Effects of age-related hearing loss and background noise on neuromagnetic activity from auditory cortex

Claude Alain, Anja Roye, Claire Salloum, Claude Alain, Anja Roye, Claire Salloum

Abstract

Aging is often accompanied by hearing loss, which impacts how sounds are processed and represented along the ascending auditory pathways and within the auditory cortices. Here, we assess the impact of mild binaural hearing loss on the older adults' ability to both process complex sounds embedded in noise and to segregate a mistuned harmonic in an otherwise periodic stimulus. We measured auditory evoked fields (AEFs) using magnetoencephalography while participants were presented with complex tones that had either all harmonics in tune or had the third harmonic mistuned by 4 or 16% of its original value. The tones (75 dB sound pressure level, SPL) were presented without, with low (45 dBA SPL), or with moderate (65 dBA SPL) Gaussian noise. For each participant, we modeled the AEFs with a pair of dipoles in the superior temporal plane. We then examined the effects of hearing loss and noise on the amplitude and latency of the resulting source waveforms. In the present study, results revealed that similar noise-induced increases in N1m were present in older adults with and without hearing loss. Our results also showed that the P1m amplitude was larger in the hearing impaired than in the normal-hearing adults. In addition, the object-related negativity (ORN) elicited by the mistuned harmonic was larger in hearing impaired listeners. The enhanced P1m and ORN amplitude in the hearing impaired older adults suggests that hearing loss increased neural excitability in auditory cortices, which could be related to deficits in inhibitory control.

Keywords: MEG; aging; auditory cortex; hearing loss; inhibition (psychology).

Figures

Figure 1
Figure 1
Group mean audiometric thresholds in normal hearing and hearing impaired older adults for octave frequencies between 250 and 8000 Hz. The error bars indicate standard error of the mean.
Figure 2
Figure 2
Group mean likelyhood of reporting hearing two concurrent sounds as a function of mistuning and background noise. The error bars indicate ±1 standard error of the mean. Normal hearing: darker gray bar; Hearing impaired: lighter gray bar.
Figure 3
Figure 3
(A) Group mean sensitivity (d′) and (B) response bias (β) for each background noise condition for the 4% and for the 16% mistuned harmonics in normal hearing and in hearing impaired older adults. The error bars indicate ±1 standard error of the mean.
Figure 4
Figure 4
(A) Butterfly plot showing AEFs from a representative normal hearing older adult (top) and a hearing impaired older adult (bottom) averaged over all stimulus types from all sensors. (B) The contour maps for the N1m for these two participants indicate the direction of the magnetic flux (i.e., blue = negative, red = positive). (C) The group mean dipole location for the N1m from the normal and hearing impaired older adults overlaid on a magnetic resonance imaging template from BESA (5.3).
Figure 5
Figure 5
Group mean source waveform from the left hemisphere (LH) and the right hemisphere (RH) for tuned (top) and mistuned stimuli.
Figure 6
Figure 6
Group mean source waveform for the tuned and the 16% mistuned stimuli and the corresponding difference in source waveforms. The ORN peaked earlier when the harmonic was mistuned by 16% (M = 165, s.e. = 1.7 ms) than when it was mistuned by 4% (M = 175, s.e. = 1.7 ms), F(1,32) = 18.71, P < 0.001, η2 = 0.37. The effect of hearing status was not significant (F(1,32)= 2.10, P = 0.16) nor was the effect of noise (F < 1) or hemisphere (F(1,32) = 2.70, P = 0.11). The interaction between hearing status and mistuning was not significant (F(1,32) = 2.01, P = 0.17) nor was the interaction between hearing status and noise (F < 1).

