Acute bacterial meningitis

Emma C Wall, Jia Mun Chan, Eliza Gil, Robert S Heyderman, Emma C Wall, Jia Mun Chan, Eliza Gil, Robert S Heyderman

Abstract

Purpose of review: Community-acquired bacterial meningitis is a continually changing disease. This review summarises both dynamic epidemiology and emerging data on pathogenesis. Updated clinical guidelines are discussed, new agents undergoing clinical trials intended to reduce secondary brain damage are presented.

Recent findings: Conjugate vaccines are effective against serotype/serogroup-specific meningitis but vaccine escape variants are rising in prevalence. Meningitis occurs when bacteria evade mucosal and circulating immune responses and invade the brain: directly, or across the blood-brain barrier. Tissue damage is caused when host genetic susceptibility is exploited by bacterial virulence. The classical clinical triad of fever, neck stiffness and headache has poor diagnostic sensitivity, all guidelines reflect the necessity for a low index of suspicion and early Lumbar puncture. Unnecessary cranial imaging causes diagnostic delays. cerebrospinal fluid (CSF) culture and PCR are diagnostic, direct next-generation sequencing of CSF may revolutionise diagnostics. Administration of early antibiotics is essential to improve survival. Dexamethasone partially mitigates central nervous system inflammation in high-income settings. New agents in clinical trials include C5 inhibitors and daptomycin, data are expected in 2025.

Summary: Clinicians must remain vigilant for bacterial meningitis. Constantly changing epidemiology and emerging pathogenesis data are increasing the understanding of meningitis. Prospects for better treatments are forthcoming.

Trial registration: ClinicalTrials.gov NCT03480191.

Conflict of interest statement

There are no conflicts of interest.

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

Figures

Box 1
Box 1
no caption available
FIGURE 1
FIGURE 1
Model of BBB environment during bacterial meningitis. ABM pathogen (depicted here as blue diplococci) in the bloodstream cross the capillary endothelium using both transcellular and paracellular routes. Bacteria may also be carried across the BBB by infiltrating phagocytes (Trojan Horse strategy). Recognition of the pathogen via sensing of PAMPs leads to the activation of resident immune cells such as microglia, macrophages, astrocytes and pericytes and production of DAMPs. These cells produce a coordinated inflammatory response to contain bacteria and recruit more neutrophils to the CSF compartment. This host response, while important for killing bacteria, activates a fibrinolytic and coagulation cascade. When advanced, these processes lead to sustained tissue damage, BBB breakdown and leakage, causing death or lifelong neurological sequalae in survivors. ABM, acute bacterial meningitis; BBB, blood–brain barrier.

References

    1. Lorton F, Chalumeau M, Assathiany R, et al. . Vaccine-preventable severe morbidity and mortality caused by meningococcus and pneumococcus: a population-based study in France. Paediatr Perinat Epidemiol 2018; 32:442–447.
    1. Boeddha NP, Schlapbach LJ, Driessen GJ, et al. . Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Crit Care 2018; 22:143.doi: 10.1186/s13054-018-2052-7.
    1. Collaborators GBDM. Global, regional, and national burden of meningitis, 1999–2016: a systematic analysis for the Global Burden of Disease Study. Lancet Neurol 2018; 17:1061–1082.
    1. Erdem H, Inan A, Guven E, et al. . The burden and epidemiology of community-acquired central nervous system infections: a multinational study. Eur J Clin Microbiol Infect Dis 2017; 36:1595–1611.
    1. Hasbun R, Rosenthal N, Balada-Llasat JM, et al. . Epidemiology of meningitis and encephalitis in the United States, 2011–2014. Clin Infect Dis 2017; 65:359–363.
    1. Koelman DLH, van Kassel MN, Bijlsma MW, et al. . Changing epidemiology of bacterial meningitis since introduction of conjugate vaccines: three decades of national neningitis surveillance in The Netherlands. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa1774. Online ahead of print.
    2. Updated European meningitis epidemiology showing S. pneumoniae meningitis increasing in adults in Europe.

