Comparison of low calorie high protein and low calorie standard protein diet on waist circumference of adults with visceral obesity and weight cycling

Fiastuti Witjaksono, Joan Jutamulia, Nagita Gianty Annisa, Septian Ika Prasetya, Fariz Nurwidya, Fiastuti Witjaksono, Joan Jutamulia, Nagita Gianty Annisa, Septian Ika Prasetya, Fariz Nurwidya

Abstract

Objectives: Many individuals with visceral obesity who previously had succeeded in reducing body weight regain and this loss-gain cycle repeats several times which is called as weight cycling. We aimed to evaluate the effect of a low calorie high protein diet (HP) compared to a low calorie standard protein diet (SP) on waist circumference of visceral obese adults with history of weight cycling.

Results: In this open-randomized clinical trial, participants were asked to follow dietary plan with reduction in daily caloric intake ranging from 500 to 1000 kcal from usual daily amount with minimum daily amount of 1000 kcal for 8 weeks and were divided in two groups: HP group with protein as 22-30% total calorie intake; and SP group with protein as 12-20% total calorie intake. There was a statistically significant difference (P < 0.001) between waist circumference before and after the dietary intervention among both groups. Meanwhile, there was no statistically significant difference in the mean reduction of waist circumference between HP and SP groups (P = 0.073). Taken together, the protein proportion does not significantly affected waist circumference. Trial registration ClinicalTrials.gov NCT03374150, 11 December 2017.

Keywords: High-protein diet; Low-calorie diet; Visceral obesity; Waist circumference; Weight cycling.

References

    1. World Health Organisation. Obesity: situation and trends. . Accessed 15 Sept 2017.
    1. Basic Health Research 2013. Council of Research and Development, Indonesian Ministry of Health. [Badan Penelitian dan Pengembangan Kesehatan. Riset Kesehatan Dasar. Jakarta; Kementerian Kesehatan RI:2013].
    1. Oetoro S, Makmun LH, Lukito W, Wijaya A. Effect of a weight loss program on body composition and metabolic syndrome markers in obese weight cyclers. Indones J Intern Med. 2014;46(3):199–208.
    1. Rodin J, Radke-Sharpe N, Rebuffé-Scrive M, Greenwood MR. Weight cycling and fat distribution. Int J Obes. 1990;14(4):303–310.
    1. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 1009;2012(85):1–10. doi: 10.1259/bjr/38447238.
    1. Donohoe CL, Doyle SL, Reynolds JV. Visceral adiposity, insulin resistance and cancer risk. Diabetol Metab Syndr. 2011;3:12. doi: 10.1186/1758-5996-3-12.
    1. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the framingham heart study. Circulation. 2007;116(1):39–48. doi: 10.1161/CIRCULATIONAHA.106.675355.
    1. Tsujinaka S, Konishi F, Kawamura YJ, Saito M, Tajima N, Tanaka O, Lefor AT. Visceral obesity predicts surgical outcomes after laparoscopic colectomy for sigmoid colon cancer. Dis Colon Rectum. 2008;51(12):1757–1765. doi: 10.1007/s10350-008-9395-0.
    1. Oh TH, Byeon JS, Myung SJ, Yang SK, Choi KS, Chung JW, Kim B, Lee D, Byun JH, Jang SJ, Kim JH. Visceral obesity as a risk factor for colorectal neoplasm. J Gastroenterol Hepatol. 2008;23(3):411–417. doi: 10.1111/j.1440-1746.2007.05125.x.
    1. Schapira DV, Clark RA, Wolff PA, Jarrett AR, Kumar NB, Aziz NM. Visceral obesity and breast cancer risk. Cancer. 1994;74(2):632–639. doi: 10.1002/1097-0142(19940715)74:2<632::AID-CNCR2820740215>;2-T.
    1. Hafe VP, Pina F, Pérez A, Tavares M, Barros H. Visceral fat accumulation as a risk factor for prostate cancer. Obes Res. 2004;12:1930–1935. doi: 10.1038/oby.2004.242.
    1. Romaguera D, Ängquist L, Du H, Jakobsen MU, Forouhi NG, Halkjær J, et al. Food composition of the diet in relation to changes in waist circumference adjusted for body mass index. PLoS ONE. 2011;6(8):e23384. doi: 10.1371/journal.pone.0023384.
    1. Pasiakos SM, Lieberman HR, Fulgoni VL. Higher-protein diets are associated with higher HDL cholesterol and lower BMI and waist circumference in US adults. J Nutr. 2015;145(3):605–614. doi: 10.3945/jn.114.205203.
    1. Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes. 2010;34:791–799. doi: 10.1038/ijo.2010.5.
    1. Grundy SM, Neeland IJ, Turer AT, Vega GL. Waist circumference as measure of abdominal fat compartments. J Obes. 2013;2013:454285. doi: 10.1155/2013/454285.
    1. Björntorp P. Metabolic difference between visceral fat and subcutaneous abdominal fat. Diabetes Metab. 2000;26(Suppl 3):10–12.
    1. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28(6):10–15. doi: 10.1161/ATVBAHA.107.159228.
    1. Misra A, Vikram NK, Gupta R, Pandey RM, Wasir JS, Gupta VP. Waist circumference cutoff points and action levels for Asian Indians for identification of abdominal obesity. Int. J. Obes. 2006;30:106–111. doi: 10.1038/sj.ijo.0803111.
    1. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360:859–873. doi: 10.1056/NEJMoa0804748.
    1. de Souza RJ, Bray GA, Carey VJ, Hall KD, LeBoff MS, Loria CM. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am J Clin Nutr. 2012;95(3):614–625. doi: 10.3945/ajcn.111.026328.
    1. Luscombe ND, Clifton PM, Noakes M, Parker B, Wittert G. Effects of energy-restricted diets containing increased protein on weight loss, resting energy expenditure, and the thermic effect of feeding in type 2 diabetes. Diabetes Care. 2002;25(4):652–657. doi: 10.2337/diacare.25.4.652.
    1. Leidy HJ, Clifton PM, Astrup A, Wycherley TP, Westerterp-Plantenga MS, Luscombe-Marsh ND, et al. The role of protein in weight loss and maintenance. Am J Clin Nutr. 2015;101(6):1320S–1329S. doi: 10.3945/ajcn.114.084038.
    1. Elfhag K, Rössner S. Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Int Assoc Study Obes Obes Rev. 2005;6:67–85. doi: 10.1111/j.1467-789X.2005.00170.x.
    1. Strohacker K, Carpenter KC, Brian K. Consequences of weight cycling: an increase in disease risk? Int J Exerc Sci. 2009;2(3):191–201.

Source: PubMed

3
Abonneren