Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms

David C Kohrman, Guoqiang Wan, Luis Cassinotti, Gabriel Corfas, David C Kohrman, Guoqiang Wan, Luis Cassinotti, Gabriel Corfas

Abstract

Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.

Copyright © 2020 Cold Spring Harbor Laboratory Press; all rights reserved.

Figures

Figure 1.
Figure 1.
Hidden hearing loss (HHL) caused by cochlear synaptopathy. (A) Auditory brainstem response (ABR) recordings of control mice and mice 2 weeks after noise exposure (8–16 kHz, 100 dB sound pressure level [SPL], 2 hours). Noise exposure causes reduction of ABR peak I (P1) amplitudes without changes in threshold and latency. (B) The same HHL-causing noise exposure used in A results in inner hair cell (IHC) ribbon synapse loss in the base of the cochlea (e.g., 32 kHz region of the cochlea) but does not affect node of Ranvier structures. (C) Model for HHL caused by cochlear synaptopathy. Noise exposure or aging result in synaptic degeneration of low spontaneous rate (SR) AN fibers, which over time progresses to spiral ganglion neuron (SGN) loss. (Panels A and B modified from Wan and Corfas 2017; courtesy of Creative Commons Attribution 4.0 International License.)
Figure 2.
Figure 2.
Hidden hearing loss (HHL) caused by cochlear demyelination. (A) Auditory brainstem response (ABR) recordings from control mice and mice 4 months after transient demyelination caused by Schwann cell ablation. Mice present with clear signs of HHL, that is, ABR P1 amplitude reduction, latency increase, but no threshold elevation. (B) Demyelination causes persistent heminode pathology without loss of ribbon synapses. (C) Model for HHL caused by transient demyelination. After auditory nerve (AN) demyelination, remyelination takes place but the heminode structures do not recover. (Panels A and B modified from Wan and Corfas 2017; courtesy of Creative Commons Attribution 4.0 International License.)
Figure 3.
Figure 3.
Noninvasive diagnosis of hidden hearing loss (HHL) in rodents and humans. Auditory brainstem response (ABR), envelope following response (EFR), and middle ear muscle reflex (MEMR) recordings are the primary assays for HHL diagnosis. Alterations in the pattern of ABR traces can be used for differential diagnosis of HHL, including peak I amplitude, summating potential (SP)/ABR peak I (AP) ratio, peak V latency in masking noise, threshold in noise, and slope of the sound intensity to peak I amplitude relationship.
Figure 4.
Figure 4.
Neurotrophin 3 (NT-3) as a potential therapeutic for treatment of hidden hearing loss (HHL). (A) NT-3 transgenic overexpression in adult mouse cochlea promotes recovery of auditory brainstem response (ABR) peak 1 amplitudes after an HHL-inducing noise exposure (8–16 kHz, 100 dB, 2 hours). (B) NT-3 transgenic overexpression promotes synaptic regeneration after noise exposure. (C) Examples of synaptic immunostainings showing NT-3 transgene or protein promotes synaptic regeneration in both mouse and guinea pig exposed to noise. RW, Round window; inner hair cell (IHC) nucleus, dashed oval; glutamate receptors, black arrows; CtBP2-containing ribbons, white arrows. (Figure panels created from data in Wan et al. 2014, Sly et al. 2016, and Suzuki et al. 2016.)
