Contribution of Components of Metabolic Syndrome to Cognitive Performance in Middle-Aged Adults

Karamfil M Bahchevanov, Angel M Dzhambov, Kostadin A Chompalov, Radka I Massaldjieva, Penka A Atanassova, Mitko D Mitkov, Karamfil M Bahchevanov, Angel M Dzhambov, Kostadin A Chompalov, Radka I Massaldjieva, Penka A Atanassova, Mitko D Mitkov

Abstract

Introduction: Metabolic syndrome (MetS) has been associated with impaired cognition in different cognitive domains. This study investigated the association between MetS and cognitive functioning in middle-aged Bulgarians across different definitions of MetS severity.

Material and methods: Our cross-sectional sample included 112 participants (67 free of MetS and 45 with MetS) with a mean age of 50.04 ± 3.31 years. The following MetS variables were considered-presence of MetS, continuously measured MetS components, dichotomized MetS components, number of MetS components present, and Metabolic Syndrome Severity Score (MSSS). Participants' cognitive performance was assessed using the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery (CERAD-NB). We employed multivariate regression models to investigate the associations between different measures of MetS severity and CERAD-NB total and subtest scores.

Results: Bivariate analyses showed that the CERAD-NB total score was significantly higher in women, participants with a university degree, those with normal blood pressure, normal waist circumference, and low triglyceride levels, compared with their counterparts. MetS participants had lower CERAD-NB total score (78.87 ± 6.89 vs. 84.97 ± 7.84) and specifically performed poorer on the subtest Word List Recall (7.16 ± 1.52 vs. 7.99 ± 1.52). These findings persisted after controlling for age, gender, and education. Next, generalized linear regression indicated that the CERAD-NB total score was lower in participants with MetS (β = -4.86; 95% confidence interval [CI]: -7.60, -2.11), those with more MetS components (β = -8.31; 95% CI: -14.13, -2.50 for fours vs. 0 components) and with an increase in MSSS (β = -3.19; 95% CI: -4.67, -1.71). Hypertension independently contributed to lower CERAD-NB total score (β = -4.00; 95% CI: -6.81, -1.19).

Conclusions: Across several definitions, MetS was associated with lower cognitive functioning, and MetS severity appeared to be a better predictor than most MetS components. Recognizing and reducing severity of MetS components might be helpful in supporting cognitive functioning. Further longitudinal research is needed to shed more light on the relationship between MetS and cognitive functioning across the life span.

Keywords: Alzheimer’s disease; Cardiovascular disease; Cerebrovascular disease/accident and stroke; Mild cognitive impairment.

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

Figures

Fig. 1
Fig. 1
Restricted cubic spline model of the association between MSSS and cognitive functioning (CERAD-NB). Coefficients are unstandardized linear regression coefficients with their 95% CIs and represent the change in CERAD-NB per 1 unit increase in MSSS. Models are adjusted for age, gender, education, smoking status, and alcohol consumption. The effect of MSSS on CERAD-NB is statistically significant when the bounds of the 95% CI do not cross the reference line (zero) on the y-axis. MSSS value of “0” is the reference point. CERAD-NB = Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological Battery; CI = confidence interval; MSSS = Metabolic Syndrome Severity Score.

