Maladaptive neural synchrony in tinnitus: origin and restoration

Jos J Eggermont, Peter A Tass, Jos J Eggermont, Peter A Tass

Abstract

Tinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting-state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane-potential changes in local neural groups as reflected in the local field potentials, resulting in the presence of oscillatory brain waves in the EEG. Noise-induced hearing loss, often resulting in tinnitus, causes a reorganization of the tonotopic map in auditory cortex and increased spontaneous firing rates and neural synchrony. Spontaneous brain rhythms rely on neural synchrony. Abnormal neural synchrony in tinnitus appears to be confined to specific frequency bands of brain rhythms. Increases in delta-band activity are generated by deafferented/deprived neuronal networks resulting from hearing loss. Coordinated reset (CR) stimulation was developed in order to specifically counteract such abnormal neuronal synchrony by desynchronization. The goal of acoustic CR neuromodulation is to desynchronize tinnitus-related abnormal delta-band oscillations. CR neuromodulation does not require permanent stimulus delivery in order to achieve long-lasting desynchronization or even a full-blown anti-kindling but may have cumulative effects, i.e., the effect of different CR epochs separated by pauses may accumulate. Unlike other approaches, acoustic CR neuromodulation does not intend to reduce tinnitus-related neuronal activity by employing lateral inhibition. The potential efficacy of acoustic CR modulation was shown in a clinical proof of concept trial, where effects achieved in 12 weeks of treatment delivered 4-6 h/day persisted through a preplanned 4-week therapy pause and showed sustained long-term effects after 10 months of therapy, leading to 75% responders.

Keywords: brain rhythms; coordinated reset; neural plasticity; neural synchrony; tinnitus.

Figures

Figure 1
Figure 1
Acoustic coordinated reset (CR) neuromodulation. (A) CR neuromodulation means to deliver phase resetting stimuli to neuronal subpopulations in a spatiotemporally coordinated manner in order to induce desynchronization and eventually anti-kindling (104, 109, 110): employing the tonotopic organization of the primary auditory cortex [left, brain adapted from Chittka and Brockmann (135) with kind permission of the authors] short sinusoidal tones of different frequencies were grouped within approximately one octave around the tinnitus frequency ft (f1 = 0.77 ft, f4 = 1,40 ft) to induce a soft reset (134) of different parts of the synchronized tinnitus focus, respectively. Three CR cycles, each containing a randomized sequence of four tones (left), were followed by two silent cycles (“pause”). That pattern was repeated periodically [compare (104, 109, 110, 115)]. (B) The proof of concept study by Tass et al. (132) comprised four stimulation groups (G1–G4) and one placebo group (G5), where G2 served as active control group. Patients in groups G1, G3, and G4 were treated with acoustic CR neuromodulation, i.e., with four tones (top, f1–f4) grouped around the tinnitus frequency (ft). In all patients, ft was assessed with a pure tone matching. G3 differs only in repetition rate F (i.e., the inverse of the duration of a cycle), which was adapted to the individual EEG δ-band peak at each visit. According to computational studies, continuous online adaptation of F should be beneficial (109, 110). In all other groups, the repetition rate F was set to 1.5 Hz to target delta oscillations (109, 110). Stimulation dosage was 4–6 h/day in G1–G3 and 1 h/day in G4 and G5. For G2 in each CR cycle, a random selection of four tones (dark green: active) was taken out of 12 (middle, f1–f12) surrounding ft. For placebo stimulation (bottom, G5), a similar pattern as for G1 was used, but with down-shifted stimulation frequency fp [fp = 0.7071 ft/(2n), and fp within (300 Hz, 600 Hz)] to ensure stimulation outside the synchronized tinnitus focus. Figure from Tass et al. (132) with kind permission by the authors. Copyright by Forschungszentrum Jülich GmbH.
Figure 2
Figure 2
Electrophysiological effects of acoustic CR neuromodulation studied by Tass et al. (132): 3D mapping of treatment induced changes in spectral power of oscillatory EEG activity (baseline compared to 12 weeks, recorded in off-stimulation condition). To increase signal-to-noise ratio, 12 patients with bilateral tinnitus (from G1, G3, and G4, see Figure 1) were selected using a reliable-change-index (RCI) (147) applied to improvements of TF scores. Statistical non-parametric maps from sLORETA (152) provide localization of changes of δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz), γlow (30–48 Hz), and γhigh (52–90 Hz) spectral power. Results were superimposed onto a three-dimensional brain (first three columns) and onto a horizontal brain section (right column) of a standard anatomical template. Significantly decreased spectral power after acoustic CR neuromodulation compared to baseline is labeled blue, increased spectral power is labeled red (corrected, p < 0.05). Abbreviations: R, rostral; C, caudal; r, right; l, left. Figure from Tass et al. (132) with kind permission by the authors. Copyright by Forschungszentrum Jülich GmbH.