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/6938658/bin/cshperspectmed-COC-035493_UF1.jpg

References

    1. Alvord LS. 1983. Cochlear dysfunction in “normal-hearing” patients with history of noise exposure. Ear Hear 4: 247–250. 10.1097/00003446-198309000-00005
    1. Beattie RC. 1988. Interaction of click polarity, stimulus level, and repetition rate on the auditory brainstem response. Scand Audiol 17: 99–109. 10.3109/01050398809070698
    1. Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG. 2014. Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 8: 26 10.3389/fnsys.2014.00026
    1. Bharadwaj HM, Masud S, Mehraei G, Verhulst S, Shinn-Cunningham BG. 2015. Individual differences reveal correlates of hidden hearing deficits. J Neurosci 35: 2161–2172. 10.1523/jneurosci.3915-14.2015
    1. Bing D, Lee SC, Campanelli D, Xiong H, Matsumoto M, Panford-Walsh R, Wolpert S, Praetorius M, Zimmermann U, Chu H, et al. 2015. Cochlear NMDA receptors as a therapeutic target of noise-induced tinnitus. Cell Physiol Biochem 35: 1905–1923. 10.1159/000374000
    1. Boero LE, Castagna VC, Di Guilmi MN, Goutman JD, Elgoyhen AB, Gómez-Casati ME. 2018. Enhancement of the medial olivocochlear system prevents hidden hearing loss. J Neurosci 38: 7440–7451. 10.1523/jneurosci.0363-18.2018
    1. Bressler S, Goldberg H, Shinn-Cunningham B. 2017. Sensory coding and cognitive processing of sound in Veterans with blast exposure. Hear Res 349: 98–110. 10.1016/j.heares.2016.10.018
    1. Chermak GD, Musiek FE. 1997. Central auditory processing disorders: New perspectives. Singular, San Diego.
    1. Choi JE, Seok JM, Ahn J, Ji YS, Lee KM, Hong SH, Choi BO, Moon IJ. 2018. Hidden hearing loss in patients with Charcot–Marie–Tooth disease type 1A. Sci Rep 8: 10335 10.1038/s41598-018-28501-y
    1. Clinard CG, Tremblay KL. 2013. Aging degrades the neural encoding of simple and complex sounds in the human brainstem. J Am Acad Audiol 24: 590–599; quiz 643–594 10.3766/jaaa.24.7.7
    1. Costalupes JA, Young ED, Gibson DJ. 1984. Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. J Neurophysiol 51: 1326–1344. 10.1152/jn.1984.51.6.1326
    1. Cunningham LL, Tucci DL. 2015. Restoring synaptic connections in the inner ear after noise damage. N Engl J Med 372: 181–182. 10.1056/NEJMcibr1413201
    1. Dimitrijevic A, John MS, Picton TW. 2004. Auditory steady-state responses and word recognition scores in normal-hearing and hearing-impaired adults. Ear Hear 25: 68–84. 10.1097/01.AUD.0000111545.71693.48
    1. Duan M, Agerman K, Ernfors P, Canlon B. 2000. Complementary roles of neurotrophin 3 and a N-methyl-d-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity. Proc Natl Acad Sci 97: 7597–7602. 10.1073/pnas.97.13.7597
    1. Dubno JR, Dirks DD, Morgan DE. 1984. Effects of age and mild hearing loss on speech recognition in noise. J Acoust Soc Am 76: 87–96. 10.1121/1.391011
    1. Epp B, Hots J, Verhey JL, Schaette R. 2012. Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram. J Acoust Soc Am 132: EL196–EL201. 10.1121/1.4740462
    1. Fernandez KA, Jeffers PWC, Lall K, Liberman MC, Kujawa SG. 2015. Aging after noise exposure: Acceleration of cochlear synaptopathy in “recovered” ears. J Neurosci 35: 7509–7520. 10.1523/jneurosci.5138-14.2015
    1. Frank MM, Goodrich LV. 2018. Talking back: Development of the olivocochlear efferent system. Wiley Interdiscip Rev Dev Biol 7: e324 10.1002/wdev.324