References

    1. Aguilar, M., Bhuket, T., Torres, S., Liu, B., & Wong, R. J. (2015). Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA, 313(19), 1973. doi: 10.1001/jama.2015.4260.
    1. Alberti, K. G. M. M., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., et al. (2009). Harmonizing the metabolic syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120(16), 1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644.
    1. Alcorn, T., Hart, E., Smith, A. E., Feuerriegel, D., Stephan, B. C. M., Siervo, M., et al. (2019). Cross-sectional associations between metabolic syndrome and performance across cognitive domains: A systematic review. Applied Neuropsychology: Adult, 26(2), 186–199. doi: 10.1080/23279095.2017.1363039.
    1. Amrhein, V., Greenland, S., & McShane, B. (2019). Scientists rise up against statistical significance. Nature, 567(7748), 305–307. doi: 10.1038/d41586-019-00857-9.
    1. Assuncao, N., Sudo, F. K., Drummond, C., deFelice, F. G., & Mattos, P. (2018). Metabolic syndrome and cognitive decline in the elderly: A systematic review. PLOS ONE, 13(3), e0194990. doi: 10.1371/journal.pone.0194990.
    1. Bae, S., Shimada, H., Lee, S., Makizako, H., Lee, S., Harada, K., et al. (2017). The relationships between components of metabolic syndrome and mild cognitive impairment subtypes: A cross-sectional study of Japanese older adults. Journal of Alzheimer’s Disease, 60(3), 913–921. doi: 10.3233/JAD-161230.
    1. Boudreau, D. M., Malone, D. C., Raebel, M. A., Fishman, P. A., Nichols, G. A., Feldstein, A. C., et al. (2009). Health care utilization and costs by metabolic syndrome risk factors. Metabolic Syndrome and Related Disorders, 7(4), 305–314. doi: 10.1089/met.2008.0070.
    1. Cabin, R., & Mitchell, R. (2000). To Bonferroni or not to Bonferroni: When and how are the questions. Bulletin of the Ecological Society of America, 81(3), 246–248. Retrieved July 30, 2020, from www.
    1. Chandler, M. J., Lacritz, L. H., Hynan, L. S., Barnard, H. D., Allen, G., Deschner, M., et al. (2005). A total score for the CERAD neuropsychological battery. Neurology, 65(1), 102–106. doi: 10.1212/01.wnl.0000167607.63000.38.
    1. Chen, B., Jin, X., Guo, R., Chen, Z., Hou, X., Gao, F., et al. (2016). Metabolic syndrome and cognitive performance among Chinese ≥50 years: A cross-sectional study with 3988 participants. Metabolic Syndrome and Related Disorders, 14(4), 222–227. doi: 10.1089/met.2015.0094.
    1. Dahl, A. K., Hassing, L. B., Fransson, E. I., Gatz, M., Reynolds, C. A., & Pedersen, N. L. (2013). Body mass index across midlife and cognitive change in late life. International Journal of Obesity, 37(2), 296–302. doi: 10.1038/ijo.2012.37.
    1. Del Brutto, O. H., Mera, R. M., & Zambrano, M. (2016). Metabolic syndrome correlates poorly with cognitive performance in stroke-free community-dwelling older adults: A population-based, cross-sectional study in rural Ecuador. Aging Clinical and Experimental Research, 28(2), 321–325. doi: 10.1007/s40520-015-0404-6.
    1. Dik, M. G., Jonker, C., Comijs, H. C., Deeg, D. J. H., Kok, A., Yaffe, K., et al. (2007). Contribution of metabolic syndrome components to cognition in older individuals. Diabetes Care, 30(10), 2655–2660. doi: 10.2337/dc06-1190.
    1. Dimitrov, B., Bahchevanov, K., Atanassova, P., Mitkov, M., Massaldjieva, R., Chompalov, K., et al. (2016). Metabolic syndrome severity score: Range and associations with cardiovascular risk factors. Archives of Medical Science-Atherosclerotic Diseases, 1(1), 90–97. doi: 10.5114/amsad.2016.62137.
    1. Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. BMJ, 316(7139), 1236–1238.
    1. Falkowski, J., Atchison, T., DeButte-Smith, M., Weiner, M. F., & O’Bryant, S. (2014). Executive functioning and the metabolic syndrome: A Project FRONTIER Study. Archives of Clinical Neuropsychology, 29(1), 47–53. doi: 10.1093/arclin/act078.
    1. Frisardi, V., Solfrizzi, V., Capurso, C., Imbimbo, B. P., Vendemiale, G., Seripa, D., et al. (2010). Is insulin resistant brain state a central feature of the metabolic-cognitive syndrome? Journal of Alzheimer’s Disease, 21(1), 57–63. doi: 10.3233/JAD-2010-100015.
