043–3048. doi: 10.1161/01.CIR.0000146896.20317.59.
    1. Habli M., Michelfelder E., Livingston J., et al. Acute effects of selective fetoscopic laser photocoagulation on recipient cardiac function in twin-twin transfusion syndrome. American Journal of Obstetrics & Gynecology. 2008;199(4):412.e1–412.e6. doi: 10.1016/j.ajog.2008.06.067.
    1. Chen Y., Lv G., Li B., Wang Z. Cerebral vascular resistance and left ventricular myocardial performance in fetuses with ebstein's anomaly. The American Journal of Perinatology. 2009;26(4):253–258. doi: 10.1055/s-0028-1103152.
    1. Szwast A., Tian Z., McCann M., Donaghue D., Rychik J. Right ventricular performance in the fetus with hypoplastic left heart syndrome. Annals of Thoracic Surgery. 2009;87(4):1214–1219. doi: 10.1016/j.athoracsur.2008.11.032.
    1. Inamura N., Taketazu M., Smallhorn J. F., Hornberger L. K. Left ventricular myocardial performance in the fetus with severe tricuspid valve disease and tricuspid insufficiency. The American Journal of Perinatology. 2005;22(2):91–97. doi: 10.1055/s-2005-837739.
    1. Inamura N., Kado Y., Nakajima T., Kayatani F. Left and right ventricular function in fetal tetralogy of fallot with absent pulmonary valve. The American Journal of Perinatology. 2005;22(4):199–204. doi: 10.1055/s-2005-866603.
    1. Clur S. A., van der Wal A. C., Ottenkamp J., Bilardo C. M. Echocardiographic evaluation of fetal cardiac function: clinical and anatomical correlations in two cases of endocardial fibroelastosis. Fetal Diagnosis and Therapy. 2010;28(1):51–57. doi: 10.1159/000313426.
    1. Api O., Balcin Emeksiz M., Api M., Ugurel V., Unal O. Modified myocardial performance index for evaluation of fetal cardiac function in pre-eclampsia. Ultrasound in Obstetrics & Gynecology. 2009;33(1):51–57. doi: 10.1002/uog.6272.
    1. Mori Y., Rice M. J., McDonald R. W., et al. Evaluation of systolic and diastolic ventricular performance of the right ventricle in fetuses with ductal constriction using the Doppler Tei index. The American Journal of Cardiology. 2001;88(10):1173–1178. doi: 10.1016/S0002-9149(01)02056-2.
    1. Müller A. L. L., Barrios P. M., Kliemann L. M., Valério E. G., Gasnier R., Magalhães J. A. Tei index to assess fetal cardiac performance in fetuses at risk for fetal inflammatory response syndrome. Ultrasound in Obstetrics & Gynecology. 2010;36(1):26–31. doi: 10.1002/uog.7584.
    1. Van Mieghem T., Gucciardo L., Doné E., et al. Left ventricular cardiac function in fetuses with congenital diaphragmatic hernia and the effect of fetal endoscopic tracheal occlusion. Ultrasound in Obstetrics & Gynecology. 2009;34(4):424–429. doi: 10.1002/uog.7340.
    1. Szwast A., Tian Z., McCann M., et al. Impact of altered loading conditions on ventricular performance in fetuses with congenital cystic adenomatoid malformation and twin-twin transfusion syndrome. Ultrasound in Obstetrics & Gynecology. 2007;30(1):40–46. doi: 10.1002/uog.4032.
    1. Cruz-Martinez R., Figueras F., Bennasar M., et al. Normal reference ranges from 11 to 41 weeks' gestation of fetal left modified myocardial performance index by conventional doppler with the use of stringent criteria for delimitation of the time periods. Fetal Diagnosis and Therapy. 2012;32(1-2):79–86. doi: 10.1159/000330798.
    1. Mahajan A., Henry A., Meriki N., et al. The (Pulsed-Wave) Doppler fetal myocardial performance index: technical challenges, clinical applications and future research. Fetal Diagnosis and Therapy. In press.
    1. Meriki N., Welsh A. W. Development of australian reference ranges for the left fetal modified myocardial performance index and the influence of caliper location on time interval measurement. Fetal Diagnosis and Therapy. 2012;32(1-2):87–95. doi: 10.1159/000334133.