    1. Frisina DR, Frisina RD. 1997. Speech recognition in noise and presbycusis: Relations to possible neural mechanisms. Hear Res 106: 95–104. 10.1016/S0378-5955(97)00006-3
    1. Frisina RD, Karcich KJ, Tracy TC, Sullivan DM, Walton JP, Colombo J. 1996. Preservation of amplitude modulation coding in the presence of background noise by chinchilla auditory-nerve fibers. J Acoust Soc Am 99: 475–490. 10.1121/1.414559
    1. Fuchs PA, Lauer AM. 2018. Efferent inhibition of the cochlea. Cold Spring Harb Perspect Med 10.1101/cshperspect.a033530
    1. Fuente A. 2015. The olivocochlear system and protection from acoustic trauma: A mini literature review. Front Syst Neurosci 9: 94 10.3389/fnsys.2015.00094
    1. Fulbright ANC, Le Prell CG, Griffiths SK, Lobarinas E. 2017. Effects of recreational noise on threshold and suprathreshold measures of auditory function. Semin Hear 38: 298–318. 10.1055/s-0037-1606325
    1. Furman AC, Kujawa SG, Liberman MC. 2013. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110: 577–586. 10.1152/jn.00164.2013
    1. Glowatzki E, Fuchs PA. 2000. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288: 2366–2368. 10.1126/science.288.5475.2366
    1. Gordon-Salant S. 2005. Hearing loss and aging: New research findings and clinical implications. J Rehabil Res Dev 42: 9–24. 10.1682/JRRD.2005.01.0006
    1. Grinn SK, Wiseman KB, Baker JA, Le Prell CG. 2017. Hidden hearing loss? No effect of common recreational noise exposure on cochlear nerve response amplitude in humans. Front Neurosci 11: 465 10.3389/fnins.2017.00465
    1. Grose JH, Mamo SK. 2010. Processing of temporal fine structure as a function of age. Ear Hear 31: 755–760. 10.1097/AUD.0b013e3181e627e7
    1. Grose JH, Buss E, Hall JW. 2017. Loud music exposure and cochlear synaptopathy in young adults: Isolated auditory brainstem response effects but no perceptual consequences. Trends Hear 21: 2331216517737417.
    1. Guest H, Munro KJ, Prendergast G, Millman RE, Plack CJ. 2018. Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure. Hear Res 364: 142–151. 10.1016/j.heares.2018.03.008
    1. Guinan JJ Jr. 2018. Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses. Hear Res 362: 38–47. 10.1016/j.heares.2017.12.012
    1. Halpin C, Thornton A, Hasso M. 1994. Low-frequency sensorineural loss: Clinical evaluation and implications for hearing aid fitting. Ear Hear 15: 71–81. 10.1097/00003446-199402000-00008
    1. Harris KC, Dubno JR. 2017. Age-related deficits in auditory temporal processing: Unique contributions of neural dyssynchrony and slowed neuronal processing. Neurobiol Aging 53: 150–158. 10.1016/j.neurobiolaging.2017.01.008
    1. Hickman TT, Smalt C, Bobrow J, Quatieri T, Liberman MC. 2018. Blast-induced cochlear synaptopathy in chinchillas. Sci Rep 8: 10740 10.1038/s41598-018-28924-7
    1. Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP. 2017. Translational issues in cochlear synaptopathy. Hear Res 349: 164–171. 10.1016/j.heares.2016.12.010
    1. Hoben R, Easow G, Pevzner S, Parker MA. 2017. Outer hair cell and auditory nerve function in speech recognition in quiet and in background noise. Front Neurosci 11: 157 10.3389/fnins.2017.00157
    1. Hong J, Chen Y, Zhang Y, Li J, Ren L, Yang L, Shi L, Li A, Zhang T, Li H, et al. 2018. N-methyl-d-aspartate receptors involvement in the gentamicin-induced hearing loss and pathological changes of ribbon synapse in the mouse cochlear inner hair cells. Neural Plast 2018: 3989201.