    1. Daugla DM, Gami JP, Gamougam K, et al. . Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study. Lancet 2014; 383:40–47.
    1. Gessner BD, Mueller JE, Yaro S. African meningitis belt pneumococcal disease epidemiology indicates a need for an effective serotype 1 containing vaccine, including for older children and adults. BMC Infect Dis 2010; 10:22.doi: 1471-2334-10-22.
    1. Paireau J, Chen A, Broutin H, et al. . Seasonal dynamics of bacterial meningitis: a time-series analysis. Lancet Glob Health 2016; 4:e370–e377.
    1. Wall EC, Everett DB, Mukaka M, et al. . Bacterial meningitis in Malawian adults, adolescents, and children during the era of antiretroviral scale-up and Haemophilus influenzae type b vaccination, 2000–2012. Clin Infect Dis 2014; 58:e137–e145.
    1. Mazamay S, Broutin H, Bompangue D. The environmental drivers of bacterial meningitis epidemics in the Democratic Republic of Congo, central Africa. PLoS Negl Trop Dis 2020; 14:e0008634.doi: 10.1371/journal.pntd.0008634.
    1. Amin-Chowdhury Z, Collins S, Sheppard C, et al. . Characteristics of invasive pneumococcal disease (IPD) caused by emerging serotypes after the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in England; prospective observational cohort study, 2014–18. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa043. Online ahead of print.
    2. Landmark data from the UK showing nonvaccine serotypes cause more severe IPD.

    1. Luciani L, Ninove L, Zandotti C, Nougairede A. COVID-19 pandemic and its consequences disrupt epidemiology of enterovirus meningitis, South-East France. J Med Virol 2021; 93:1929–1931.
    1. Oligbu G, Collins S, Djennad A, et al. . Effect of pneumococcal conjugate vaccines on pneumococcal meningitis, England and Wales, July 1, 2000–June 30, 2016. Emerg Infect Dis 2019; 25:1708–1718.
    1. Acevedo R, Bai X, Borrow R, et al. . The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines 2019; 18:15–30.
    1. Wahl B, O’Brien KL, Greenbaum A, et al. . Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. Lancet Glob Health 2018; 6:e744–e757.
    1. Ganiem AR, Parwati I, Wisaksana R, et al. . The effect of HIV infection on adult meningitis in Indonesia: a prospective cohort study. AIDS 2009; 23:2309–2316.
    1. Schutte CM, Van der Meyden CH, Magazi DS. The impact of HIV on meningitis as seen at a South African Academic Hospital (1994 to 1998). Infection 2000; 28:3–7.
    1. van Aalst M, Lotsch F, Spijker R, et al. . Incidence of invasive pneumococcal disease in immunocompromised patients: a systematic review and meta-analysis. Travel Med Infect Dis 2018; 24:89–100.
    1. Hasperhoven GF, Al-Nasiry S, Bekker V, et al. . Universal screening versus risk-based protocols for antibiotic prophylaxis during childbirth to prevent early-onset group B streptococcal disease: a systematic review and meta-analysis. BJOG 2020; 127:680–691.
    1. Murray CJ, Ortblad KF, Guinovart C, et al. . Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990-2013: a systematic analysis for the Global Burden of Disease Study. Lancet 2014; 384:1005–1070.
    1. Liu L, Oza S, Hogan D, et al. . Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the sustainable development goals. Lancet 2016; 388:3027–3035.
    1. WHO. Defeating bacterial meningitis by 2030. 2020. Available from: . [Accessed January 2021].
    1. Harboe ZB, Dalby T, Weinberger DM, et al. . Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin Infect Dis 2014; 59:1066–1073.
    1. Bijlsma MW, Brouwer MC, Kasanmoentalib ES, et al. . Community-acquired bacterial meningitis in adults in the Netherlands, 2006–14: a prospective cohort study. Lancet Infect Dis 2016; 16:339–347.
    1. Hanquet G, Krizova P, Valentiner-Branth P, et al. . Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax 2019; 74:473–482.
    1. Ouldali N, Levy C, Varon E, et al. . Incidence of paediatric pneumococcal meningitis and emergence of new serotypes: a time-series analysis of a 16-year French national survey. Lancet Infect Dis 2018; 18:983–991.
    1. Koelman DLH, Brouwer MC, van de Beek D. Resurgence of pneumococcal meningitis in Europe and Northern America. Clin Microbiol Infect 2020; 26:199–204.
    1. Ladhani SN, Collins S, Djennad A, et al. . Rapid increase in nonvaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–17: a prospective national observational cohort study. Lancet Infect Dis 2018; 18:441–451.
    1. Ciruela P, Izquierdo C, Broner S, et al. . The changing epidemiology of invasive pneumococcal disease after PCV13 vaccination in a country with intermediate vaccination coverage. Vaccine 2018; 36:7744–7752.
    1. Odutola A, Ota MOC, Antonio M, et al. . Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcus pneumoniae in infants: a phase 2, randomized, controlled, observer-blind study. Vaccine 2017; 35:2531–2542.
    1. Hammitt LL, Campbell JC, Borys D, et al. . Efficacy, safety and immunogenicity of a pneumococcal protein-based vaccine co-administered with 13-valent pneumococcal conjugate vaccine against acute otitis media in young children: a phase IIb randomized study. Vaccine 2019; 37:7482–7492.
    1. Converso TR, Assoni L, Andre GO, et al. . The long search for a serotype independent pneumococcal vaccine. Expert Rev Vaccines 2020; 19:57–70.
    1. Schumann B, Reppe K, Kaplonek P, et al. . Development of an efficacious, semisynthetic glycoconjugate vaccine candidate against Streptococcus pneumoniae serotype 1. ACS Cent Sci 2018; 4:357–361.
    1. Ramos-Sevillano E, Ercoli G, Felgner P, et al. . Preclinical development of virulence attenuated Streptococcus pneumoniae strains able to enhance protective immunity against pneumococcal infection. Am J Respir Crit Care Med 2020; doi: 10.1164/rccm.202011-4161LE. Online ahead of print.
    2. New data suggesting attenuated pneumococcal whole cell vaccines enhance PCV effects.