References

    1. Eggermont JJ. Tinnitus: processing of phantom sound. In: Koob GF, Le Moal M, Thompson RF, editors. Encyclopedia of Behavioural Neuroscience. (Vol. 3), Oxford: Academic Press; (2010). p. 405–11.
    1. MacNaughton-Jones H. The etiology of tinnitus aurium. Br Med J (1890) 20:667–72.
    1. Eggermont JJ, Roberts LE. The Neuroscience of tinnitus. Trends Neurosci (2004) 27:676–8210.1016/j.tins.2004.08.010
    1. Schaette R, Kempter R. Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci (2006) 23:3124–3810.1111/j.1460-9568.2006.04774.x
    1. Nondahl DM, Cruickshanks KJ, Huang G-H, Klein BEK, Klein R, Nieto FJ, et al. Tinnitus and its risk factors in the Beaver Dam offspring study. Int J Audiol (2011) 50:313–20.10.3109/14992027.2010.551220
    1. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci (2001) 2:229–39.10.1038/35067550
    1. Braitenberg V, Schüz A. Anatomy of the Cortex. Statistics and Geometry. Berlin: Springer Verlag; (1991).
    1. Abeles M. Local Cortical Circuits. Berlin: Springer Verlag; (1982).
    1. Gil Z, Connors BW, Amitai Y. Efficacy of thalamocortical and intracortical synaptic connections: quanta, innervation, and reliability. Neuron (1999) 23:385–97.10.1016/S0896-6273(00)80788-6
    1. Miller LM, Escabí MA, Read HL, Schreiner CE. Functional convergence of response properties in the auditory thalamocortical system. Neuron (2001) 32:151–60.10.1016/S0896-6273(01)00445-7
    1. Eggermont JJ, Smith GM. Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex. J Neurophysiol (1995) 73:227–45.
    1. Eggermont JJ, Munguia R, Pienkowski M, Shaw G. Comparison of LFP-based and spike-based spectro-temporal receptive fields and neural synchrony in cat primary auditory cortex. PLoS One (2011) 6(5):e20046.10.1371/journal.pone.0020046
    1. Britvina T, Eggermont JJ. Multi-frequency stimulation disrupts spindling activity in anesthetized animals. Neuroscience (2008) 151:888–900.10.1016/j.neuroscience.2007.11.028
    1. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev (1985) 65:37–100.
    1. Berens P, Keliris GA, Ecker AS, Logothetis NK, Tolias AS. Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex. Front Neurosci (2008) 2:199–20710.3389/neuro.01.037.2008
    1. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience (2006) 137:1087–106.10.1016/j.neuroscience.2005.10.029
    1. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci (2007) 8:45–56.10.1038/nrn2044
    1. Fries P, Nikoli D, Singer W. The gamma cycle. Trends Neurosci (2007) 30:309–1610.1016/j.tins.2007.05.005
    1. Wang X-J, Buzsáki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci (1996) 16:6402–13.
    1. Young CK, Eggermont JJ. Coupling of mesoscopic brain oscillations: recent advances in analytical and theoretical perspectives. Prog Neurobiol (2009) 89:61–78.10.1016/j.pneurobio.2009.06.002
    1. Steriade M, Amzica F. Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proc Natl Acad Sci U S A (1996) 93:2533–8.10.1073/pnas.93.6.2533
    1. Llinás RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (1988) 242:1654–64.10.1126/science.3059497
    1. Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science (2004) 304:1926–910.1126/science.1099745
    1. Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci (1995) 18:555–8610.1146/annurev.ne.18.030195.003011
    1. Eggermont JJ. Electric and magnetic fields of synchronous neural activity propagated to the surface of the head: peripheral and central origins of AEPs. In: Burkard RR, Don M, Eggermont JJ, editors. Auditory Evoked Potentials. Baltimore: Lippincott Williams & Wilkins; (2007). p. 2–21.