    1. Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK. 2005. Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25: 6857–6868. 10.1523/jneurosci.0123-05.2005
    1. Joris PX, Smith PH, Yin TC. 1994. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II: Responses in the tuning curve tail. J Neurophysiol 71: 1037–1051. 10.1152/jn.1994.71.3.1037
    1. Katz E, Elgoyhen AB, Gomez-Casati ME, Knipper M, Vetter DE, Fuchs PA, Glowatzki E. 2004. Developmental regulation of nicotinic synapses on cochlear inner hair cells. J Neurosci 24: 7814–7820. 10.1523/jneurosci.2102-04.2004
    1. Kim KX, Rutherford MA. 2016. Maturation of NaV and KV channel topographies in the auditory nerve spike initiator before and after developmental onset of hearing function. J Neurosci 36: 2111–2118. 10.1523/jneurosci.3437-15.2016
    1. King A, Hopkins K, Plack CJ. 2014. The effects of age and hearing loss on interaural phase difference discrimination. J Acoust Soc Am 135: 342–351. 10.1121/1.4838995
    1. Kluk K, Prendergast G, Guest H, Munro KJ, Léger A, Hall DA, Heinz M, Plack CJ. 2016. No evidence for hidden hearing loss due to noise exposure in young adults with a normal audiogram. J Acoust Soc Am 140: 3152–3152. 10.1121/1.4969885
    1. Kobel M, Le Prell CG, Liu J, Hawks JW, Bao J. 2017. Noise-induced cochlear synaptopathy: Past findings and future studies. Hear Res 349: 148–154. 10.1016/j.heares.2016.12.008
    1. Kobler JB, Guinan JJ Jr, Vacher SR, Norris BE. 1992. Acoustic reflex frequency selectivity in single stapedius motoneurons of the cat. J Neurophysiol 68: 807–817. 10.1152/jn.1992.68.3.807
    1. Konrad-Martin D, Dille MF, McMillan G, Griest S, McDermott D, Fausti SA, Austin DF. 2012. Age-related changes in the auditory brainstem response. J Am Acad Audiol 23: 18–35; quiz 74–15 10.3766/jaaa.23.1.3
    1. Krishnan A. 2006. Frequency-following response. Lippincott Williams & Wilkins, Philadelphia.
    1. Kujala T, Shtyrov Y, Winkler I, Saher M, Tervaniemi M, Sallinen M, Teder-Salejarvi W, Alho K, Reinikainen K, Naatanen R. 2004. Long-term exposure to noise impairs cortical sound processing and attention control. Psychophysiology 41: 875–881. 10.1111/j.1469-8986.2004.00244.x
    1. Kujawa SG, Liberman MC. 2006. Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. J Neurosci 26: 2115–2123. 10.1523/jneurosci.4985-05.2006
    1. Kujawa SG, Liberman MC. 2009. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29: 14077–14085. 10.1523/jneurosci.2845-09.2009
    1. Kujawa SG, Liberman MC. 2015. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330: 191–199. 10.1016/j.heares.2015.02.009
    1. Kumar UA, Ameenudin S, Sangamanatha AV. 2012. Temporal and speech processing skills in normal hearing individuals exposed to occupational noise. Noise Health 14: 100–105.
    1. Kuwabara S, Yuki N. 2013. Axonal Guillain–Barré syndrome: Concepts and controversies. Lancet Neurol 12: 1180–1188. 10.1016/S1474-4422(13)70215-1
    1. Kuwada S, Anderson JS, Batra R, Fitzpatrick DC, Teissier N, D'Angelo WR. 2002. Sources of the scalp-recorded amplitude-modulation following response. J Am Acad Audiol 13: 188–204.
    1. Lauter JL, Loomis RL. 1988. Individual differences in auditory electric responses: Comparisons of between-subject and within-subject variability. II: Amplitude of brainstem vertex-positive peaks. Scand Audiol 17: 87–92. 10.3109/01050398809070696
    1. Le Prell CG, Dolan DF, Schacht J, Miller JM, Lomax MI, Altschuler RA. 2003. Pathways for protection from noise induced hearing loss. Noise Health 5: 1–17.