References

    1. Alain C., Arnott S. R., Picton T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: evidence from event-related brain potentials. J. Exp. Psychol. Hum. Percept. Perform. 27, 1072–1089 10.1037/0096-1523.27.5.1072
    1. Alain C., McDonald K. L. (2007). Age-related differences in neuromagnetic brain activity underlying concurrent sound perception. J. Neurosci. 27, 1308–1314 10.1523/jneurosci.5433-06.2007
    1. Alain C., McDonald K., Van Roon P. (2012). Effects of age and background noise on processing a mistuned harmonic in an otherwise periodic complex sound. Hear. Res. 283, 126–135 10.1016/j.heares.2011.10.007
    1. Alain C., Quan J., McDonald K., Van Roon P. (2009). Noise-induced increase in human auditory evoked neuromagnetic fields. Eur. J. Neurosci. 30, 132–142 10.1111/j.1460-9568.2009.06792.x
    1. Alain C., Schuler B. M., McDonald K. L. (2002). Neural activity associated with distinguishing concurrent auditory objects. J. Acoust. Soc. Am. 111, 990–995 10.1121/1.1434942
    1. Alain C., Snyder J. S. (2008). Age-related differences in auditory evoked responses during rapid perceptual learning. Clin. Neurophysiol. 119, 356–366 10.1016/j.clinph.2007.10.024
    1. Alain C., Woods D. L. (1999). Age-related changes in processing auditory stimuli during visual attention: evidence for deficits in inhibitory control and sensory memory. Psychol. Aging 14, 507–519 10.1037/0882-7974.14.3.507
    1. Alain C., Woods D. L., Knight R. T. (1998). A distributed cortical network for auditory sensory memory in humans. Brain Res. 812, 23–37 10.1016/s0006-8993(98)00851-8
    1. Alho K., Woods D. L., Algazi A., Knight R. T., Naatanen R. (1994). Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalogr. Clin. Neurophysiol. 91, 353–362 10.1016/0013-4694(94)00173-1
    1. Amenedo E., Diaz F. (1999). Ageing-related changes in the processing of attended and unattended standard stimuli. Neuroreport 10, 2383–2388 10.1097/00001756-199908020-00030
    1. Anderer P., Semlitsch H. V., Saletu B. (1996). Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalogr. Clin. Neurophysiol. 99, 458–472 10.1016/s0013-4694(96)96518-9
    1. Anderson S., Chandrasekaran B., Yi H. G., Kraus N. (2010). Cortical-evoked potentials reflect speech-in-noise perception in children. Eur. J. Neurosci. 32, 1407–1413 10.1111/j.1460-9568.2010.07409.x
    1. Arnott S. R., Bardouille T., Ross B., Alain C. (2011). Neural generators underlying concurrent sound segregation. Brain Res. 1387, 116–124 10.1016/j.brainres.2011.02.062
    1. Barrett G., Neshige R., Shibasaki H. (1987). Human auditory and somatosensory event-related potentials: effects of response condition and age. Electroencephalogr. Clin. Neurophysiol. 66, 409–419 10.1016/0013-4694(87)90210-0
    1. Bertoli S., Smurzynski J., Probst R. (2002). Temporal resolution in young and elderly subjects as measured by mismatch negativity and a psychoacoustic gap detection task. Clin. Neurophysiol. 113, 396–406 10.1016/s1388-2457(02)00013-5
    1. Bertoli S., Smurzynski J., Probst R. (2005). Effects of age, age-related hearing loss, and contralateral cafeteria noise on the discrimination of small frequency changes: psychoacoustic and electrophysiological measures. J. Assoc. Res. Otolaryngol. 6, 207–222 10.1007/s10162-005-5029-6
    1. Caspary D. M., Milbrandt J. C., Helfert R. H. (1995). Central auditory aging: GABA changes in the inferior colliculus. Exp. Gerontol. 30, 349–360 10.1016/0531-5565(94)00052-5
    1. Caspary D. M., Schatteman T. A., Hughes L. F. (2005). Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J. Neurosci. 25, 10952–10959 10.1523/jneurosci.2451-05.2005
    1. Chao L. L., Knight R. T. (1997). Prefrontal deficits in attention and inhibitory control with aging. Cereb. Cortex 7, 63–69 10.1093/cercor/7.1.63
    1. Dietrich V., Nieschalk M., Stoll W., Rajan R., Pantev C. (2001). Cortical reorganization in patients with high frequency cochlear hearing loss. Hear. Res. 158, 95–101 10.1016/s0378-5955(01)00282-9
