Cytokine and interleukin profile in patients with headache and COVID-19: A pilot, CASE-control, study on 104 patients

Javier Trigo, David García-Azorín, Álvaro Sierra-Mencía, Álvaro Tamayo-Velasco, Pedro Martínez-Paz, Eduardo Tamayo, Angel Luis Guerrero, Hugo Gonzalo-Benito, Javier Trigo, David García-Azorín, Álvaro Sierra-Mencía, Álvaro Tamayo-Velasco, Pedro Martínez-Paz, Eduardo Tamayo, Angel Luis Guerrero, Hugo Gonzalo-Benito

Abstract

Background: The presence of headache during the acute phase of COVID-19 could be associated with the innate response and the cytokine release. We aim to compare the cytokine and interleukin profile in hospitalized COVID-19 patients at the moment of admission with and without headache during the course of the disease.

Methods: An observational analytic study with a case control design was performed. Hospitalized patients from a tertiary hospital with confirmed COVID-19 disease were included. Patients were classified into the headache or the control group depending on whether they presented headache not better accounted for by another headache disorder other than acute headache attributed to systemic viral infection. Several demographic and clinical variables were studies in both groups. We determined the plasmatic levels of 45 different cytokines and interleukins from the first hospitalization plasma extraction in both groups.

Results: One hundred and four patients were included in the study, aged 67.4 (12.8), 43.3% female. Among them, 29 (27.9%) had headache. Patients with headache were younger (61.8 vs. 69.5 years, p = 0.005) and had higher frequency of fever (96.6 vs. 78.7%, p = 0.036) and anosmia (48.3% vs. 22.7%, p = 0.016). In the comparison of the crude median values of cytokines, many cytokines were different between both groups. In the comparison of the central and dispersion parameters between the two groups, GROa, IL-10, IL1RA, IL-21, IL-22 remained statistically significant. After adjusting the values for age, sex, baseline situation and COVID-19 severity, IL-10 remained statistically significant (3.3 vs. 2.2 ng/dL, p = 0.042), with a trend towards significance in IL-23 (11.9 vs. 8.6 ng/dL, p = 0.082) and PIGF1 (1621.8 vs. 110.6 ng/dL, p = 0.071).

Conclusions: The higher levels of IL-10 -an anti-inflammatory cytokine- found in our sample in patients with headache may be explained as a counteract of cytokine release, reflecting a more intense immune response in these patients.

Keywords: COVID-19; Cytokines; Headache disorders; Immune system; Interleukins.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Comparison of median IL-10 levels between COVID-19 patients with and without headache by ANCOVA test, adjusting for age, sex, baseline disability and COVID-19 severity
Fig. 2
Fig. 2
Comparison of median IL-23 levels between COVID-19 patients with and without headache by ANCOVA test, adjusting for age, sex, baseline disability and COVID-19 severity
Fig. 3
Fig. 3
Comparison of median PIGF1 levels between COVID-19 patients with and without headache by ANCOVA test, adjusting for age, sex, baseline disability and COVID-19 severity