    1. Bai X, Borrow R, Bukovski S, et al. . Prevention and control of meningococcal disease: updates from the Global Meningococcal Initiative in Eastern Europe. J Infect 2019; 79:528–541.
    1. Li J, Shao Z, Liu G, et al. . Meningococcal disease and control in China: findings and updates from the Global Meningococcal Initiative (GMI). J Infect 2018; 76:429–437.
    1. Findlow H, Campbell H, Lucidarme J, et al. . Serogroup C Neisseria meningitidis disease epidemiology, seroprevalence, vaccine effectiveness and waning immunity, England, 1998/99 to 2015/16. Eur Commun Dis Bull 2019; 24: doi: 10.2807/1560-7917.ES.2019.24.1.1700818.
    1. Daugla DM, Gami JP, Gamougam K, et al. . Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study [corrected]. Lancet 2014; 383:40–47.
    1. Trotter CL, Lingani C, Fernandez K, et al. . Impact of MenAfriVac in nine countries of the African meningitis belt, 2010–15: an analysis of surveillance data. Lancet Infect Dis 2017; 17:867–872.
    1. Lamelas A, Hauser J, Dangy JP, et al. . Emergence and genomic diversification of a virulent serogroup W:ST-2881(CC175) Neisseria meningitidis clone in the African meningitis belt. Microb Genom 2017; 3:e000120.doi: 10.1099/mgen.0.000120.
    1. WHO. Weekly feedback bulletin on cerebrospinal meningitis. In: Africa, editor. Geneva 2020. .
    1. Ladhani SN, Andrews N, Parikh SR, et al. . Vaccination of infants with meningococcal group B vaccine (4CMenB) in England. N Engl J Med 2020; 382:309–317.
    1. Murphy TV, White KE, Pastor P, et al. . Declining incidence of Haemophilus influenzae type b disease since introduction of vaccination. JAMA 1993; 269:246–248.
    1. Peltola H. Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin Microbiol Rev 2000; 13:302–317.
    1. Ali M, Chang BA, Johnson KW, Morris SK. Incidence and aetiology of bacterial meningitis among children aged 1–59 months in South Asia: systematic review and meta-analysis. Vaccine 2018; 36:5846–5857.
    1. Adegbola RA, Secka O, Lahai G, et al. . Elimination of Haemophilus influenzae type b (Hib) disease from the Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet 2005; 366:144–150.
    1. Barkham T, Zadoks RN, Azmai MNA, et al. . One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLoS Negl Trop Dis 2019; 13:e0007421.doi: 10.1371/journal.pntd.0007421.
    1. Russell NJ, Seale AC, O’Driscoll M, et al. . Maternal colonization with Group B Streptococcus and serotype distribution worldwide: systematic review and meta-analyses. Clin Infect Dis 2017; 65: Suppl_2: S100–S111.
    1. Lamy MC, Dramsi S, Billoet A, et al. . Rapid detection of the ‘highly virulent’ group B Streptococcus ST-17 clone. Microbes Infect 2006; 8:1714–1722.
    1. Shabayek S, Spellerberg B. Group B streptococcal colonization, molecular characteristics, and epidemiology. Front Microbiol 2018; 9:437.doi: 10.3389/fmicb.2018.00437.
    1. Gori A, Harrison OB, Mlia E, et al. . Pan-GWAS of Streptococcus agalactiae highlights lineage-specific genes associated with virulence and niche adaptation. mBio 2020; 11: doi: 10.1128/mBio.00728-20.
    1. Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal serine-rich repeat proteins in colonization and disease. Front Microbiol 2020; 11:593356.doi: 10.3389/fmicb.2020.593356.
    1. Berardi A, Cassetti T, Creti R, et al. . The Italian arm of the PREPARE study: an international project to evaluate and license a maternal vaccine against Group B Streptococcus. Ital J Pediatr 2020; 46:160.doi: 10.1186/s13052-020-00923-3.
    1. Abu-Raya B, Maertens K, Edwards K, et al. . Global perspectives on immunization during pregnancy and priorities for future research and development: an international consensus statement. Front Immunol 2020; 11:1282.doi: 10.3389/fimmu.2020.01282.
    1. Heyderman RS, Madhi SA, French N, et al. . Group B Streptococcus vaccination in pregnant women with or without HIV in Africa: a nonrandomised phase 2, open-label, multicentre trial. Lancet Infect Dis 2016; 16:546–555.
    1. Carreras-Abad C, Ramkhelawon L, Heath PT, Le Doare K. A vaccine against Group B Streptococcus: recent advances. Infect Drug Resist 2020; 13:1263–1272.
    1. Weight CM, Venturini C, Pojar S, et al. . Microinvasion by Streptococcus pneumoniae induces epithelial innate immunity during colonisation at the human mucosal surface. Nat Commun 2019; 10:3060.doi: 10.1038/s41467-019-11005-2.
    2. First data showing S. pneumoniae subverting the mucosal epithelium and the associated innate immune response.

