The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats

Yan Li, Ziqi Zhao, Jiajia Cai, Boya Gu, Yuanyuan Lv, Li Zhao, Yan Li, Ziqi Zhao, Jiajia Cai, Boya Gu, Yuanyuan Lv, Li Zhao

Abstract

A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN.

Keywords: GABAergic neurons; PVN; aerobic exercise; aging process; cardiovascular function.

Figures

Figure 1
Figure 1
Effects of 12 weeks of aerobic exercise on autonomic nervous system modulation. (A–C) the LF value (A), HF value (B) and LF/HF ratio (C) in young control (YC), old sedentary (O-SED), old low frequency exercise (O-LEX) and old high frequency exercise (O-HEX) group, respectively. (D) The plasma NE level in each group. *p < 0.05 vs. YC; #p < 0.05 vs. O-SED; &p < 0.05 vs. O-LEX; **p < 0.01 vs. YC; ##p < 0.01 vs. O-SED; &&p < 0.01 vs. O-LEX. n = 12 in each group.
Figure 2
Figure 2
Representative heart rate (HR) traces for each group. HR and blood pressure (BP) of animals from each group were measured using a BP-300A noninvasive tail-cuff system. The HR trace was used for a spectral analysis with BP-300A software. YC, young control group; O-SED, old sedentary group; O-LEX, old low frequency exercise group; O-HEX, old high frequency exercise group. Bar = 2 s.
Figure 3
Figure 3
Effects of 12 weeks of aerobic exercise on the number of GABAergic neurons in the paraventricular nucleus (PVN). (A) Immunofluorescence staining of GABAergic neurons (GAD67-positive) in the PVN in YC, O-SED, O-LEX and O-HEX group, respectively. (B) Number of GABAergic neurons in the PVN in YC, O-SED, O-LEX and O-HEX group. 3V, the third ventricle. Scale bar = 50 μm. **p < 0.01 vs. YC; ##p < 0.01 vs. O-SED; &p < 0.05 vs. O-LEX. n = 7 in each group.
Figure 4
Figure 4
Effects of 12 weeks of aerobic exercise on the GABAergic related protein expressions in the PVN. (A) Immunoreactive bands corresponding to GABAA receptor, gepryrin, GAD67 and GAPDH in the PVN in YC, O-SED, O-LEX and O-HEX group, respectively. (B) Data collections of GABAA receptor, gepryrin and GAD67 protein levels as a ratio to GAPDH. *p < 0.05 vs. YC; **p < 0.01 vs. YC; #p < 0.05 vs. O-SED; &p < 0.05 vs. O-LEX. n = 7 in each group.