    1. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron (2006) 52:155–68.10.1016/j.neuron.2006.09.020
    1. Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci (1997) 20:44–9.10.1016/S0166-2236(96)10065-5
    1. Niedermeyer E. Alpha rhythms as physiological and abnormal phenomena. Int J Psychophysiol (1997) 26:31–49.10.1016/S0167-8760(97)00754-X
    1. Nystrom C, Matousek M, Hallstrom T. Relationships between EEG and clinical characteristics in major depressive disorder. Acta Psychiatr Scand (1986) 73:390–4.10.1111/j.1600-0447.1986.tb02700.x
    1. Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A (1999) 96:15222–7.10.1073/pnas.96.26.15222
    1. Noreña AJ, Eggermont JJ. Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport (2006) 17:559–63.10.1097/00001756-200604240-00001
    1. Noreña AJ, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res (2003) 183:137–53.10.1016/S0378-5955(03)00225-9
    1. Eggermont JJ, Komiya H. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res (2000) 142:89–101.10.1016/S0378-5955(00)00024-1
    1. Seki S, Eggermont JJ. Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res (2003) 180:28–38.10.1016/S0378-5955(03)00074-1
    1. Noreña AJ, Tomita M, Eggermont JJ. Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol (2003) 90:2387–401.10.1152/jn.00139.2003
    1. Noreña AJ, Eggermont JJ. Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci (2005) 25:699–705.10.1523/JNEUROSCI.2226-04.2005
    1. Noreña AJ, Gourévitch B, Aizawa N, Eggermont JJ. Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat Neurosci (2006) 9:932–9.10.1038/nn1720
    1. Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, et al. Reversing pathological neural activity using targeted plasticity. Nature (2011) 470:101–4.10.1038/nature09656
    1. Rajan R. Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci (1998) 1:138–43.10.1038/388
    1. Seki S, Eggermont JJ. Changes in cat primary auditory cortex after minor-to-moderate pure-tone induced hearing loss. Hear Res (2002) 173:172–86.10.1016/S0378-5955(02)00518-X
    1. Eggermont JJ. Hearing loss, hyperacusis, and tinnitus: what is modeled in animal research? Hear Res (2013) 295:140–9.10.1016/j.heares.2012.01.005
    1. Song J-J, De Ridder D, Schlee W, Van de Heyning P, Vanneste S. “Distressed aging”: the differences in brain activity between early- and late-onset tinnitus. Neurobiol Aging (2013) 34:1853–63.10.1016/j.neurobiolaging.2013.01.014
    1. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med (2005) 2:e153.10.1371/journal.pmed.0020153
    1. Lehtelä L, Salmelin R, Hari R. Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neurosci Lett (1997) 222:111–4.10.1016/S0304-3940(97)13361-4
    1. Kahlbrock N, Weisz N. Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power. BMC Biol (2008) 6:4.10.1186/1741-7007-6-4
    1. Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJ. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci (2005) 28:325–33.10.1016/j.tins.2005.04.006
    1. Weisz N, Müller S, Schlee W, Dohrmann K, Hartmann T, Elbert T. The neural code of auditory phantom perception. J Neurosci (2007) 27:1479–8410.1523/JNEUROSCI.3711-06.2007
    1. Ashton H, Reid K, Marsh R, Johnson I, Alter K, Griffiths T. High frequency localised “hot spots” in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neurosci Lett (2007) 426:23–8.10.1016/j.neulet.2007.08.034
    1. Van der Loo E, Gais S, Congedo M, Vanneste S, Plazier M, Menovsky T, et al. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One (2009) 4(10):e7396.10.1371/journal.pone.0007396
    1. Lorenz I, Müller N, Schlee W, Hartmann T, Weisz N. Loss of alpha power is related to increased gamma synchronization-A marker of reduced inhibition in tinnitus? Neurosci Lett (2009) 453(3):225–8.10.1016/j.neulet.2009.02.028
    1. Schlee W, Hartmann T, Langguth B, Weisz N. Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci (2009) 10:11.10.1186/1471-2202-10-11
    1. Schlee W, Mueller N, Hartmann T, Keil J, Lorenz I, Weisz N. Mapping cortical hubs in tinnitus. BMC Biol (2009) 23(7):80.10.1186/1741-7007-7-80
    1. Adjamian P, Sereda M, Zobay O, Hall DA, Palmer A. Neuromagnetic indicators of tinnitus and tinnitus masking in patients with and without hearing loss. J Assoc Res Otolaryngol (2012) 13(5):715–31.10.1007/s10162-012-0340-5
    1. Ortmann M, Müller N, Schlee W, Weisz N. Rapid increase of gamma power in the auditory cortex following noise trauma in humans. Eur J Neurosci (2011) 33:568–75.10.1111/j.1460-9568.2010.07542.x
    1. Eggermont JJ. Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation and age. J Neurophysiol (1992) 68:1216–28.
    1. Voss LJ, Baas CH, Hansson L, Li D, Sleigh JW. Investigation into the effect of the general anaesthetic etomidate on local neuronal synchrony in the mouse neocortical slice. Brain Res (2013) 1526:65–70.10.1016/j.brainres.2013.06.013