    1. Liberman MC, Kiang NY. 1984. Single-neuron labeling and chronic cochlear pathology. IV: Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16: 75–90. 10.1016/0378-5955(84)90026-1
    1. Liberman MC, Kujawa SG. 2017. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 349: 138–147. 10.1016/j.heares.2017.01.003
    1. Liberman LD, Liberman MC. 2015. Dynamics of cochlear synaptopathy after acoustic overexposure. J Assoc Res Otolaryngol 16: 205–219. 10.1007/s10162-015-0510-3
    1. Liberman MC, Liberman LD, Maison SF. 2014. Efferent feedback slows cochlear aging. J Neurosci 34: 4599–4607. 10.1523/jneurosci.4923-13.2014
    1. Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. 2016. Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11: e0162726 10.1371/journal.pone.0162726
    1. Lin HW, Furman AC, Kujawa SG, Liberman MC. 2011. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12: 605–616. 10.1007/s10162-011-0277-0
    1. Liu L, Wang H, Shi L, Almuklass A, He T, Aiken S, Bance M, Yin S, Wang J. 2012. Silent damage of noise on cochlear afferent innervation in guinea pigs and the impact on temporal processing. PLoS ONE 7: e49550 10.1371/journal.pone.0049550
    1. Liu K, Chen D, Guo W, Yu N, Wang X, Ji F, Hou Z, Yang WY, Yang S. 2015. Spontaneous and partial repair of ribbon synapse in cochlear inner hair cells after ototoxic withdrawal. Mol Neurobiol 52: 1680–1689. 10.1007/s12035-014-8951-y
    1. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, et al. 2017. Dementia prevention, intervention, and care. Lancet 390: 2673–2734. 10.1016/S0140-6736(17)31363-6
    1. Lobarinas E, Spankovich C, Le Prell CG. 2017. Evidence of “hidden hearing loss” following noise exposures that produce robust TTS and ABR wave-I amplitude reductions. Hear Res 349: 155–163. 10.1016/j.heares.2016.12.009
    1. Long P, Wan G, Roberts MT, Corfas G. 2018. Myelin development, plasticity, and pathology in the auditory system. Dev Neurobiol 78: 80–92. 10.1002/dneu.22538
    1. Loughrey DG, Kelly ME, Kelley GA, Brennan S, Lawlor BA. 2018. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: A systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 144: 115–126. 10.1001/jamaoto.2017.2513
    1. Maison SF, Luebke AE, Liberman MC, Zuo J. 2002. Efferent protection from acoustic injury is mediated via α9 nicotinic acetylcholine receptors on outer hair cells. J Neurosci 22: 10838–10846. 10.1523/jneurosci.22-24-10838.2002
    1. Maison SF, Usubuchi H, Liberman MC. 2013. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33: 5542–5552. 10.1523/jneurosci.5027-12.2013
    1. Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN. 2011. Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12: 711–717. 10.1007/s10162-011-0283-2
    1. Marmel F, Linley D, Carlyon RP, Gockel HE, Hopkins K, Plack CJ. 2013. Subcortical neural synchrony and absolute thresholds predict frequency discrimination independently. J Assoc Res Otolaryngol 14: 757–766. 10.1007/s10162-013-0402-3
    1. Mehraei G, Hickox AE, Bharadwaj HM, Goldberg H, Verhulst S, Liberman MC, Shinn-Cunningham BG. 2016. Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. J Neurosci 36: 3755–3764. 10.1523/jneurosci.4460-15.2016
    1. Mulders WH, Chin AMIL, Robertson D. 2018. Persistent hair cell malfunction contributes to hidden hearing loss. Hear Res 361: 45–51. 10.1016/j.heares.2018.02.001
    1. Muniak MA, Ayeni FE, Ryugo DK. 2018. Hidden hearing loss and endbulbs of Held: Evidence for central pathology before detection of ABR threshold increases. Hear Res 364: 104–117. 10.1016/j.heares.2018.03.021
    1. Niwa K, Mizutari K, Matsui T, Kurioka T, Matsunobu T, Kawauchi S, Satoh Y, Sato S, Shiotani A, Kobayashi Y. 2016. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave. Sci Rep 6: 31754 10.1038/srep31754
