The Relevance of the High Frequency Audiometry in Tinnitus Patients with Normal Hearing in Conventional Pure-Tone Audiometry

Veronika Vielsmeier, Astrid Lehner, Jürgen Strutz, Thomas Steffens, Peter M Kreuzer, Martin Schecklmann, Michael Landgrebe, Berthold Langguth, Tobias Kleinjung, Veronika Vielsmeier, Astrid Lehner, Jürgen Strutz, Thomas Steffens, Peter M Kreuzer, Martin Schecklmann, Michael Landgrebe, Berthold Langguth, Tobias Kleinjung

Abstract

Objective: The majority of tinnitus patients suffer from hearing loss. But a subgroup of tinnitus patients show normal hearing thresholds in the conventional pure-tone audiometry (125 Hz-8 kHz). Here we explored whether the results of the high frequency audiometry (>8 kHz) provide relevant additional information in tinnitus patients with normal conventional audiometry by comparing those with normal and pathological high frequency audiometry with respect to their demographic and clinical characteristics.

Subjects and methods: From the database of the Tinnitus Clinic at Regensburg we identified 75 patients with normal hearing thresholds in the conventional pure-tone audiometry. We contrasted these patients with normal and pathological high-frequency audiogram and compared them with respect to gender, age, tinnitus severity, pitch, laterality and duration, comorbid symptoms and triggers for tinnitus onset.

Results: Patients with pathological high frequency audiometry were significantly older and had higher scores on the tinnitus questionnaires in comparison to patients with normal high frequency audiometry. Furthermore, there was an association of high frequency audiometry with the laterality of tinnitus.

Conclusion: In tinnitus patients with normal pure-tone audiometry the high frequency audiometry provides useful additional information. The association between tinnitus laterality and asymmetry of the high frequency audiometry suggests a potential causal role for the high frequency hearing loss in tinnitus etiopathogenesis.

Figures

Figure 1
Figure 1
Tinnitus laterality and HF-hearing loss in the right and left ear.