    1. Emmer M. B., Silman S., Silverman C. A., Levitt H. (2006). Temporal integration of the contralateral acoustic-reflex threshold and its age-related changes. J. Acoust. Soc. Am. 120, 1467–1473 10.1121/1.2221415
    1. Etymotic Research (2001). “QuickSIN Speech-in-Noise Test, Version 1.3.” (Compact Disk) 61 Martin Lane, Elk Grove Village, IL 60007.
    1. Fabiani M., Low K. A., Wee E., Sable J. J., Gratton G. (2006). Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults. J. Cogn. Neurosci. 18, 637–650 10.1162/jocn.2006.18.4.637
    1. Ford J. M., Pfefferbaum A. (1991). Event-related potentials and eyeblink responses in automatic and controlled processing: effects of age. Electroencephalogr. Clin. Neurophysiol. 78, 361–377 10.1016/0013-4694(91)90098-o
    1. Ford J. M., Roth W. T., Mohs R. C., Hopkins W. F., 3rd, Kopell B. S. (1979). Event-related potentials recorded from young and old adults during a memory retrieval task. Electroencephalogr. Clin. Neurophysiol. 47, 450–459 10.1016/0013-4694(79)90161-5
    1. Gazzaley A., Cooney J. W., Rissman J., D’Esposito M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nat. Neurosci. 8, 1298–1300 10.1038/nn1543
    1. Gleich O., Kittel M. C., Klump G. M., Strutz J. (2007). Temporal integration in the gerbil: the effects of age, hearing loss and temporally unmodulated and modulated speech-like masker noises. Hear. Res. 224, 101–114 10.1016/j.heares.2006.12.002
    1. Goodin D. S., Squires K. C., Henderson B. H., Starr A. (1978). Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalogr. Clin. Neurophysiol. 44, 447–458 10.1016/0013-4694(78)90029-9
    1. Han L., Liu Y., Zhang D., Jin Y., Luo Y. (2013). Low-arousal speech noise improves performance in N-Back task: an ERP study. PLoS One 8:e76261 10.1371/journal.pone.0076261
    1. Hari R. (1991). Activation of the human auditory cortex by speech sounds. Acta Otolaryngol. Suppl. 491, 132–137; discussion 138 10.3109/00016489109136790
    1. Hari R., Aittoniemi K., Jarvinen M. L., Katila T., Varpula T. (1980). Auditory evoked transient and sustained magnetic fields of the human brain. Localization of neural generators. Exp. Brain Res. 40, 237–240 10.1007/bf00237543
    1. Harkrider A. W., Plyler P. N., Hedrick M. S. (2006). Effects of hearing loss and spectral shaping on identification and neural response patterns of stop-consonant stimuli. J. Acoust. Soc. Am. 120, 915–925 10.1121/1.2204588
    1. Hautus M. J., Johnson B. W. (2005). Object-related brain potentials associated with the perceptual segregation of a dichotically embedded pitch. J. Acoust. Soc. Am. 117, 275–280 10.1121/1.1828499
    1. Hillyard S. A., Squires K. C., Bauer J. W., Lindsay P. H. (1971). Evoked potential correlates of auditory signal detection. Science 172, 1357–1360 10.1126/science.172.3990.1357
    1. Huang Y., Huang Q., Chen X., Wu X., Li L. (2009). Transient auditory storage of acoustic details is associated with release of speech from informational masking in reverberant conditions. J. Exp. Psychol. Hum. Percept. Perform. 35, 1618–1628 10.1037/a0015791
    1. Humes L. E., Dubno J. R., Gordon-Salant S., Lister J. J., Cacace A. T., Cruickshanks K. J., et al. (2012). Central presbycusis: a review and evaluation of the evidence. J. Am. Acad. Audiol. 23, 635–666 10.3766/jaaa.23.8.5
    1. Iragui V. J., Kutas M., Mitchiner M. R., Hillyard S. A. (1993). Effects of aging on event-related brain potentials and reaction times in an auditory oddball task. Psychophysiology 30, 10–22 10.1111/j.1469-8986.1993.tb03200.x
    1. Killion M. C., Niquette P. A., Gudmundsen G. I., Revit L. J., Banerjee S. (2004). Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners. J. Acoust. Soc. Am. 116, 2395–2405 10.1121/1.2166610
    1. Knight R. T., Scabini D., Woods D. L. (1989). Prefrontal cortex gating of auditory transmission in humans. Brain Res. 504, 338–342 10.1016/0006-8993(89)91381-4