    1. Eggermont JJ. The Correlative Brain; Theory and Experiment in Neural Interaction. Berlin: Springer Verlag; (1990).
    1. Cohen MR, Maunsell JHR. Attention improves performance primarily by reducing interneuronal correlation. Nat Neurosci (2009) 12(12):1594–600.10.1038/nn.2439
    1. Schmidt SA, Akrofi K, Carpenter-Thompson JR, Husain FT. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PLoS One (2013) 8(10):e76488.10.1371/journal.pone.0076488
    1. Melcher JR, Knudson IM, Levine RA. Subcallosal brain structure: correlation with hearing threshold at supra-clinical frequencies (>8 kHz), but not with tinnitus. Hear Res (2013) 295:79–86.10.1016/j.heares.2012.03.013
    1. Boyen K, Langers DRM, de Kleine E, van Dijk P. Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res (2013) 295:67–78.10.1016/j.heares.2012.02.010
    1. Eggermont JJ. Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies. J Neurophysiol (2006) 68:746–64.
    1. Kajikawa Y, Schroeder CE. How local is the local field potential? Neuron (2011) 72:847–58.10.1016/j.neuron.2011.09.029
    1. Cardin JA, Carlén M, Meleti SK, Knoblich U, Ahang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature (2009) 459:663–7.10.1038/nature08002
    1. Denker M, Roux S, Lindén H, Diesmann M, Riehle A, Grün S. The local field potential reflects surplus spike synchrony. Cereb Cortex (2011) 21:2681–95.10.1093/cercor/bhr040
    1. Eggermont JJ. Sound induced correlation of neural activity between and within three auditory cortical areas. J Neurophysiol (2000) 83:2708–22.
    1. deCharms RC, Merzenich MM. Primary cortical representation of sounds by the coordination of action-potential timing. Nature (1996) 381:610–3.10.1038/381610a0
    1. Eggermont JJ. Firing rate and firing synchrony distinguish dynamic from steady state sound. Neuroreport (1997) 8:2709–13.10.1097/00001756-199708180-00014
    1. Mulert C, Jäger L, Propp S, Karch S, Störmann S, Pogarell O, et al. Sound level dependence of the primary auditory cortex: simultaneous measurement with 61-channel EEG and fMRI. Neuroimage (2005) 28:49–58.10.1016/j.neuroimage.2005.05.041
    1. Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol (2007) 5:e133.10.1371/journal.pbio.0050133
    1. de Lafuente V, Romo R. Neuronal correlates of subjective sensory experience. Nat Neurosci (2005) 8:1698–703.10.1038/nn1587
    1. Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci (2006) 10:204–11.10.1016/j.tics.2006.03.007
    1. Luczak A, Barthó P, Harris KD. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron (2009) 62:413–25.10.1016/j.neuron.2009.03.014
    1. Dehaene S, Changeux JP. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biol (2005) 3(5):e141.10.1371/journal.pbio.0030141
    1. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci (2007) 8:700–11.10.1038/nrn2201
    1. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A (2005) 102:9673–8.10.1073/pnas.0504136102
    1. Steriade M, Contreras D, Curro Dossi R, Nunez A. The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci (1993) 13:3284–99.
    1. Luczak A, Barthó P, Marguet SL, Buzsáki G, Harris KD. Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci U S A (2007) 104:347–52.10.1073/pnas.0605643104
    1. Eggermont JJ. Neural interaction in cat primary auditory cortex II. Effects of sound stimulation. J Neurophysiol (1994) 71:246–70.
    1. Tsodyks M, Kenet T, Grinvald A, Arieli A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science (1999) 286:1943–610.1126/science.286.5446.1943