References

    1. Barnes J. N., Hart E. C., Curry T. B., Nicholson W. T., Eisenach J. H., Wallin B. G., et al. . (2014). Aging enhances autonomic support of blood pressure in women. Hypertension 63, 303–308. 10.1161/HYPERTENSIONAHA.113.02393
    1. Burke S. N., Barnes C. A. (2006). Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7, 30–40. 10.1038/nrn1809
    1. Carter J. B., Banister E. W., Blaber A. P. (2003). Effect of endurance exercise on autonomic control of heart rate. Sports Med. 33, 33–46. 10.2165/00007256-200333010-00003
    1. Chattopadhyaya B., Di Cristo G., Wu C. Z., Knott G., Kuhlman S., Fu Y., et al. . (2007). GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903. 10.1016/j.neuron.2007.05.015
    1. Chen W.-W., Sun H.-J., Zhang F., Zhou Y.-B., Xiong X.-Q., Wang J.-J., et al. . (2013). Salusin-β in paraventricular nucleus increases blood pressure and sympathetic outflow via vasopressin in hypertensive rats. Cardiovasc. Res. 98, 344–351. 10.1093/cvr/cvt031
    1. Choii G., Ko J. (2015). Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med. 47:e158. 10.1038/emm.2015.5
    1. Chon K. H., Yang B., Posada-Quintero H. F., Siu K. L., Rolle M., Brink P., et al. . (2014). A novel quantitative method for diabetic cardiac autonomic neuropathy assessment in type 1 diabetic mice. J. Diabetes Sci. Technol. 8, 1157–1167. 10.1177/1932296814545669
    1. Cichon J., Sun C., Chen B., Jiang M., Chen X. A., Sun Y., et al. . (2012). Cofilin aggregation blocks intracellular trafficking and induces synaptic loss in hippocampal neurons. J. Biol. Chem. 287, 3919–3929. 10.1074/jbc.M111.301911
    1. Coote J. H. (2005). A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp. Physiol. 90, 169–173. 10.1113/expphysiol.2004.029041
    1. Cork S. C., Chazot P. L., Pyner S. (2016). Altered GABAA α5 subunit expression in the hypothalamic paraventricular nucleus of hypertensive and pregnant rats. Neurosci. Lett. 620, 148–153. 10.1016/j.neulet.2016.03.031
    1. Dampney R. A., Horiuchi J., Killinger S., Sheriff M. J., Tan P. S., McDowall L. M. (2005). Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin. Exp. Pharmacol. Physiol. 32, 419–425. 10.1111/j.1440-1681.2005.04205.x
    1. De Meersman R. E., Stein P. K. (2007). Vagal modulation and aging. Biol. Psychol. 74, 165–173. 10.1016/j.biopsycho.2006.04.008
    1. Ebert T. J., Morgan B. J., Barney J. A., Denahan T., Smith J. J. (1992). Effects of aging on baroreflex regulation of sympathetic activity in humans. Am. J. Physiol. 263, H798–H803.
    1. Erdos B., Clifton R. R., Liu M., Li H., McCowan M. L., Sumners C., et al. . (2015). Novel mechanism within the paraventricular nucleus reduces both blood pressure and hypothalamic pituitary-adrenal axis responses to acute stress. Am. J. Physiol. Heart Circ. Physiol. 309, H634–H645. 10.1152/ajpheart.00207.2015
    1. Esler M. D., Turner A. G., Kaye D. M., Thompson J. M., Kingwell B. A., Morris M., et al. . (1995). Aging effects on human sympathetic neuronal function. Am. J. Physiol. 268, R278–R285.
    1. Essrich C., Lorez M., Benson J. A., Fritschy J. M., Luscher B. (1998). Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1, 563–571. 10.1038/2798
    1. Ferrari A. U., Radaelli A., Centola M. (2003). Invited review: aging and the cardiovascular system. J. Appl. Physiol. 95, 2591–2597. 10.1152/japplphysiol.00601.2003
    1. García-Mesa Y., López-Ramos J. C., Gimónez-Llort L., Revilla S., Guerra R., Gruart A., et al. . (2011). Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J. Alzheimers Dis. 24, 421–454. 10.3233/JAD-2011-101635
    1. García-Mesa Y., Pareja-Galeano H., Bonet-Costa V., Revilla S., Gómez-Cabrera M. C., Gambini J., et al. . (2014). Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology 45, 154–166. 10.1016/j.psyneuen.2014.03.021
    1. Gruart A., López-Ramos J. C., Muñoz M. D., Delgado-Garcia J. M. (2008). Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol. Dis. 30, 439–450. 10.1016/j.nbd.2008.03.001
    1. Gutiérrez M. L., Ferreri M. C., Gravielle M. C. (2014). GABA-induced uncoupling of GABA/benzodiazepine site interactions is mediated by increased GABAA receptor internalization and associated with a change in subunit composition. Neuroscience 257, 119–129. 10.1016/j.neuroscience.2013.10.077