    1. García-Lara, J. M. A., Aguilar-Navarro, S., Gutiérrez-Robledo, L. M., & Avila-Funes, J. A. (2010). The metabolic syndrome, diabetes, and Alzheimer’s disease. Revista De Investigacion Clinica; Organo Del Hospital De Enfermedades De La Nutricion, 62(4), 343–349.
    1. Gunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F., Spitznagel, M. B., & Gordon, E. (2007). Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Comprehensive Psychiatry, 48(1), 57–61. doi: 10.1016/j.comppsych.2006.05.001.
    1. Guo, Y., Musani, S. K., Sims, M., Pearson, T. A., DeBoer, M.D., et al. (2018). Assessing the added predictive ability of a metabolic syndrome severity score in predicting incident cardiovascular disease and type 2 diabetes: the Atherosclerosis Risk in Communities Study and Jackson Heart Study. Diabetol Metab Syndr, 10, 42. doi: 10.1186/s13098-018-0344-3.
    1. Gurka, M. J., Lilly, C. L., Oliver, M. N., & DeBoer, M. D. (2014). An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: A confirmatory factor analysis and a resulting continuous severity score. Metabolism, 63(2), 218–225. doi: 10.1016/j.metabol.2013.10.006.
    1. Gurka, M. J., Filipp Stephanie, L., Pearson Thomas, A., & DeBoer Mark, D. (2018). Assessing baseline and temporal changes in cardiometabolic risk using metabolic syndrome severity and common risk scores. Journal of the American Heart Association, 7(16), e009754. doi: 10.1161/JAHA.118.009754.
    1. Hassenstab, J. J., Sweat, V., Bruehl, H., & Convit, A. (2010). Metabolic syndrome is associated with learning and recall impairment in middle age. Dementia and Geriatric Cognitive Disorders, 29(4), 356–362. doi: 10.1159/000296071.
    1. Kahn, R., Buse, J., Ferrannini, E., & Stern, M. (2005). The metabolic syndrome: Time for a critical appraisal: Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 28(9), 2289–2304. doi: 10.2337/diacare.28.9.2289.
    1. Koch, M., & Jensen, M. K. (2016). HDL-cholesterol and apolipoproteins in relation to dementia. Current Opinion in Lipidology, 27(1), 76–87. doi: 10.1097/MOL.0000000000000257.
    1. Komulainen, P., Lakka, T. A., Kivipelto, M., Hassinen, M., Helkala, E.-L., Haapala, I., et al. (2007). Metabolic syndrome and cognitive function: A population-based follow-up study in elderly women. Dementia and Geriatric Cognitive Disorders, 23(1), 29–34. doi: 10.1159/000096636.
    1. Liu, M., He, Y., Jiang, B., Wu, L., Wang, J., Yang, S., et al. (2015). Association between metabolic syndrome and mild cognitive impairment and its age difference in a chinese community elderly population. Clinical Endocrinology, 82(6), 844–853. doi: 10.1111/cen.12734.
    1. Marangos, P. J., Okamoto, L. J., & Caro, J. J. (2010). Economic Burden of the Components of the Metabolic Syndrome. In Preedy V. R. & Watson R. R. (Eds.), Handbook of disease burdens and quality of life measures pp. 1135–1149. Springer, New York. doi:10.1007/978-0-387-78665-0_64
    1. McCrimmon, R. J., Ryan, C. M., & Frier, B. M. (2012). Diabetes and cognitive dysfunction. The Lancet, 379(9833), 2291–2299. doi: 10.1016/S0140-6736(12)60360-2.
    1. Moms, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., vanBelle, G., Fillenbaum, G., et al. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159. doi: 10.1212/WNL.39.9.1159.
    1. Muntner, P., Shimbo, D., Carey, R. M., Charleston, J. B., Gaillard, T., Misra, S., et al. (2019). Measurement of blood pressure in humans: A scientific statement from the American Heart Association. Hypertension, 73(5). doi: 10.1161/HYP.0000000000000087.
    1. Novak, V., & Hajjar, I. (2010). The relationship between blood pressure and cognitive function. Nature Reviews Cardiology, 7(12), 686–698. doi: 10.1038/nrcardio.2010.161.
    1. Oh, H.-M., Kim, S.-H., Kang, S.-G., Park, S.-J., & Song, S.-W. (2011). The relationship between metabolic syndrome and cognitive function. Korean Journal of Family Medicine, 32(6), 358. doi: 10.4082/kjfm.2011.32.6.358.
    1. O’Neill, S., & O’Driscoll, L. (2015). Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies: Metabolic syndrome. Obesity Reviews, 16(1), 1–12. doi: 10.1111/obr.12229.
    1. Orsini, N. (17–18 September 2009). Tabulate and plot measures of association after restricted cubic spline models, 3rd Nordic and Baltic countries Stata Users Group meeting Stockholm, Stockholm Sweden.