    1. Tuomanen EI. Perspective of a pediatrician: shared pathogenesis of the three most successful pathogens of children. Front Cell Infect Microbiol 2020; 10:585791.doi: 10.3389/fcimb.2020.585791.
    1. Kremer PH, Lees JA, Koopmans MM, et al. . Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clin Microbiol Infect 2017; 23:265.e1–265.e7.
    1. van Kassel MN, van Haeringen KJ, Brouwer MC, et al. . Community-acquired group B streptococcal meningitis in adults. J Infect 2020; 80:255–260.
    1. Sjolinder H, Jonsson AB. Olfactory nerve—a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 2010; 5:e14034.doi: 10.1371/journal.pone.0014034.
    1. van Ginkel FW, McGhee JR, Watt JM, et al. . Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. PNAS 2003; 100:14363–14367.
    1. Aguilera ER, Lenz LL. Inflammation as a modulator of host susceptibility to pulmonary influenza, pneumococcal, and co-infections. Front Immunol 2020; 11:105.doi: 10.3389/fimmu.2020.00105.
    1. Loh E, Kugelberg E, Tracy A, et al. . Temperature triggers immune evasion by Neisseria meningitidis. Nature 2013; 502:237–240.
    1. Jochems SP, Marcon F, Carniel BF, et al. . Inflammation induced by influenza virus impairs human innate immune control of pneumococcus. Nat Immunol 2018; 19:1299–1308.
    1. Salomon A, Berry I, Tuite AR, et al. . Influenza increases invasive meningococcal disease risk in temperate countries. Clin Microbiol Infect 2020; 26:1257.e1–1257.e7.
    2. Epidemiology of influenza and meningococcal meningitis in parallel showing peaks of influenza are followed by outbreaks of meningococcal meningitis.