    1. Hart E. C., Charkoudian N. (2014). Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology 29, 8–15. 10.1152/physiol.00031.2013
    1. Higashi Y., Kihara Y., Noma K. (2012). Endothelial dysfunction and hypertension in aging. Hypertens. Res. 35, 1039–1047. 10.1038/hr.2012.138
    1. Hsu Y. C., Chen H. I., Kuo Y. M., Yu L., Huang T. Y., Chen S. J., et al. . (2011). Chronic treadmill running in normotensive rats resets the resting blood pressure to lower levels by upregulating the hypothalamic GABAergic system. J. Hypertens. 29, 2339–2348. 10.1097/HJH.0b013e32834c628f
    1. Illi B., Ciarapica R., Capogrossi M. C. (2015). Chromatin methylation and cardiovascular aging. J. Mol. Cell. Cardiol. 83, 21–31. 10.1016/j.yjmcc.2015.02.011
    1. Iwane M., Arita M., Tomimoto S., Satani O., Matsumoto M., Miyashita K., et al. . (2000). Walking 10,000 steps/day or more reduces blood pressure and sympathetic nerve activity in mild essential hypertension. Hypertens. Res. 23, 573–580. 10.1291/hypres.23.573
    1. Jacob T. C., Bogdanov Y. D., Magnus C., Saliba R. S., Kittler J. T., Haydon P. G., et al. . (2005). Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J. Neurosci. 25, 10469–10478. 10.1523/JNEUROSCI.2267-05.2005
    1. Jia L. L., Kang Y. M., Wang F. X., Li H. B., Zhang Y., Yu X. J., et al. . (2014). Exercise training attenuates hypertension and cardiac hypertrophy by modulating neurotransmitters and cytokines in hypothalamic paraventricular nucleus. PLoS One 9:e85481. 10.1371/journal.pone.0085481
    1. Kawada T., Akiyama T., Shimizu S., Sata Y., Turner M. J., Shirai M., et al. . (2014). Acute effects of arterial baroreflex on sympathetic nerve activity and plasma norepinephrine concentration. Auton. Neurosci. 186, 62–68. 10.1016/j.autneu.2014.10.016
    1. Kilkenny C., Browne W. J., Cuthill I. C., Emerson M., Altman D. G. (2010). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 1, 94–99. 10.4103/0976-500X.72351
    1. Kneussel M., Brandstätter J. H., Laube B., Stahl S., Müller U., Betz H. (1999). Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J. Neurosci. 19, 9289–9297.
    1. Koltai E., Hart N., Taylor A. W., Goto S., Ngo J. K., Davies K. J., et al. . (2012). Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R127–R134. 10.1152/ajpregu.00337.2011
    1. Lakatta E. G., Levy D. (2003). Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation 107, 139–146. 10.1161/01.cir.0000048892.83521.58
    1. Lake C. R., Ziegler M. G., Kopin I. J. (1976). Use of plasma norepinephrine for evaluation of sympathetic neuronal function in man. Life Sci. 18, 1315–1325. 10.1016/0024-3205(76)90210-1
    1. Lau C. G., Murthy V. N. (2012). Activity-dependent regulation of inhibition via GAD67. J. Neurosci. 32, 8521–8531. 10.1523/JNEUROSCI.1245-12.2012
    1. Lavi S., Nevo O., Thaler I., Rosenfeld R., Dayan L., Hirshoren N., et al. . (2007). Effect of aging on the cardiovascular regulatory systems in healthy women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R788–R793. 10.1152/ajpregu.00352.2006
    1. Li D. P., Pan H. L. (2005). Angiotensin II attenuates synaptic GABA release and excites paraventricular-rostral ventrolateral medulla output neurons. J. Pharmacol. Exp. Ther. 313, 1035–1045. 10.1124/jpet.104.082495
    1. Li D. P., Pan H. L. (2006). Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension. Am. J. Physiol. Heart Circ. Physiol. 290, H1110–H1119. 10.1152/ajpheart.00788.2005
    1. Li D. P., Pan H. L. (2007). Role of γ-aminobutyric acid (GABA)A and GABAB receptors in paraventricular nucleus in control of sympathetic vasomotor tone in hypertension. J. Pharmacol. Exp. Ther. 320, 615–626. 10.1124/jpet.106.109538
    1. Li Y., Zhao L., Gu B., Cai J., Lv Y., Yu L. (2017). Aerobic exercise regulates Rho/cofilin pathways to rescue synaptic loss in aged rats. PLoS One 12:e0171491. 10.1371/journal.pone.0171491
    1. London G. M., Guérin A. (1999). Influence of arterial pulse and reflective waves on systolic blood pressure and cardiac function. J. Hypertens. Suppl. 17, S3–S6.
    1. Madroñal N., Gruart A., Sacktor T. C., Delgado-García J. M. (2010). PKMζ inhibition reverses learning-induced increases in hippocampal synaptic strength and memory during trace eyeblink conditioning. PLoS One 5:e10400. 10.1371/journal.pone.0010400