References

    1. Favas TT, Dev P, Chaurasia RN, Chakravarty K, Mishra R, Joshi D, Mishra VN, Kumar A, Singh VK, Pandey M, Pathak A. Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurol Sci. 2020;41(12):3437–3470. doi: 10.1007/s10072-020-04801-y.
    1. García-Azorín D, Trigo J, Talavera B, Martínez-Pías E, Sierra Á. Porta-Etessam. Et al. frequency and type of red flags in patients with COVID-19 and headache: A series of 104 hospitalized patients. Headache. 2020;60(8):1664–1672. doi: 10.1111/head.13927.
    1. Porta-Etessam J, Matías-Guiu JA, González-García N, Gómez Iglesias P, Santos-Bueso E, Arriola-Villalobos P, García-Azorín D, Matías-Guiu J. Spectrum of headaches associated with SARS-CoV-2 infection: study of healthcare professionals. Headache. 2020;60(8):1697–1704. doi: 10.1111/head.13902.
    1. Trigo J, García-Azorín D, Planchuelo-Gómez Á, Martínez-Pías E, Talavera B, Hernández-Pérez I, Valle-Peñacoba G, Simón-Campo P, de Lera M, Chavarría-Miranda A, López-Sanz C, Gutiérrez-Sánchez M, Martínez-Velasco E, Pedraza M, Sierra Á, Gómez-Vicente B, Arenillas JF, Guerrero ÁL. Factor associated with the presence of headache in hospitalized COVID-19 patients and impact on prognosis: a retrospective cohort study. J Headache Pain. 2020;21(1):94. doi: 10.1186/s10194-020-01165-8.
    1. Talavera B, García-Azorín D, Martínez-Pías E, Trigo J, Hernández-Pérez I, Valle-Peñacoba G, Simón-Campo P, de Lera M, Chavarría-Miranda A, López-Sanz C, Gutiérrez-Sánchez M, Martínez-Velasco E, Pedraza M, Sierra Á, Gómez-Vicente B, Guerrero Á, Arenillas JF. Anosmia is associated with lower-in hospital mortality in COVID19. J Neurol Sci. 2020;419:117163. doi: 10.1016/j.jns.2020.117163.
    1. Planchuelo-Gómez Á, Trigo J, de Luis-García R, Guerrero ÁL, Porta-Etessam J, García-Azorín D, et al. Deep phenotyping of headache in hospitalized COVID-19 patients via principal component analysis. Front Neurol. 2020;11:583870. doi: 10.3389/fneur.2020.583870.
    1. Trigo J, García-Azorín D, Planchuelo-Gómez Á, García-Iglesias C, Dueñas-Gutiérrez C, Guerrero ÁL. Phenotypic characterization of acute headache attributed to SARS-CoV-2: An ICHD-3 validation study on 106 hospitalized patients. Cephalalgia. 2020;40(13):1432–1442. doi: 10.1177/0333102420965146.
    1. De Marinis M, Welch KM. Headache associated with non-cephalic infections: classification and mechanisms. Cephalalgia. 1992;12(4):197–201. doi: 10.1046/j.1468-2982.1992.1204197.x.
    1. Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108(1):17–41. doi: 10.1002/JLB.3COVR0520-272R.
    1. Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol. 2020;10(9):200160. doi: 10.1098/rsob.200160.
    1. Headache Classification Committee of the International Headache Society (IHS) The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. doi: 10.1177/0333102417738202.
    1. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, Cooley LA, Dean NC, Fine MJ, Flanders SA, Griffin MR, Metersky ML, Musher DM, Restrepo MI, Whitney CG. Diagnosis and treatment of adults with community-acquired pneumonia: an official clinical practice guideline of the American thoracic society and infectious disease society of America. Am J Respir Crit Care Med. 2019;200(7):e45–e67. doi: 10.1164/rccm.201908-1581ST.
    1. Bobker SM, Robbins MS. COVID-19 and headache: A primer for trainees. Headache. 2020;60(8):1806–1811. doi: 10.1111/head.13884.
    1. Caronna E, Ballvé A, Llauradó A, Gallardo VJ, Ariton DM, Lallana S, et al. Headache; A striking prodromal and persistent symptom, predictive of COVID19 clinical evolution. Principio del formulario Final del formulario Cephalalgia. 2020;40(13):1410–1421.
    1. Smith RS. The cytokine theory of headache. Med Hypotheses. 1992;39(2):168–174. doi: 10.1016/0306-9877(92)90181-B.
    1. Chapman PB, Lester TJ, Casper ES, Gabrilove JL, Wong GY, Kempin SJ, Gold PJ, Welt S, Warren RS, Starnes HF. Clinical phamra- cology of recombinant human tumor necrosis factor in patients with advanced cancer. J Clin Oncol. 1987;5(12):1942–1951. doi: 10.1200/JCO.1987.5.12.1942.
    1. Fent K, Zbinden G. Toxicity of interferon and interleukin. Trends Pharmacol Sci. 1987;8(3):100–105. doi: 10.1016/0165-6147(87)90083-6.