    1. Rustenhoven J, Kipnis J. Bypassing the blood–brain barrier. Science 2019; 366:1448–1449.
    1. Anil A, Banerjee A. Pneumococcal encounter with the blood–brain barrier endothelium. Front Cell Infect Microbiol 2020; 10:590682.doi: 10.3389/fcimb.2020.590682.
    1. Zhang Q, Leong SC, McNamara PS, et al. . Characterisation of regulatory T cells in nasal associated lymphoid tissue in children: relationships with pneumococcal colonization. PLoS Pathog 2011; 7:e1002175.doi: 10.1371/journal.ppat.1002175.
    1. Orihuela CJ, Mahdavi J, Thornton J, et al. . Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 2009; 119:1638–1646.
    1. Iovino F, Engelen-Lee JY, Brouwer M, et al. . pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion. J Exp Med 2017; 214:1619–1630.
    1. Mukerji R, Briles DE. New strategy is needed to prevent pneumococcal meningitis. Pediatric Infect Dis J 2020; 39:298–304.
    1. Macedo-Ramos H, Campos FS, Carvalho LA, et al. . Olfactory ensheathing cells as putative host cells for Streptococcus pneumoniae: evidence of bacterial invasion via mannose receptor-mediated endocytosis. Neurosci Res 2011; 69:308–313.
    1. Macedo-Ramos H, Ruiz-Mendoza S, Mariante RM, et al. . Streptococcus pneumoniae resists intracellular killing by olfactory ensheathing cells but not by microglia. Scientific Rep 2016; 6:36813.doi: 10.1038/srep36813.
    1. Briles DE, Novak L, Hotomi M, et al. . Nasal colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci. Infect Immun 2005; 73:6945–6951.
    1. Hatcher BL, Hale JY, Briles DE. Free sialic acid acts as a signal that promotes Streptococcus pneumoniae invasion of nasal tissue and nonhematogenous invasion of the central nervous system. Infect Immun 2016; 84:2607–2615.
    1. Wall EC, Gritzfeld JF, Scarborough M, et al. . Genomic pneumococcal load and CSF cytokines are not related to outcome in Malawian adults with meningitis. J Infect 2014; 69:440–446.
    1. Kanova E, Tkacova Z, Bhide K, et al. . Transcriptome analysis of human brain microvascular endothelial cells response to Neisseria meningitidis and its antigen MafA using RNA-seq. Scientific Rep 2019; 9:18763.doi: 10.1038/s41598-019-55409-y.
    1. Too LK, Yau B, Baxter AG, et al. . Double deficiency of toll-like receptors 2 and 4 alters long-term neurological sequelae in mice cured of pneumococcal meningitis. Scientific Rep 2019; 9:16189.doi: 10.1038/s41598-019-52212-7.
    1. Borkowski J, Li L, Steinmann U, et al. . Neisseria meningitidis elicits a pro-inflammatory response involving IkappaBzeta in a human blood-cerebrospinal fluid barrier model. J Neuroinflamm 2014; 11:163.doi: 10.1186/s12974-014-0163-x.
    1. van Well GT, Sanders MS, Ouburg S, et al. . Polymorphisms in Toll-like receptors 2, 4, and 9 are highly associated with hearing loss in survivors of bacterial meningitis. PLoS One 2012; 7:e35837.doi: 10.1371/journal.pone.0035837.
    1. Mohanty T, Fisher J, Bakochi A, et al. . Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun 2019; 10:1667.doi: 10.1038/s41467-019-09040-0.
    2. Data on NETs from human CSF extrapolated to a murine model to show damaging effects of NETs within the CNS, and efficacy of DNAse in improving murine survival.

    1. Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: dissecting the structural mechanisms and signaling pathways. Cell Signal 2018; 54:69–80.
    1. Hupp S, Grandgirard D, Mitchell TJ, et al. . Pneumolysin and the bacterial capsule of Streptococcus pneumoniae cooperatively inhibit taxis and motility of microglia. J Neuroinflamm 2019; 16:105.doi: 10.1186/s12974-019-1491-7.
    2. Study showing in-vitro how combined potent pneumococcal virulence factors pneumolysin and capsule combine to inhibit microglial clearance of bacteria in the CNS.