    1. Ostrihoňová, T., Rimárová, K., Bérešová, J., Kontrošová, S., Dorko, E., & Diabelková, J. (2017). Prevalence and trends of metabolic syndrome in clients of health advice centres during the years 2003-2012. Central European Journal of Public Health, 25(4), 313–320. 10.21101/cejph.a4968.
    1. Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. BMJ, 316(7139), 1236–1238.
    1. Rothman, K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1(1), 43–46.
    1. Rubens, M., Ramamoorthy, V., Saxena, A., George, F., Shehadeh, N., Attonito, J., et al. (2016). Relationship between metabolic syndrome and cognitive abilities in U.S. adolescents. Metabolic Syndrome and Related Disorders, 14(8), 397–403. doi: 10.1089/met.2016.0015.
    1. Schlomer, G. L., Bauman, S., & Card, N. A. (2010). Best practices for missing data management in counseling psychology. Journal of Counseling Psychology, 57(1), 1–10. doi: 10.1037/a0018082.
    1. Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M. (2010). Is it really robust?: Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology, 6(4), 147–151. doi: 10.1027/1614-2241/a000016.
    1. Seo, E. H., Lee, D. Y., Lee, J. H., Choo, I. H., Kim, J. W., Kim, S. G., et al. (2010). Total scores of the CERAD neuropsychological assessment battery: Validation for mild cognitive impairment and dementia patients with diverse etiologies. The American Journal of Geriatric Psychiatry, 18(9), 801–809. doi: 10.1097/JGP.0b013e3181cab764.
    1. Song, S.-W., Chung, J.-H., Rho, J. S., Lee, Y.-A., Lim, H.-K., Kang, S.-G., et al. (2015). Regional cortical thickness and subcortical volume changes in patients with metabolic syndrome. Brain Imaging and Behavior, 9(3), 588–596. doi: 10.1007/s11682-014-9311-2.
    1. Taylor, V. H., & Mac Queen, G. M. (2007). Cognitive dysfunction associated with metabolic syndrome. Obesity Reviews, 8(5), 409–418. doi: 10.1111/j.1467-789X.2007.00401.x.
    1. Tournoy, J., Lee, D. M., Pendleton, N., O’Neill, T. W., O’Connor, D. B., Bartfai, G., et al. (2010). Association of cognitive performance with the metabolic syndrome and with glycaemia in middle-aged and older European men: The European Male Ageing Study. Diabetes/Metabolism Research and Reviews, 26(8), 668–676. doi: 10.1002/dmrr.1144.
    1. Tsai, C.-K., Kao, T.-W., Lee, J.-T., Wu, C.-J., Hueng, D.-Y., Liang, C.-S., et al. (2016). Increased risk of cognitive impairment in patients with components of metabolic syndrome. Medicine, 95(36), e4791. doi: 10.1097/MD.0000000000004791.
    1. Vanhanen, M., Koivisto, K., Moilanen, L., Helkala, E. L., Hanninen, T., Soininen, H., et al. (2006). Association of metabolic syndrome with Alzheimer disease: A population-based study. Neurology, 67(5), 843–847. doi: 10.1212/01.wnl.0000234037.91185.99.
    1. Vieira, J. R., Elkind, M. S. V., Moon, Y. P., Rundek, T., Boden-Albala, B., Paik, M. C., et al. (2011). The metabolic syndrome and cognitive performance: The Northern Manhattan Study. Neuroepidemiology, 37(3–4), 153–159. doi: 10.1159/000332208.
    1. Vishnu, A., Gurka, M. J., & DeBoer, M. D. (2015). The severity of the metabolic syndrome increases over time within individuals, independent of baseline metabolic syndrome status and medication use: The atherosclerosis risk in communities study. Atherosclerosis, 243(1), 278–285. doi: 10.1016/j.atherosclerosis.2015.09.025.
    1. Welsh, K. A., Butters, N., Mohs, R. C., Beekly, D., Edland, S., Fillenbaum, G., et al. (1994). The consortium to establish a registry for Alzheimer’s disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology, 44(4), 609. doi: 10.1212/WNL.44.4.609.
    1. Wiley, J. F., & Carrington, M. J. (2016). A metabolic syndrome severity score: A tool to quantify cardio-metabolic risk factors. Preventive Medicine, 88, 189–195. doi: 10.1016/j.ypmed.2016.04.006.
    1. World Health Organization (2011). Waist circumference and waist-hip ratio: Report of a WHO expert consultation, Geneva, 8-11 December 2008. Author.
    1. Yaffe, K. (2004). The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA, 292(18), 2237. doi: 10.1001/jama.292.18.2237.
    1. Yaffe, K. (2007). Metabolic syndrome and cognitive disorders: Is the sum greater than its parts? Alzheimer Disease & Associated Disorders, 21(2), 167–171. doi: 10.1097/WAD.0b013e318065bfd6.

Source: PubMed

3
Abonneren