    1. Kemper RH, Meijler WJ, Korf J, Ter Horst GJ. Migraine and function of the immune system: a meta-analysis of clinical literature published between 1966 and 1999. Cephalalgia. 2001;21(5):549–557. doi: 10.1046/j.1468-2982.2001.00196.x.
    1. Covelli V, Munno I, Pellegrino NM, Di VA, Jirillo E, Buscaino GA. Exaggerated spontaneous release of tumor necrosis factor-alpha-cachectin in patients with migraine without aura. Acta Neurol. 1990;45:257–263.
    1. Covelli V, Munno I, Pellegrino NM, Attamura M, Decandia P, Marcuccio C, et al. Are TNF-alpha and IL-1 beta relevant in the pathogenesis of migraine without aura? Acta Neurol. 1991;13(2):205–211.
    1. Yucel M, Kotan D, Gurol Ciftci G, Ciftci IH, Cikriklar HI. Serum levels of endocan, claudin-5 and cytokines in migraine. Eur Rev Med Pharmacol Sci. 2016;20(5):930–936.
    1. Martelletti P, Stirparo G, Rinaldi C, Giacovazzo M. Disruption of the immunopeptidergic network in dietary migraine. Headache. 1993;33(10):524–527. doi: 10.1111/j.1526-4610.1993.hed3310524.x.
    1. Munno I, Marinaro M, Bassi A, Cassiano MA, Causarano V, Centonze V. Immunological aspects in migraine: increase of IL-10 plasma levels during attack. Headache. 2001;41(8):764–767. doi: 10.1046/j.1526-4610.2001.01140.x.
    1. Koçer A, Koçer E, Memişoğullari R, Domaç FM, Yüksel H. Interleukin-6 levels in tension headache patients. Clin J Pain. 2010;26(8):690–693. doi: 10.1097/AJP.0b013e3181e8d9b6.
    1. Domingues RB, Duarte H, Rocha NP, Teixeira AL. Increased serum levels of interleukin-8 in patients with tension-type headache. Cephalalgia. 2015;35(9):801–806. doi: 10.1177/0333102414559734.
    1. Eccles R. Understanding the symptoms of the common cold and influenza. Lancet Infect Dis. 2005;5(11):718–725. doi: 10.1016/S1473-3099(05)70270-X.
    1. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, Zhang P, Liu X, Gao G, Liu F, Jiang Y, Cheng X, Zhu C, Xia Y. Profiling serum cytokines in COVID19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–1130. doi: 10.1080/22221751.2020.1770129.
    1. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27–37. doi: 10.1097/AIA.0b013e318034194e.
    1. Schmitt H, Neurath MF, Atreya R. Role of the IL23/IL17 pathway in Crohn’s disease. Front Immunol. 2021;12:622934. doi: 10.3389/fimmu.2021.622934.
    1. Oura H, Bertoncini J, Velasco P, Brown LF, Carmeliet P, Detmar M. A critical role of placental growth factor in the induction of inflammation and edema formation. Blood. 2003;101(2):560–567. doi: 10.1182/blood-2002-05-1516.
    1. Del Prete G, De Carli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S. Human IL-10 is pro- duced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol. 1993;150:353–360.
    1. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JA, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA 2020; 324: 1330
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;396:1033. doi: 10.1016/S0140-6736(20)30628-0.
    1. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2:e325. doi: 10.1016/S2665-9913(20)30127-2.
    1. Rocha-Filho PAS, Magalhães JE. Headache associated with COVID-19: frequency, characteristics and association with anosmia and ageusia. Cephalalgia. 2020;40(13):1443–1451. doi: 10.1177/0333102420966770.
    1. Martelletti P, Bentivegna E, Luciani M, Spuntarelli V. Headache as a prognostic factor for COVID-19. Time to re-evaluate. SN Compr Clin Med. 2020;26:1–2.
    1. Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M, Jr, Lane AP. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020;56(3):2001948. doi: 10.1183/13993003.01948-2020.
    1. A-Torabi A, Mohammadbagheri E, Akbari Dilmaghani N, Bayat AH, Fathi M, Vakili K, et al. Proinflammatory cytokines in the olfactory mucosa result in COVID-19 induced anosmia. ACS Chem Neurosci. 2020;11(13):1909–1913. doi: 10.1021/acschemneuro.0c00249.
    1. Tarakad A, Jankovic J. Anosmia and Ageusia in Parkinson’s disease. Int Rev Neurobiol. 2017;133:541–556. doi: 10.1016/bs.irn.2017.05.028.
    1. Lovati C, Lombardo D, Peruzzo S, Bellotti A, Capogrosso CA, Pantoni L. Osmophobia in migraine: multifactorial investigation and population-based survey. Neurol Sci. 2020;41(Suppl 2):453–454. doi: 10.1007/s10072-020-04656-3.
    1. Bolay H, Gül A, Baykan B. COVID-19 is a real headache! Headache. 2020;60(7):1415–1421. doi: 10.1111/head.13856.

Source: PubMed

3
Abonneren