    1. Wippel C, Maurer J, Fortsch C, et al. . Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage. PLoS Pathogens 2013; 9:e1003380.doi: 10.1371/journal.ppat.1003380.
    1. Wall EC, Gordon SB, Hussain S, et al. . Persistence of pneumolysin in the cerebrospinal fluid of patients with pneumococcal meningitis is associated with mortality. Clin Infect Dis 2012; 54:701–705.
    1. Giridharan VV, Generoso JS, Collodel A, et al. . Receptor for advanced glycation end products (RAGE) mediates cognitive impairment triggered by pneumococcal meningitis. Neurotherapeutics 2020; doi: 10.1007/s13311-020-00917-3.
    1. Chen JQ, Li NN, Wang BW, et al. . Upregulation of CBP by PLY can cause permeability of blood-brain barrier to increase meningitis. J Biochem Mol Toxicol 2019; 33:e22333.doi: 10.1002/jbt.22333.
    2. Study showing direct evidence for the causative role of pneumolysin on BBB leak.

    1. Brouwer MC, McIntyre P, Prasad K, van de Beek D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 2015; (9):CD004405.doi: 10.1002/14651858.CD004405.pub5.
    1. Goldberg DW, Tenforde MW, Mitchell HK, Jarvis JN. Neurological sequelae of adult meningitis in Africa: a systematic literature review. Open Forum Infect Dis 2018; 5:ofx246.doi: 10.1093/ofid/ofx246.
    1. Griffiths MJ, McGill F, Solomon T. Management of acute meningitis. Clin Med (Lond) 2018; 18:164–169.
    1. Yau B, Hunt NH, Mitchell AJ, Too LK. Blood-brain barrier pathology and CNS outcomes in Streptococcus pneumoniae meningitis. Int J Mol Sci 2018; 19:3555.doi: 10.3390/ijms19113555.
    1. Kasanmoentalib ES, Valls Seron M, Engelen-Lee JY, et al. . Complement factor H contributes to mortality in humans and mice with bacterial meningitis. J Neuroinflamm 2019; 16:279.doi: 10.1186/s12974-019-1675-1.
    2. Data showing inhibition of C5 improves survival in murine meninigits. Data underpinning current trial of C5 inhibitors in patients.

    1. Ribes S, Nessler S, Heide EC, et al. . The early adaptive immune response in the pathophysiological process of pneumococcal meningitis. J Infect Dis 2017; 215:150–158.
    1. Mustafa MM, Ramilo O, Saez-Llorens X, et al. . Cerebrospinal fluid prostaglandins, interleukin 1 beta, and tumor necrosis factor in bacterial meningitis. Clinical and laboratory correlations in placebo-treated and dexamethasone-treated patients. Am J Dis Children 1990; 144:883–887.
    1. Wall EC, Brownridge P, Laing G, et al. . CSF levels of elongation factor Tu is associated with increased mortality in Malawian adults with Streptococcus pneumoniae meningitis. Front Cell Infect Microbiol 2020; 10:603623.doi: 10.3389/fcimb.2020.603623.
    2. First dual host-pathogen CSF proteome, showing bacterial proteins correlate with clinical outcome, potentially by inhibiting neutrophil-mediated killing of bacteria.

    1. Mook-Kanamori BB, Brouwer MC, Geldhoff M, et al. . Cerebrospinal fluid complement activation in patients with pneumococcal and meningococcal meningitis. J Infect 2014; 68:542–547.
    1. de Gans J, van de Beek D. Dexamethasone in adults with bacterial meningitis. N Engl J Med 2002; 347:1549–1556.
    1. Brouwer MC, McIntyre P, de Gans J, et al. . Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 2010; (9):CD004405.doi: 10.1002/14651858.CD004405.pub3.
    1. Mogensen TH, Berg RS, Paludan SR, Ostergaard L. Mechanisms of dexamethasone-mediated inhibition of Toll-like receptor signaling induced by Neisseria meningitidis and Streptococcus pneumoniae. Infect Immun 2008; 76:189–197.
    1. Lees JA, Ferwerda B, Kremer PHC, et al. . Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nat Commun 2019; 10:2176.doi: 10.1038/s41467-019-09976-3.
    2. Landmark study on host-pathogen GWAS showing host genetic associations with poor clinical outcomes.

    1. Panagiotou S, Chaguza C, Yahya R, et al. . Hypervirulent pneumococcal serotype 1 harbours two pneumolysin variants with differential haemolytic activity. Sci Rep 2020; 10:17313.doi: 10.1038/s41598-020-73454-w.
    2. Data showing differential expression of pneumolysin is important for IPD pathogenesis.