    1. Mancia G., Grassi G. (2014). The autonomic nervous system and hypertension. Circ. Res. 114, 1804–1814. 10.1161/CIRCRESAHA.114.302524
    1. Martin D. S., Haywood J. R. (1998). Reduced GABA inhibition of sympathetic function in renal-wrapped hypertensive rats. Am. J. Physiol. 275, R1523–R1529.
    1. Masson G. S., Nair A. R., Silva Soares P. P., Michelini L. C., Francis J. (2015). Aerobic training normalizes autonomic dysfunction, HMGB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR. Am. J. Physiol. Heart Circ. Physiol. 309, H1115–H1122. 10.1152/ajpheart.00349.2015
    1. Mattson M. P., Magnus T. (2006). Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7, 278–294. 10.1038/nrn1886
    1. Najjar S. S., Scuteri A., Lakatta E. G. (2005). Arterial aging: is it an immutable cardiovascular risk factor? Hypertension 46, 454–462. 10.1161/01.hyp.0000177474.06749.98
    1. North B. J., Sinclair D. A. (2012). The intersection between aging and cardiovascular disease. Circ. Res. 110, 1097–1108. 10.1161/circresaha.111.246876
    1. Pagani M., Somers V., Furlan R., Dell’Orto S., Conway J., Baselli G., et al. . (1988). Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 12, 600–610. 10.1161/01.hyp.12.6.600
    1. Palmer G. J., Ziegler M. G., Lake C. R. (1978). Response of norepinephrine and blood pressure to stress increases with age. J. Gerontol. 33, 482–487. 10.1093/geronj/33.4.482
    1. Petrini E. M., Ravasenga T., Hausrat T. J., Iurilli G., Olcese U., Racine V., et al. . (2014). Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat. Commun. 5:3921. 10.1038/ncomms4921
    1. Rojas-Piloni G., López-Hidalgo M., Martínez-Lorenzana G., Rodríguez-Jiménez J., Condés-Lara M. (2007). GABA-mediated oxytocinergic inhibition in dorsal horn neurons by hypothalamic paraventricular nucleus stimulation. Brain Res. 1137, 69–77. 10.1016/j.brainres.2006.12.045
    1. Rowe J. W., Troen B. R. (1980). Sympathetic nervous system and aging in man. Endocr. Rev. 1, 167–179. 10.1210/edrv-1-2-167
    1. Scridon A., Gallet C., Arisha M. M., Oréa V., Chapuis B., Li N., et al. . (2012). Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: the role of the autonomic nervous system. Am. J. Physiol. Heart Circ. Physiol. 303, H386–H392. 10.1152/ajpheart.00004.2012
    1. Song X. A., Jia L. L., Cui W., Zhang M., Chen W., Yuan Z. Y., et al. . (2014). Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats. Toxicol. Appl. Pharmacol. 281, 101–108. 10.1016/j.taap.2014.09.004
    1. Sowers J. R., Rubenstein L. Z., Stern N. (1983). Plasma norepinephrine responses to posture and isometric exercise increase with age in the absence of obesity. J. Gerontol. 38, 315–317. 10.1093/geronj/38.3.315
    1. Stanley E. M., Fadel J. R., Mott D. D. (2012). Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol. Aging 33, 431.e1–431.e13. 10.1016/j.neurobiolaging.2010.12.014
    1. Stuck E. D., Christensen R. N., Huie J. R., Tovar C. A., Miller B. A., Nout Y. S., et al. . (2012). Tumor necrosis factor α mediates GABAA receptor trafficking to the plasma membrane of spinal cord neurons in vivo. Neural Plast. 2012:261345. 10.1155/2012/261345
    1. van Praag H., Shubert T., Zhao C., Gage F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685. 10.1523/jneurosci.1731-05.2005
    1. Wichi R. B., De Angelis K., Jones L., Irigoyen M. C. (2009). A brief review of chronic exercise intervention to prevent autonomic nervous system changes during the aging process. Clinics (Sao Paulo) 64, 253–258. 10.1590/s1807-59322009000300017
    1. Wu K. L., Chan S. H., Chan J. Y. (2012). Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J. Neuroinflammation 9:212. 10.1186/1742-2094-9-212
    1. Ye Z. Y., Li D. P., Byun H. S., Li L., Pan H. L. (2012). NKCC1 upregulation disrupts chloride homeostasis in the hypothalamus and increases neuronal activity-sympathetic drive in hypertension. J. Neurosci. 32, 8560–8568. 10.1523/jneurosci.1346-12.2012
    1. Zhang K., Mayhan W. G., Patel K. P. (1997). Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity. Am. J. Physiol. 273, R864–R872.
    1. Zhang K., Patel K. P. (1998). Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA. Am. J. Physiol. 275, R728–R734.

Source: PubMed

3
Abonneren