    1. Destexhe A, Contreras D, Steriade M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci (1999) 19:4595–608.
    1. Maudoux A, Lefebvre P, Cabay JE, Demertzi A, Vanhaudenhuyse A, Laureys S, et al. Connectivity graph analysis of the auditory resting state network in tinnitus. Brain Res (2012) 1485:10–21.10.1016/j.brainres.2012.05.006
    1. Maudoux A, Lefebvre P, Cabay JE, Demertzi A, Vanhaudenhuyse A, Laureys S, et al. Auditory resting-state network connectivity in tinnitus: a functional MRI study. PLoS One (2012) 7:e36222.10.1371/journal.pone.0036222
    1. Vanneste S, van de Heyning P, De Ridder D. The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci (2011) 34:718–31.10.1111/j.1460-9568.2011.07793.x
    1. Golm D, Schmidt-Somoa C, Dechent P, Kröner-Herwich B. Neural correlates of tinnitus related distress: an fMRI-study. Hear Res (2012) 295:67–99.10.1016/j.heares.2012.03.003
    1. De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A (2011) 108:8075–80.10.1073/pnas.1018466108
    1. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res (1990) 8:221–54.10.1016/0168-0102(90)90031-9
    1. Burton H, Wineland A, Bhattacharya M, Nicklaus J, Garcia KS, Piccirillo JF. Altered networks in bothersome tinnitus: a functional connectivity study. BMC Neurosci (2012) 2012(13):3.10.1186/1471-2202-13-3
    1. Wineland AM, Burton H, Piccirillo J. Functional connectivity networks in nonbothersome tinnitus. Otolaryngol Head Neck Surg (2012) 147(5):900–6.10.1177/0194599812451414
    1. Davies J, Gander PE, Andrews M, Hall DA. Auditory network connectivity in tinnitus patients: a resting-state fMRI study. Int J Audiol (2013) 53(3):192–8.10.3109/14992027.2013.846482
    1. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol (1969) 25:295–33010.1016/0014-4886(69)90128-9
    1. Valentine PA, Teskey GC, Eggermont JJ. Kindling changes burst firing, neural synchrony and tonotopic organization of cat primary auditory cortex. Cereb Cortex (2004) 14:827–39.10.1093/cercor/bhh041
    1. Eggermont JJ. Correlated neural activity as the driving force for functional changes in auditory cortex. Hear Res (2007) 229:69–80.10.1016/j.heares.2007.01.008
    1. Lopes da Silva FH, Kamphuis W, Titulaer M, Vreugdenhil M, Wadman WJ. An experimental model of progressive epilepsy: the development of kindling of the hippocampus of the rat. Ital J Neurol Sci (1995) 16:45–57.10.1007/BF02229074
    1. Racine RJ, Chapman CA, Teskey GC, Milgram NW. Postactivation potentiation in the neocortex. III. Kindling-induced potentiation in the chronic preparation. Brain Res (1995) 702:77–86.10.1016/0006-8993(95)01025-0
    1. Chapman AG. Glutamate receptors in epilepsy. Prog Brain Res (1998) 116:371–8310.1016/S0079-6123(08)60449-5
    1. Read HL, Winer JA, Schreiner CE. Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proc Natl Acad Sci U S A (2001) 98:8042–7.10.1073/pnas.131591898
    1. Wallace MN, Kitzes LM, Jones EG. Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Exp Brain Res (1991) 86:527–44.10.1007/BF00230526
    1. Lee CC, Winer JA. Principles governing auditory cortex connections. Cereb Cortex (2005) 15:1804–14.10.1093/cercor/bhi057
    1. Tomita M, Eggermont JJ. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex. J Neurophysiol (2005) 93:378–92.10.1152/jn.00643.2004
    1. Yuste R, Bonhoeffer T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci (2004) 5:24–3410.1038/nrn1300
    1. Gerstner W, Kempter R, van Hemmen J, Wagner H. A neuronal learning rule for sub-millisecond temporal coding. Nature (1996) 383:76–81.10.1038/383076a0
    1. Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science (1997) 275:213–5.10.1126/science.275.5297.213
    1. Tass PA, Majtanik M. Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol Cybern (2006) 94(1):58–66.10.1007/s00422-005-0028-6
    1. Tass PA, Hauptmann C. Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. Int J Psychophysiol (2007) 64:53–61.10.1016/j.ijpsycho.2006.07.013
    1. Tass PA, Hauptmann C. Anti-kindling achieved by stimulation targeting slow synaptic dynamics. Restor Neurol Neurosci (2009) 27(6):589–609.10.3233/RNN-2009-0484
    1. Hauptmann C, Tass PA. Therapeutic rewiring by means of desynchronizing brain stimulation. Biosystems (2007) 89:173–81.10.1016/j.biosystems.2006.04.015