    1. Koike K. J., Hurst M. K., Wetmore S. J. (1994). Correlation between the American Academy of Otolaryngology-Head and Neck Surgery five-minute hearing test and standard audiologic data. Otolaryngol. Head Neck Surg. 111, 625–632 10.1016/s0194-5998(94)70531-3
    1. Kotak V. C., Fujisawa S., Lee F. A., Karthikeyan O., Aoki C., Sanes D. H. (2005). Hearing loss raises excitability in the auditory cortex. J. Neurosci. 25, 3908–3918 10.1523/JNEUROSCI.5169-04.2005
    1. Kovacevic S., Qualls C., Adair J. C., Hudson D., Woodruff C. C., Knoefel J., et al. (2005). Age-related effects on superior temporal gyrus activity during an auditory oddball task. Neuroreport 16, 1075–1079 10.1097/00001756-200507130-00009
    1. Leonard C. M., Puranik C., Kuldau J. M., Lombardino L. J. (1998). Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb. Cortex 8, 397–406 10.1093/cercor/8.5.397
    1. Lightfoot G., Kennedy V. (2006). Cortical electric response audiometry hearing threshold estimation: accuracy, speed and the effects of stimulus presentation features. Ear Hear. 27, 443–456 10.1097/01.aud.0000233902.53432.48
    1. Lister J. J., Maxfield N. D., Pitt G. J., Gonzalez V. B. (2011). Auditory evoked response to gaps in noise: older adults. Int. J. Audiol. 50, 211–225 10.3109/14992027.2010.526967
    1. Martin B. A., Kurtzberg D., Stapells D. R. (1999). The effects of decreased audibility produced by high-pass noise masking on N1 and the mismatch negativity to speech sounds /ba/and/da. J. Speech Lang. Hear. Res. 42, 271–286
    1. Martin B. A., Sigal A., Kurtzberg D., Stapells D. R. (1997). The effects of decreased audibility produced by high-pass noise masking on cortical event-related potentials to speech sounds/ba/and/da. J. Acoust. Soc. Am. 101, 1585–1599 10.1121/1.418146
    1. Martin B. A., Stapells D. R. (2005). Effects of low-pass noise masking on auditory event-related potentials to speech. Ear Hear. 26, 195–213 10.1097/00003446-200504000-00007
    1. Martin J. S., Jerger J. F. (2005). Some effects of aging on central auditory processing. J. Rehabil. Res. Dev. 42, 25–44 10.1682/jrrd.2004.12.0164
    1. Matilainen L. E., Talvitie S. S., Pekkonen E., Alku P., May P. J., Tiitinen H. (2010). The effects of healthy aging on auditory processing in humans as indexed by transient brain responses. Clin. Neurophysiol. 121, 902–911 10.1016/j.clinph.2010.01.007
    1. Moore B. C., Glasberg B. R., Peters R. W. (1986). Thresholds for hearing mistuned partials as separate tones in harmonic complexes. J. Acoust. Soc. Am. 80, 479–483 10.1121/1.394043
    1. Morita T., Naito Y., Nagamine T., Fujiki N., Shibasaki H., Ito J. (2003). Enhanced activation of the auditory cortex in patients with inner-ear hearing impairment: a magnetoencephalographic study. Clin. Neurophysiol. 114, 851–859 10.1016/s1388-2457(03)00033-6
    1. Pantev C., Ross B., Berg P., Elbert T., Rockstroh B. (1998). Study of the human auditory cortices using a whole-head magnetometer: left vs. right hemisphere and ipsilateral vs. contralateral stimulation. Audiol. Neurootol. 3, 183–190 10.1159/000013789
    1. Parbery-Clark A., Marmel F., Bair J., Kraus N. (2011). What subcortical-cortical relationships tell us about processing speech in noise. Eur. J. Neurosci. 33, 549–557 10.1111/j.1460-9568.2010.07546.x
    1. Pekkonen E., Huotilainen M., Virtanen J., Sinkkonen J., Rinne T., Ilmoniemi R. J., et al. (1995). Age-related functional differences between auditory cortices: a whole-head MEG study. Neuroreport 6, 1803–1806 10.1097/00001756-199509000-00023
    1. Penhune V. B., Zatorre R. J., MacDonald J. D., Evans A. C. (1996). Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb. Cortex 6, 661–672 10.1093/cercor/6.5.661
    1. Pettigrew C. M., Murdoch B. E., Ponton C. W., Kei J., Chenery H. J., Alku P. (2004). Subtitled videos and mismatch negativity (MMN) investigations of spoken word processing. J. Am. Acad. Audiol. 15, 469–485 10.3766/jaaa.15.7.2