    1. Oishi N, Duscha S, Boukari H, Meyer M, Xie J, Wei G, Schrepfer T, Roschitzki B, Boettger EC, Schacht J. 2015. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death. Cell Death Dis 6: e1763 10.1038/cddis.2015.108
    1. Olusanya BO, Neumann KJ, Saunders JE. 2014. The global burden of disabling hearing impairment: A call to action. Bull World Health Organ 92: 367–373. 10.2471/BLT.13.128728
    1. Panganiban CH, Barth JL, Darbelli L, Xing Y, Zhang J, Li H, Noble KV, Liu T, Brown LN, Schulte BA, et al. 2018. Noise-induced dysregulation of Quaking RNA binding proteins contributes to auditory nerve demyelination and hearing loss. J Neurosci 38: 2551–2568. 10.1523/jneurosci.2487-17.2018
    1. Parthasarathy A, Kujawa SG. 2018. Synaptopathy in the aging cochlea: Characterizing early-neural deficits in auditory temporal envelope processing. J Neurosci 38: 7108–7119. 10.1523/jneurosci.3240-17.2018
    1. Paul BT, Bruce IC, Roberts LE. 2017. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus. Hear Res 344: 170–182. 10.1016/j.heares.2016.11.010
    1. Pichora-Fuller MK, Souza PE. 2003. Effects of aging on auditory processing of speech. Int J Audiol 42: 2S11–2S16. 10.3109/14992020309074638
    1. Plack CJ, Barker D, Prendergast G. 2014. Perceptual consequences of “hidden” hearing loss. Trends Hear 18 10.1177/2331216514550621
    1. Plack CJ, Léger A, Prendergast G, Kluk K, Guest H, Munro KJ. 2016. Toward a diagnostic test for hidden hearing loss. Trends Hear 20: 2331216516657466 10.1177/2331216516657466
    1. Prendergast G, Guest H, Munro KJ, Kluk K, Léger A, Hall DA, Heinz MG, Plack CJ. 2017a. Effects of noise exposure on young adults with normal audiograms. I: Electrophysiology. Hear Res 344: 68–81. 10.1016/j.heares.2016.10.028
    1. Prendergast G, Millman RE, Guest H, Munro KJ, Kluk K, Dewey RS, Hall DA, Heinz MG, Plack CJ. 2017b. Effects of noise exposure on young adults with normal audiograms. II: Behavioral measures. Hear Res 356: 74–86. 10.1016/j.heares.2017.10.007
    1. Pujol R, Puel JL, Gervais d'Aldin C, Eybalin M. 1993. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol 113: 330–334. 10.3109/00016489309135819
    1. Rajan R, Cainer KE. 2008. Ageing without hearing loss or cognitive impairment causes a decrease in speech intelligibility only in informational maskers. Neuroscience 154: 784–795. 10.1016/j.neuroscience.2008.03.067
    1. Rance G. 2005. Auditory neuropathy/dys-synchrony and its perceptual consequences. Trends Amplif 9: 1–43. 10.1177/108471380500900102
    1. Rance G, Starr A. 2015. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 138: 3141–3158. 10.1093/brain/awv270
    1. Rance G, Ryan MM, Bayliss K, Gill K, O'Sullivan C, Whitechurch M. 2012. Auditory function in children with Charcot–Marie–Tooth disease. Brain 135: 1412–1422. 10.1093/brain/aws085
    1. Rasband MN, Peles E. 2015. The Nodes of Ranvier: Molecular assembly and maintenance. Cold Spring Harb Perspect Biol 8: a020495 10.1101/cshperspect.a020495
    1. Reijntjes DOJ, Pyott SJ. 2016. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear Res 336: 1–16. 10.1016/j.heares.2016.03.011
    1. Rhode WS, Greenberg S. 1994. Encoding of amplitude modulation in the cochlear nucleus of the cat. J Neurophysiol 71: 1797–1825. 10.1152/jn.1994.71.5.1797
    1. Ridley CL, Kopun JG, Neely ST, Gorga MP, Rasetshwane DM. 2018. Using thresholds in noise to identify hidden hearing loss in humans. Ear Hear 39: 829–844. 10.1097/AUD.0000000000000543
    1. Rossor AM, Polke JM, Houlden H, Reilly MM. 2013. Clinical implications of genetic advances in Charcot–Marie–Tooth disease. Nat Rev Neurol 9: 562–571. 10.1038/nrneurol.2013.179
    1. Ruan Q, Ao H, He J, Chen Z, Yu Z, Zhang R, Wang J, Yin S. 2014. Topographic and quantitative evaluation of gentamicin-induced damage to peripheral innervation of mouse cochleae. Neurotoxicology 40: 86–96. 10.1016/j.neuro.2013.11.002