    1. Tass PA. Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis. Berlin: Springer Verlag; (1999).
    1. Tass PA. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern (2003) 89:81–8.10.1007/s00422-003-0425-7
    1. Tass PA. Desynchronization by means of a coordinated reset of neural sub-populations – a novel technique for demand-controlled deep brain stimulation. Prog Theor Phys Suppl (2003) 150:281–96.10.1143/PTPS.150.281
    1. Tass PA, Qin L, Hauptmann C, Doveros S, Bezard E, Boraud T, et al. Coordinated reset neuromodulation has sustained after-effects in parkinsonian monkeys. Ann Neurol (2012) 72:816–2010.1002/ana.23663
    1. Adamchic I, Hauptmann C, Barnikol UB, Pawelcyk N, Popovych OV, Barnikol T, et al. Coordinated reset has lasting aftereffects in patients with Parkinson’s disease. Mov Disord (2014) 29(13):1679–84.10.1002/mds.25923
    1. Tass PA, Silchenko A, Hauptmann C, Barnikol U, Speckmann EJ. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Phys Rev E Stat Nonlin Soft Matter Phys (2009) 80:011902.10.1103/PhysRevE.80.011902
    1. Hauptmann C, Tass PA. Cumulative and after-effects of short and weak coordinated reset stimulation – a modeling study. J Neural Eng (2009) 6:016004.10.1088/1741-2560/6/1/016004
    1. Lysyansky B, Popovych OP, Tass PA. Multi-frequency activation of neuronal networks by coordinated reset stimulation. Interface Focus (2011) 1:75–85.10.1098/rsfs.2010.0010
    1. Best EN. Null space in the Hodgkin-Huxley equations: a critical test. Biophys J (1979) 27:87–104.10.1016/S0006-3495(79)85204-2
    1. Demir SS, Butera RJ, DeFranceschi AA, Clark JW, Byrne JH. Phase sensitivity end entrainment in a modeled bursting neuron. Biophys J (1997) 72:579–94.10.1016/S0006-3495(97)78697-1
    1. Tateno T, Robinson HPC. Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophys J (2007) 92:683–95.10.1529/biophysj.106.088021
    1. Neiman A, Russell D, Yakusheva T, DiLullo A, Tass PA. Response clustering in transient stochastic synchronization and desynchronization of coupled neuronal bursters. Phys Rev E Stat Nonlin Soft Matter Phys (2007) 76:021908.10.1103/PhysRevE.76.021908
    1. Perkel DH, Schulman JH, Segundo JP, Bullock TH, Moore GP. Pacemaker neurons – effects of regularly spaced synaptic input. Science (1964) 145:61–3.10.1126/science.145.3627.61
    1. Pinsker HM. Aplysia bursting neurons as endogenous oscillators.1. phase-response curves for pulsed inhibitory synaptic input. J Neurophysiol (1977) 40:527–43.
    1. Lerma J, Garcia-Austt E. Hippocampal theta rhythm during paradoxical sleep – effects of afferent stimuli and phase-relationships with phasic events. Electroencephalogr Clin Neurophysiol (1985) 60:46–54.10.1016/0013-4694(85)90950-2
    1. Jackson A, Spinks RL, Freeman TCB, Wolpert DM, Lemon RN. Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation. J Physiol (2002) 541:685–99.10.1113/jphysiol.2001.015099
    1. Prinz AA, Thirumalai V, Marder E. The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J Neurosci (2003) 23:943–54.
    1. Givens B. Stimulus-evoked resetting of the dentate 1 theta rhythm: relation to working memory. Neuroreport (1996) 8:159–63.10.1097/00001756-199612200-00032
    1. Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, et al. Dynamic brain sources of visual evoked responses. Science (2002) 295:690–4.10.1126/science.1066168
    1. Jansen BH, Agarwal G, Hegde A, Boutros NN. Phase synchronization of the ongoing EEG and auditory EP generation. Clin Neurophysiol (2003) 114:79–85.10.1016/S1388-2457(02)00327-9
    1. Ross B, Herdman AT, Pantev C. Stimulus induced desynchronization of human auditory 40-hz steady-state responses. J Neurophysiol (2005) 94:4082–93.10.1152/jn.00469.2005
    1. Van der Werf YD, Paus T. The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions. Exp Brain Res (2006) 175:231–45.10.1007/s00221-006-0548-x
    1. Popovych OV, Tass PA. Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci (2012) 6:58.10.3389/fnhum.2012.00058
    1. Tass PA, Popovych OV. Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation – theoretical concept and modelling. Biol Cybern (2012) 106:27–36.10.1007/s00422-012-0479-5
    1. Tass PA, Adamchic I, Freund H-J, von Stackelberg T, Hauptmann C. Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci (2012) 30:137–59.10.3233/RNN-2012-110218
    1. Popovych OV, Yanchuk S, Tass PA. Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity. Sci Rep (2013) 3:2926.10.1038/srep02926
    1. Tass PA. Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern (2002) 87:102–15.10.1007/s00422-002-0322-5
    1. Chittka L, Brockmann A. Perception space – the final frontier. PLoS Biol (2005) 3(4):e137.10.1371/journal.pbio.0030137
    1. Pantev C, Wollbrink A, Roberts LE, Engelien A, Lütkenhöner B. Short-term plasticity of the human auditory cortex. Brain Res (1999) 842:192–910.1016/S0006-8993(99)01835-1
    1. Okamoto H, Stracke H, Stoll W, Pantev C. Listening to tailor-made music reverses maladaptive auditory cortex reorganization and alleviates tinnitus. Proc Natl Acad Sci U S A (2010) 107(3):1207–10.10.1073/pnas.0911268107
    1. Adamchic I, Langguth B, Hauptmann C, Tass PA. Abnormal brain activity and cross-frequency coupling in the tinnitus network. Front Neurosci (2014) 8:284.10.3389/fnins.2014.00284
    1. Goebel G, Hiller W. Tinnitus Fragebogen (TF): Ein Instrument zur Erfassung von Belastung und Schweregrad bei Tinnitus. Goettingen: Hogrefe; (1993). 90 p.