    1. Pfefferbaum A., Ford J. M., Roth W. T., Kopell B. S. (1980). Age-related changes in auditory event-related potentials. Electroencephalogr. Clin. Neurophysiol. 49, 266–276
    1. Picton T. W., Alain C., Woods D. L., John M. S., Scherg M., Valdes-Sosa P., et al. (1999). Intracerebral sources of human auditory-evoked potentials. Audiol. Neurootol. 4, 64–79 10.1159/000013823
    1. Picton T. W., Stuss D. T., Champagne S. C., Nelson R. F. (1984). The effects of age on human event-related potentials. Psychophysiology 21, 312–325 10.1111/j.1469-8986.1984.tb02941.x
    1. Rademacher J., Morosan P., Schormann T., Schleicher A., Werner C., Freund H. J., et al. (2001). Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13, 669–683 10.1006/nimg.2000.0714
    1. Reite M., Adams M., Simon J., Teale P., Sheeder J., Richardson D., et al. (1994). Auditory M100 component 1: relationship to Heschl’s gyri. Brain Res. Cogn. Brain Res. 2, 13–20 10.1016/0926-6410(94)90016-7
    1. Ross B., Fujioka T., Tremblay K. L., Picton T. W. (2007). Aging in binaural hearing begins in mid-life: evidence from cortical auditory-evoked responses to changes in interaural phase. J. Neurosci. 27, 11172–11178 10.1523/jneurosci.1813-07.2007
    1. Ross B., Schneider B., Snyder J. S., Alain C. (2010). Biological markers of auditory gap detection in young, middle-aged and older adults. PLoS One 5:e10101 10.1371/journal.pone.0010101
    1. Ross B., Tremblay K. (2009). Stimulus experience modifies auditory neuromagnetic responses in young and older listeners. Hear. Res. 248, 48–59 10.1016/j.heares.2008.11.012
    1. Sarvas J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22 10.1088/0031-9155/32/1/004
    1. Scherg M., Von Cramon D. (1986). Evoked dipole source potentials of the human auditory cortex. Electroencephalogr. Clin. Neurophysiol. 65, 344–360 10.1016/0168-5597(86)90014-6
    1. Shtyrov Y., Kujala T., Ilmoniemi R. J., Naatanen R. (1999). Noise affects speech-signal processing differently in the cerebral hemispheres. Neuroreport 10, 2189–2192 10.1097/00001756-199907130-00034
    1. Smith D. B., Michalewski H. J., Brent G. A., Thompson L. W. (1980). Auditory averaged evoked potentials and aging: factors of stimulus, task and topography. Biol. Psychol. 11, 135–151 10.1016/0301-0511(80)90048-4
    1. Soros P., Teismann I. K., Manemann E., Lutkenhoner B. (2009). Auditory temporal processing in healthy aging: a magnetoencephalographic study. BMC Neurosci. 10:34 10.1186/1471-2202-10-34
    1. Tremblay K. L., Billings C., Rohila N. (2004). Speech evoked cortical potentials: effects of age and stimulus presentation rate. J. Am. Acad. Audiol. 15, 226–237; quiz 264 10.3766/jaaa.15.3.5
    1. Tremblay K. L., Piskosz M., Souza P. (2002). Aging alters the neural representation of speech cues. Neuroreport 13, 1865–1870 10.1097/00001756-200210280-00007
    1. Tremblay K. L., Piskosz M., Souza P. (2003). Effects of age and age-related hearing loss on the neural representation of speech cues. Clin. Neurophysiol. 114, 1332–1343 10.1016/s1388-2457(03)00114-7
    1. West R., Alain C. (2000). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology 37, 179–189 10.1111/1469-8986.3720179
    1. West R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychol. Bull. 120, 272–292 10.1037//0033-2909.120.2.272
    1. Whiting K. A., Martin B. A., Stapells D. R. (1998). The effects of broadband noise masking on cortical event-related potentials to speech sounds /ba/ and /da. Ear Hear. 19, 218–231 10.1097/00003446-199806000-00005
    1. Willott J. F., Lu S. M. (1982). Noise-induced hearing loss can alter neural coding and increase excitability in the central nervous system. Science 216, 1331–1334 10.1126/science.7079767
    1. Woods D. L., Clayworth C. C., Knight R. T., Simpson G. V., Naeser M. A. (1987). Generators of middle- and long-latency auditory evoked potentials: implications from studies of patients with bitemporal lesions. Electroencephalogr. Clin. Neurophysiol. 68, 132–148 10.1016/0168-5597(87)90040-2

Source: PubMed

3
Abonneren