    1. Li Y, Metcalf BJ, Chochua S, et al. . Genome-wide association analyses of invasive pneumococcal isolates identify a missense bacterial mutation associated with meningitis. Nat Commun 2019; 10:178.doi: 10.1038/s41467-018-07997-y.
    1. Kremer PHC, Lees JA, Ferwerda B, et al. . Genetic variation in Neisseria meningitidis does not influence disease severity in meningococcal meningitis. Front Med (Lausanne) 2020; 7:594769.doi: 10.3389/fmed.2020.594769.
    1. Minhas V, Aprianto R, McAllister LJ, et al. . In vivo dual RNA-seq reveals that neutrophil recruitment underlies differential tissue tropism of Streptococcus pneumoniae. Commun Biol 2020; 3:293.doi: 10.1038/s42003-020-1018-x.
    2. Key study showing differential tissue tropism and mediation of neutrophil recruitment by S. pneumoniae.

    1. Minhas V, Harvey RM, McAllister LJ, et al. . Capacity to utilize raffinose dictates pneumococcal disease phenotype. mBio 2019; 10: doi: 10.1128/mBio.02596-18.
    1. Aprianto R, Slager J, Holsappel S, Veening JW. Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection. Genome Biol 2016; 17:198.doi: 10.1186/s13059-016-1054-5.
    1. D’Mello A, Riegler AN, Martinez E, et al. . An in vivo atlas of host-pathogen transcriptomes during Streptococcus pneumoniae colonization and disease. PNAS 2020; 117:33507–33518.
    2. Murine and bacterial transcriptomes at different disease sites.

    1. Schmidt F, Kakar N, Meyer TC, et al. . In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathogens 2019; 15:e1007987.doi: 10.1371/journal.ppat.1007987.
    1. Azad AK, Chakrabarti S, Xu Z, et al. . Coiled-coil domain containing 3 (CCDC3) represses tumor necrosis factor-alpha/nuclear factor kappaB-induced endothelial inflammation. Cell Signal 2014; 26:2793–2800.
    1. van Zeggeren IE, Bijlsma MW, Tanck MW, et al. . Systematic review and validation of diagnostic prediction models in patients suspected of meningitis. J Infect 2020; 80:143–151.
    1. Wall EC, Mukaka M, Scarborough M, et al. . Prediction of outcome from adult bacterial meningitis in a high-HIV-seroprevalence, resource-poor setting using the Malawi Adult Meningitis Score (MAMS). Clin Infect Dis 2017; 64:413–419.
    1. McGill F, Griffiths MJ, Bonnett LJ, et al. . Incidence, aetiology, and sequelae of viral meningitis in UK adults: a multicentre prospective observational cohort study. Lancet Infect Dis 2018; 18:992–1003.
    1. Hasbun R, Abrahams J, Jekel J, Quagliarello VJ. Computed tomography of the head before lumbar puncture in adults with suspected meningitis. N Engl J Med 2001; 345:1727–1733.
    1. Michael B, Menezes BF, Cunniffe J, et al. . Effect of delayed lumbar punctures on the diagnosis of acute bacterial meningitis in adults. Emerg Med J 2010; 27:433–438.
    1. Glimaker M, Sjolin J, Akesson S, Naucler P. Lumbar puncture performed promptly or after neuroimaging in acute bacterial meningitis in adults: a prospective national cohort study evaluating different guidelines. Clin Infect Dis 2018; 66:321–328.
    1. Salazar L, Hasbun R. Cranial imaging before lumbar puncture in adults with community-acquired meningitis: clinical utility and adherence to the Infectious Diseases Society of America Guidelines. Clin Infect Dis 2017; 64:1657–1662.
    1. Costerus JM, Brouwer MC, Sprengers MES, et al. . Cranial computed tomography, lumbar puncture, and clinical deterioration in bacterial meningitis: a nationwide cohort study. Clin Infect Dis 2018; 67:920–926.
    1. McGill F, Heyderman RS, Michael BD, et al. . The UK joint specialist societies guideline on the diagnosis and management of acute meningitis and meningococcal sepsis in immunocompetent adults. J Infect 2016; 72:405–438.
    1. van de Beek D, Cabellos C, Dzupova O, et al. . ESCMID guideline: diagnosis and treatment of acute bacterial meningitis. Clin Microbiol Infect 2016; 22: Suppl 3: S37–S62.
    1. Tunkel AR, Hasbun R, Bhimraj A, et al. . 2017 Infectious Diseases Society of America's clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis 2017; 64:e34–e65.
    1. Wu HM, Cordeiro SM, Harcourt BH, et al. . Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis. BMC Infect Dis 2013; 13:26.doi: 10.1186/1471-2334-13-26.
    1. Houlihan CF, Bharucha T, Breuer J. Advances in molecular diagnostic testing for central nervous system infections. Curr Opin Infect Dis 2019; 32:244–250.
    1. Wilson MR, Sample HA, Zorn KC, et al. . Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med 2019; 380:2327–2340.
    2. First report of the clinical utility of NGS for the diagnosis of culture negative meningitis.