    1. Hallam R, Rachmann S, Hinchcliffe R. Psychological aspects of tinnitus. In: Rachmann S, editor. Contributions to Medical Psychology. (Vol. 3), Oxford: Pergamon Press; (1984). p. 31–54.
    1. Surr RK, Montgomery AA, Mueller HG. Effect of amplification on tinnitus among new hearing aid users. Ear Hear (1985) 6(2):71–5.10.1097/00003446-198503000-00002
    1. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: the neuroscience of tinnitus. J Neurosci (2010) 30(45):14972–9.10.1523/JNEUROSCI.4028-10.2010
    1. Terry AM, Jones DM, Davis BR, Slater R. Parametric studies of tinnitus masking and residual inhibition. Br J Audiol (1983) 17:245–56.10.3109/03005368309081485
    1. Goebel G, Kahl M, Arnold W, Fichter M. 15-year prospective follow-up study of behavioral therapy in a large sample of inpatients with chronic tinnitus. Acta Otolaryngol Suppl (2006) 556:70–9.10.1080/03655230600895267
    1. Adamchic I, Langguth B, Hauptmann C, Tass PA. Psychometric evaluation of Visual Analog Scale for the assessment of chronic tinnitus. Am J Audiol (2012) 21:215–25.10.1044/1059-0889(2012/12-0010)
    1. Adamchic I, Tass PA, Langguth B, Hauptmann C, Koller M, Schecklmann M, et al. Linking the tinnitus questionnaire and the clinical global impression: which differences are clinically important? Health Qual Life Outcomes (2012) 10:79.10.1186/1477-7525-10-79
    1. Jacobson NS, Truax P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol (1991) 59:12–9.10.1037/0022-006X.59.1.12
    1. Silchenko AN, Adamchic I, Hauptmann C, Tass PA. Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound. Neuroimage (2013) 77:133–47.10.1016/j.neuroimage.2013.03.013
    1. Adamchic I, Toth T, Hauptmann C, Tass PA. Reversing pathologically increased EEG power by acoustic CR neuromodulation. Hum Brain Mapp (2014) 35:2099–118.10.1002/hbm.22314
    1. Adamchic I, Hauptmann C, Tass PA. Changes of oscillatory activity in pitch processing network and related tinnitus relief induced by acoustic CR neuromodulation. Front Syst Neurosci (2012) 6:18.10.3389/fnsys.2012.00018
    1. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp (2002) 15:1–25.10.1002/hbm.1058
    1. Pascual-Marqui RD. Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol (2002) 24(Suppl D):5–12.
    1. Silchenko AN, Adamchic I, Pawelczyk N, Hauptmann C, Maarouf M, Sturm V, et al. Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems. J Neurosci Methods (2010) 191:32–44.10.1016/j.jneumeth.2010.06.004
    1. Moran RJ, Stephan KE, Seidenbecher T, Pape H-C, Dolan RJ, Friston KJ. Dynamic causal models of steady-state responses. Neuroimage (2009) 44:796–81110.1016/j.neuroimage.2008.09.048
    1. Popovych OV, Tass PA. Macroscopic entrainment of periodically forced oscillatory ensembles. Prog Biophys Mol Biol (2011) 105:98–108.10.1016/j.pbiomolbio.2010.09.018
    1. Franosch J-MP, Kempter R, Fastl H, van Hemmen JL. Zwicker tone illusion and noise reduction in the auditory system. Phys Rev Lett (2003) 90:17810.10.1103/PhysRevLett.90.178103
    1. Benoit O, Daurat A, Prado J. Slow (0.7–2 Hz) and fast (2–4 Hz) delta components are differently correlated to theta, alpha and beta frequency bands during NREM sleep. Clin Neurophysiol (2000) 111:2103–6.10.1016/S1388-2457(00)00470-3
    1. Boyen K, de Kleine E, van Dijk P, Langers DRM. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hear Res (2014) 312:48–59.10.1016/j.heares.2014.03.001
    1. Gu JW, Herrmann BS, Levine RA, Melcher JR. Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol (2012) 13:819–33.10.1007/s10162-012-0344-1
    1. Dohrmann K, Elbert T, Schlee W, Weisz N. Tuning the tinnitus percept by modification of synchronous brain activity. Restor Neurol Neurosci (2007) 25:371–8.