References

    1. Ahlf S., Tziridis K., Korn S., Strohmeyer I., Schulze H. Predisposition for and prevention of subjective tinnitus development. PLoS ONE. 2012;7(10) doi: 10.1371/journal.pone.0044519.e44519
    1. Kim D.-K., Park S.-N., Kim H. M., et al. Prevalence and significance of high-frequency hearing loss in subjectively normal-hearing patients with tinnitus. Annals of Otology, Rhinology and Laryngology. 2011;120(8):523–528. doi: 10.1177/000348941112000806.
    1. König O., Schaette R., Kempter R., Gross M. Course of hearing loss and occurrence of tinnitus. Hearing Research. 2006;221(1-2):59–64. doi: 10.1016/j.heares.2006.07.007.
    1. Martines F., Bentivegna D., Martines E., Sciacca V., Martinciglio G. Assessing audiological, pathophysiological and psychological variables in tinnitus patients with or without hearing loss. European Archives of Oto-Rhino-Laryngology. 2010;267(11):1685–1693. doi: 10.1007/s00405-010-1302-3.
    1. Norena A., Micheyl C., Chéry-Croze S., Collet L. Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiology and Neuro-Otology. 2002;7(6):358–369. doi: 10.1159/000066156.
    1. Schecklmann M., Vielsmeier V., Steffens T., Landgrebe M., Langguth B., Kleinjung T. Relationship between audiometric slope and tinnitus pitch in tinnitus patients: insights into the mechanisms of tinnitus generation. PLoS ONE. 2012;7(4) doi: 10.1371/journal.pone.0034878.e34878
    1. Schaette R., McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. The Journal of Neuroscience. 2011;31(38):13452–13457. doi: 10.1523/jneurosci.2156-11.2011.
    1. Standard-Bezugspegel für die Kalibrierung audiometrischer Geräte. DIN EN ISO. 1998;(389-1)
    1. Weisz N., Müller S., Schlee W., Dohrmann K., Hartmann T., Elbert T. The neural code of auditory phantom perception. The Journal of Neuroscience. 2007;27(6):1479–1484. doi: 10.1523/jneurosci.3711-06.2007.
    1. Fabijańska A., Smurzyński J., Hatzopoulos S., et al. The relationship between distortion product otoacoustic emissions and extended high-frequency audiometry in tinnitus patients. Part 1: normally hearing patients with unilateral tinnitus. Medical Science Monitor. 2012;18(12):CR765–CR770. doi: 10.12659/msm.883606.
    1. Goodey R. Tinnitus treatment: state of the art. Progress in Brain Research. 2007;166:237–246. doi: 10.1016/s0079-6123(07)66022-1.
    1. Landgrebe M., Zeman F., Koller M., et al. The Tinnitus Research Initiative (TRI) database: a new approach for delineation of tinnitus subtypes and generation of predictors for treatment outcome. BMC Medical Informatics and Decision Making. 2010;10(1, article 42) doi: 10.1186/1472-6947-10-42.
    1. International Organisation for Standardisation. DIN EN ISO. 7029. International Organisation for Standardisation; 1992. Akustik—Statistische Verteilung von Hörschwellen als eine Funktion des Alters.
    1. Langguth B., Goodey R., Azevedo A., et al. Consensus for tinnitus patient assessment and treatment outcome measurement: tinnitus research initiative meeting, regensburg, July 2006. Progress in Brain Research. 2007;166:525–536. doi: 10.1016/s0079-6123(07)66050-6.
    1. Goebel G., Hiller W. The tinnitus questionnaire. A standard instrument for grading the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire. HNO. 1994;42(3):166–172.
    1. Newman C. W., Sandridge S. A., Bolek L. Development and psychometric adequacy of the screening version of the tinnitus handicap inventory. Otology and Neurotology. 2008;29(3):276–281. doi: 10.1097/MAO.0b013e31816569c4.
    1. Figueiredo R. R., Rates M. A., de Azevedo A. A., de Oliveira P. M., de Navarro P. B. A. Correlation analysis of hearing thresholds, validated questionnaires and psychoacoustic measurements in tinnitus patients. Brazilian Journal of Otorhinolaryngology. 2010;76(4):522–526. doi: 10.1590/S1808-86942010000400018.
    1. Hoffmann H., Reed G. Epidemiology of tinnitus. In: Snow J., editor. Tinnitus: Theory and Management. London, UK: BC Decker; 2004. pp. 16–41.
    1. Shim H. J., Kim S. K., Park C. H., et al. Hearing abilities at ultra-high frequency in patients with tinnitus. Clinical and Experimental Otorhinolaryngology. 2009;2(4):169–174. doi: 10.3342/ceo.2009.2.4.169.
    1. Fabijańska A., Smurzyński J., Kochanek K., Bartnik G., Raj-Koziak D., Skarzyński H. The influence of high frequency hearing loss on the distortion product otoacoustic emissions in tinnitus subjects with normal hearing threshold (0,25-8 kHz) Otolaryngologia Polska. 2012;66(5):318–321. doi: 10.1016/j.otpol.2012.06.024.
    1. Paglialonga A., Fiocchi S., del Bo L., Ravazzani P., Tognola G. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: time-frequency analysis of transient evoked otoacoustic emissions and contralateral suppression. Auris Nasus Larynx. 2011;38(1):33–40. doi: 10.1016/j.anl.2010.04.006.
    1. Schmuziger N., Probst R., Smurzynski J. Otoacoustic emissions and extended high-frequency hearing sensitivity in young adults. International Journal of Audiology. 2005;44(1):24–30. doi: 10.1080/14992020400022660.
    1. Schmuziger N., Patscheke J., Probst R. An assessment of threshold shifts in nonprofessional pop/rock musicians using conventional and extended high-frequency audiometry. Ear and Hearing. 2007;28(5):643–648. doi: 10.1097/AUD.0b013e31812f7144.
    1. Mazurek B., Olze H., Haupt H., Szczepek A. J. The more the worse: the grade of noise-induced hearing loss associates with the severity of tinnitus. International Journal of Environmental Research and Public Health. 2010;7(8):3071–3079. doi: 10.3390/ijerph7083071.
    1. Prestes R., Daniela G. Impact of tinnitus on quality of life, loudness and pitch match, and high-frequency audiometry. The International Tinnitus Journal. 2009;15(2):134–138.

Source: PubMed

3
Abonneren