    1. Ruel J, Nouvian R, Gervais d'Aldin C, Pujol R, Eybalin M, Puel JL. 2001. Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14: 977–986. 10.1046/j.0953-816x.2001.01721.x
    1. Ruel J, Wang J, Rebillard G, Eybalin M, Lloyd R, Pujol R, Puel JL. 2007. Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hear Res 227: 19–27. 10.1016/j.heares.2006.08.017
    1. Ruggles D, Bharadwaj H, Shinn-Cunningham BG. 2011. Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc Natl Acad Sci 108: 15516–15521. 10.1073/pnas.1108912108
    1. Rutherford MA, Chapochnikov NM, Moser T. 2012. Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. J Neurosci 32: 4773–4789. 10.1523/jneurosci.4511-11.2012
    1. Schacht J, Talaska AE, Rybak LP. 2012. Cisplatin and aminoglycoside antibiotics: Hearing loss and its prevention. Anat Rec (Hoboken) 295: 1837–1850. 10.1002/ar.22578
    1. Schaette R, McAlpine D. 2011. Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. J Neurosci 31: 13452–13457. 10.1523/jneurosci.2156-11.2011
    1. Schalk TB, Sachs MB. 1980. Nonlinearities in auditory-nerve fiber responses to bandlimited noise. J Acoust Soc Am 67: 903–913. 10.1121/1.383970
    1. Schmiedt RA, Mills JH, Boettcher FA. 1996. Age-related loss of activity of auditory-nerve fibers. J Neurophysiol 76: 2799–2803. 10.1152/jn.1996.76.4.2799
    1. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. 2013. Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. J Neurosci 33: 13686–13694. 10.1523/jneurosci.1783-13.2013
    1. Shaheen LA, Valero MD, Liberman MC. 2015. Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol 16: 727–745. 10.1007/s10162-015-0539-3
    1. Shi L, Liu L, He T, Guo X, Yu Z, Yin S, Wang J. 2013. Ribbon synapse plasticity in the cochleae of Guinea pigs after noise-induced silent damage. PLoS ONE 8: e81566 10.1371/journal.pone.0081566
    1. Shi L, Liu K, Wang H, Zhang Y, Hong Z, Wang M, Wang X, Jiang X, Yang S. 2015. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice. Acta Otolaryngol 135: 1093–1102. 10.3109/00016489.2015.1061699
    1. Shi L, Chang Y, Li X, Aiken SJ, Liu L, Wang J. 2016. Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea. Front Neurosci 10: 231 10.3389/fnins.2016.00231
    1. Sly DJ, Campbell L, Uschakov A, Saief ST, Lam M, O'Leary SJ. 2016. Applying neurotrophins to the round window rescues auditory function and reduces inner hair cell synaptopathy after noise-induced hearing loss. Otol Neurotol 37: 1223–1230. 10.1097/MAO.0000000000001191
    1. Song Q, Shen P, Li X, Shi L, Liu L, Wang J, Yu Z, Stephen K, Aiken S, Yin S, Wang J. 2016. Coding deficits in hidden hearing loss induced by noise: The nature and impacts. Sci Rep 6: 25200 10.1038/srep25200
    1. Spankovich C, Gonzalez VB, Su D, Bishop CE. 2018. Self reported hearing difficulty, tinnitus, and normal audiometric thresholds, the National Health and Nutrition Examination Survey 1999–2002. Hear Res 358: 30–36. 10.1016/j.heares.2017.12.001
    1. Stamper GC, Johnson TA. 2015. Auditory function in normal-hearing, noise-exposed human ears. Ear Hear 36: 172–184. 10.1097/AUD.0000000000000107
    1. Stone MA, Moore BC, Greenish H. 2008. Discrimination of envelope statistics reveals evidence of sub-clinical hearing damage in a noise-exposed population with “normal” hearing thresholds. Int J Audiol 47: 737–750. 10.1080/14992020802290543
    1. Suzuki J, Corfas G, Liberman MC. 2016. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep 6: 24907 10.1038/srep24907
    1. Tagoe T, Barker M, Jones A, Allcock N, Hamann M. 2014. Auditory nerve perinodal dysmyelination in noise-induced hearing loss. J Neurosci 34: 2684–2688. 10.1523/jneurosci.3977-13.2014