    1. Meriki N., Izurieta A., Welsh A. W. Fetal left modified myocardial performance index: technical refinements in obtaining pulsed-Doppler waveforms. Ultrasound in Obstetrics & Gynecology. 2012;39(4):421–429. doi: 10.1002/uog.9090.
    1. Van Mieghem T., Gucciardo L., Lewi P., et al. Validation of the fetal myocardial performance index in the second and third trimesters of gestation. Ultrasound in Obstetrics & Gynecology. 2009;33(1):58–63. doi: 10.1002/uog.6238.
    1. Clur S. A. B., Rengerink K. O., Mol B. W. J., Ottenkamp J., Bilardo C. M. Fetal cardiac function between 11 and 35 weeks' gestation and nuchal translucency thickness. Ultrasound in Obstetrics & Gynecology. 2011;37(1):48–56. doi: 10.1002/uog.8807.
    1. Rozmus-Warcholinska W., Wloch A., Acharya G., et al. Reference values for variables of fetal cardiocirculatory dynamics at 11–14 weeks of gestation. Ultrasound in Obstetrics & Gynecology. 2010;35(5):540–547. doi: 10.1002/uog.7595.
    1. Chen Q., Sun X.-F., Liu H.-J. Assessment of myocardial performance in fetuses by using Tei index. Chinese Journal of Obstetrics and Gynecology. 2006;41(6):387–390.
    1. Ichizuka K., Matsuoka R., Hasegawa J., Okai T. OP39.07: the Tei index in FGR fetus. Ultrasound in Obstetrics & Gynecology. 2010;36(S1):p. 166. doi: 10.1002/uog.8298.
    1. Meriki N., Izurieta A., Welsh A. Reproducibility of constituent time intervals of right and left fetal modified myocardial performance indices on pulsed Doppler echocardiography: a short report. Ultrasound in Obstetrics & Gynecology. 2012;39(6):654–658. doi: 10.1002/uog.10049.
    1. Hernandez-Andrade E., Figueroa-Diesel H., Kottman C., et al. Gestational-age-adjusted reference values for the modified myocardial performance index for evaluation of fetal left cardiac function. Ultrasound in Obstetrics & Gynecology. 2007;29(3):321–325. doi: 10.1002/uog.3947.
    1. Lobmaier S., Cruz-Lemini M., Valenzuela-Alcaraz B., et al. Influence of equipment and settings on myocardial performance index repeatability and definition of settings to achieve optimal reproducibility. Ultrasound in Obstetrics & Gynecology. 2014;43(6):632–639.
    1. Wang J., Henry A., Redmond S., Welsh A. OC08.02: automation of the fetal myocardial performance index. Ultrasound in Obstetrics & Gynecology. 2014;44(S1):p. 18. doi: 10.1002/uog.13510.
    1. Lee M. Y., Won H. S., Jeon E. J., et al. Feasibility of using Auto Mod-MPI system, a novel technique for the automated measurement of the fetal modified myocardial performance index. Ultrasound in Obstetrics & Gynecology. 2014;43(6):640–645.
    1. Yoon H., Lee H., Jeon K.-W., et al. Automated measurement of fetal myocardial performance index in ultrasound Doppler waveforms. Medical Imaging 2014: Ultrasonic Imaging and Tomography; February 2014; p. 8.
    1. Yoon H. C., Lee H., Jung H. Image processing method and apparatus. European Patent Application number: 13163808.2 , European Patent Office, 2013.
    1. Cruz-Martinez R., Figueras F., Jaramillo J. J., et al. Learning curve for Doppler measurement of fetal modified myocardial performance index. Ultrasound in Obstetrics & Gynecology. 2011;37(2):158–162. doi: 10.1002/uog.7765.
    1. Papanna R., Mann L. K., Molina S., Johnson A., Moise K. J. Changes in the recipient fetal Tei index in the peri-operative period after laser photocoagulation of placental anastomoses for twin-twin transfusion syndrome. Prenatal Diagnosis. 2011;31(2):176–180. doi: 10.1002/pd.2673.
    1. Rychik J. Fetal cardiovascular physiology. Pediatric Cardiology. 2004;25(3):201–209.

Source: PubMed

3
Abonneren