    1. Popovych OV, Tass PA. Control of abnormal synchronization in neurological disorders. Front Neurol (2014) 5:268.10.3389/fneur.2014.00268
    1. Rubin JE, Terman D. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci (2004) 16:211–3510.1023/B:JCNS.0000025686.47117.67
    1. Terman D, Rubin J, Yew A, Wilson C. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci (2002) 22:2963–76.
    1. Ebert MC, Hauptmann PA, Tass P. Coordinated reset stimulation in a large-scale model of the STN-GPe circuit. Front Comput Neurosci (2014) 8:154.10.3389/fncom.2014.00154
    1. Schaette R, Kempter R. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type. Hear Res (2008) 240:57–72.10.1016/j.heares.2008.02.006
    1. Dominguez M, Becker S, Bruce I, Read H. A spiking neuron model of cortical correlates of sensorineural hearing loss: spontaneous firing, synchrony, and tinnitus. Neural Comput (2006) 18:2942–58.10.1162/neco.2006.18.12.2942
    1. Chrostowski M, Yang L, Wilson HR, Bruce IC, Becker S. Can homeostatic plasticity in deafferented primary auditory cortex lead to travelling waves of excitation? J Comput Neurosci (2011) 30:279–99.10.1007/s10827-010-0256-1
    1. Kaltenbach JA, Godfrey DA, Neumann JB, McCaslin DL, Afman CE, Zhang J. Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift. Hear Res (1998) 124:78–84.10.1016/S0378-5955(98)00119-1
    1. Milner PM. Note on a possible correspondence between the scotomas of migraine and spreading depression of leao. Electroencephalogr Clin Neurophysiol (1958) 10:705.10.1016/0013-4694(58)90073-7
    1. Houweling A, Bazhenov M, Timofeev I, Steriade M, Sejnowski T. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb Cortex (2005) 15:834–45.10.1093/cercor/bhh184
    1. Charles A, Brennan K. Cortical spreading depression – new insights and persistent questions. Cephalalgia (2009) 29(10):1115–24.10.1111/j.1468-2982.2009.01983.x
    1. Dahlem MA, Hadjikhani N. Migraine aura: retracting particle-like waves in weakly susceptible cortex. PLoS One (2009) 4:e5007.10.1371/journal.pone.0005007
    1. Dahlem MA, Isele TM. Transient localized wave patterns and their application to migraine. J Math Neurosci (2013) 3:7.10.1186/2190-8567-3-7
    1. Ermentrout GB, Cowan J. A mathematical theory of visual hallucination patterns. Biol Cybern (1979) 34:137–50.10.1007/BF00336965
    1. Tass P. Cortical pattern formation during visual hallucinations. J Biol Phys (1995) 21:177–21010.1007/BF00712345
    1. Tass P. Oscillatory cortical activity during visual hallucinations. J Biol Phys (1997) 23:21–66.10.1023/A:1004990707739
    1. Hauptmann C, Ströbel A, Mark Williams W, Patel N, Wurzer H, von Stackelberg T, et al. Acoustic coordinated reset neuromodulation in a real life patient population with chronic tonal tinnitus. Biomed Res Int (2015).
    1. Tyler RS, Conrad-Armes D. Tinnitus pitch: a comparison of three measurement methods. Br J Audiol (1983) 17:101–7.10.3109/03005368309078916
    1. Burns EM. A comparison of variability among measurements of subjective tinnitus and objective stimuli. Audiology (1984) 23:426–40.10.3109/00206098409081535
    1. Henry JA, Flick CL, Gilbert A, Ellingson RM, Fausti SA. Comparison of manual and computer-automated procedures for tinnitus pitch-matching. J Rehabil Res Dev (2004) 41:121–38.10.1682/JRRD.2004.02.0121
    1. McMillan GP, Thielman EJ, Wypych K, Henry JA. A Bayesian perspective on tinnitus pitch matching. Ear Hear (2014) 35(6):687–94.10.1097/AUD.0000000000000081
    1. Ebbinghaus H. Memory: A Contribution to Experimental Psychology. Educational Reprints. (Vol. 3). New York, NY: Teachers College, Columbia University; (1913).
    1. Popovych OV, Yanchuk S, Tass PA. The spacing principle for unlearning abnormal neuronal synchrony. PLoS One (2015).

Source: PubMed

3
Abonneren