    1. Takazawa T, Ikeda K, Murata K, Kawase Y, Hirayama T, Ohtsu M, Harada H, Totani T, Sugiyama K, Kawabe K, et al. 2012. Sudden deafness and facial diplegia in Guillain–Barré syndrome: Radiological depiction of facial and acoustic nerve lesions. Intern Med 51: 2433–2437. 10.2169/internalmedicine.51.7737
    1. Taranda J, Maison SF, Ballestero JA, Katz E, Savino J, Vetter DE, Boulter J, Liberman MC, Fuchs PA, Elgoyhen AB. 2009. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection. PLoS Biol 7: e1000018 10.1371/journal.pbio.1000018
    1. Tremblay KL, Pinto A, Fischer ME, Klein BE, Klein R, Levy S, Tweed TS, Cruickshanks KJ. 2015. Self-reported hearing difficulties among adults with normal audiograms: The Beaver Dam Offspring Study. Ear Hear 36: e290–e299. 10.1097/AUD.0000000000000195
    1. Trune DR, Mitchell C, Phillips DS. 1988. The relative importance of head size, gender and age on the auditory brainstem response. Hear Res 32: 165–174. 10.1016/0378-5955(88)90088-3
    1. Valderrama JT, Beach EF, Yeend I, Sharma M, Van Dun B, Dillon H. 2018. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Hear Res 365: 36–48. 10.1016/j.heares.2018.06.003
    1. Valero MD, Hancock KE, Liberman MC. 2016. The middle ear muscle reflex in the diagnosis of cochlear neuropathy. Hear Res 332: 29–38. 10.1016/j.heares.2015.11.005
    1. Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC. 2017. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 353: 213–223. 10.1016/j.heares.2017.07.003
    1. Valero MD, Hancock KE, Maison SF, Liberman MC. 2018. Effects of cochlear synaptopathy on middle-ear muscle reflexes in unanesthetized mice. Hear Res 363: 109–118. 10.1016/j.heares.2018.03.012
    1. Verhulst S, Bharadwaj H, Mehraei G, Shinn-Cunningham B. 2013. Understanding hearing impairment through model predictions of brainstem responses. Trends Hear 19: 050182 10.1177/2331216516672186
    1. Verhulst S, Jagadeesh A, Mauermann M, Ernst F. 2016. Individual differences in auditory brainstem response wave characteristics: Relations to different aspects of peripheral hearing loss. Trends Hear 20: 2331216516672186 10.1177/2331216516672186
    1. Viana LM, O'Malley JT, Burgess BJ, Jones DD, Oliveira CACP, Santos F, Merchant SN, Liberman LD, Liberman MC. 2015. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 327: 78–88. 10.1016/j.heares.2015.04.014
    1. Wan G, Corfas G. 2015. No longer falling on deaf ears: Mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res 329: 1–10. 10.1016/j.heares.2015.04.008
    1. Wan G, Corfas G. 2017. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun 8: 14487 10.1038/ncomms14487
    1. Wan G, Gómez-Casati ME, Gigliello AR, Liberman MC, Corfas G. 2014. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. eLife 3: e03564.
    1. Wojtczak M, Beim JA, Oxenham AJ. 2017. Weak middle-ear-muscle reflex in humans with noise-induced tinnitus and normal hearing may reflect cochlear synaptopathy. eNeuro 4 10.1523/eneuro.0363-17.2017
    1. Wu PZ, Liberman LD, Bennett K, de Gruttola V, O'Malley JT, Liberman MC. 2018. Primary neural degeneration in the human cochlea: Evidence for hidden hearing loss in the aging ear. Neuroscience 10.1016/j.neuroscience.2018.07.053
    1. Xing Y, Samuvel DJ, Stevens SM, Dubno JR, Schulte BA, Lang H. 2012. Age-related changes of myelin basic protein in mouse and human auditory nerve. PLoS ONE 7: e34500 10.1371/journal.pone.0034500
    1. Zheng XY, Ding DL, McFadden SL, Henderson D. 1997. Evidence that inner hair cells are the major source of cochlear summating potentials. Hear Res 113: 76–88. 10.1016/S0378-5955(97)00127-5
    1. Zhou R, Assouline JG, Abbas PJ, Messing A, Gantz BJ. 1995. Anatomical and physiological measures of auditory system in mice with peripheral myelin deficiency. Hear Res 88: 87–97. 10.1016/0378-5955(95)00104-C

Source: PubMed

3
Abonneren