    1. Costerus JM, Brouwer MC, Bijlsma MW, et al. . Impact of an evidence-based guideline on the management of community-acquired bacterial meningitis: a prospective cohort study. Clin Microbiol Infect 2016; 22:928–933.
    1. Wall EC, Mukaka M. Denis B Goal directed therapy for suspected acute bacterial meningitis in adults and adolescents in sub-Saharan Africa. PLoS One 2017; 12:e0186687.doi: 10.1371/journal.pone.0186687.
    1. Nhantumbo AA, Gudo ES, Caierao J, Munguambe AM, et al. . Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae in children with acute bacterial meningitis in Mozambique: implications for a national immunization strategy. BMC Microbiol 2016; 16:134.doi: 10.1186/s12866-016-0747-y.
    1. Cornick JE, Everett DB, Broughton C, et al. . Invasive Streptococcus pneumoniae in children, Malawi, 2004–2006. Emerging Infect Dis 2011; 17:1107–1109.
    1. Wen S, Feng D, Chen D, et al. . Molecular epidemiology and evolution of Haemophilus influenzae. Infect Genet Evol 2020; 80:104205.doi: 10.1016/j.meegid.2020.104205.
    1. Tenforde MW, Mokomane M, Leeme TB, et al. . Mortality in adult patients with culture-positive and culture-negative meningitis in the Botswana national meningitis survey: a prevalent cohort study. Lancet Infect Dis 2019; 19:740–749.
    2. Data highlighting the excessive mortality from bacterial meningitis in Africa.

    1. Kloek AT, Brouwer MC, Schmand B, et al. . Long-term neurologic and cognitive outcome and quality of life in adults after pneumococcal meningitis. Clin Microbiol Infect 2020; 26:1361–1367.
    1. Klein M, Koedel U, Pfefferkorn T, et al. . Arterial cerebrovascular complications in 94 adults with acute bacterial meningitis. Crit Care 2011; 15:R281.doi: 10.1186/cc10565.
    1. Klein M, Koedel U, Kastenbauer S, et al. . Delayed cerebral thrombosis after initial good recovery from pneumococcal meningitis: past as prologue: delayed stroke as a parainfectious process of bacterial meningitis? Neurology 2010; 75:193.author reply 193–4.
    1. Engelen-Lee JY, Brouwer MC, Aronica E, van de Beek D. Delayed cerebral thrombosis complicating pneumococcal meningitis: an autopsy study. Ann Intensive Care 2018; 8:20.doi: 10.1186/s13613-018-0368-8.
    1. Lucas MJ, Brouwer MC, van de Beek D. Delayed cerebral thrombosis in bacterial meningitis: a prospective cohort study. Intensive Care Med 2013; 39:866–871.
    1. van de Beek D, Farrar JJ, de Gans J, et al. . Adjunctive dexamethasone in bacterial meningitis: a meta-analysis of individual patient data. Lancet Neurol 2010; 9:254–263.
    1. Nguyen TH, Tran TH, Thwaites G, et al. . Dexamethasone in Vietnamese adolescents and adults with bacterial meningitis. N Engl J Med 2007; 357:2431–2440.
    1. Scarborough M, Gordon SB, Whitty CJ, et al. . Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa. N Engl J Med 2007; 357:2441–2450.
    1. Ajdukiewicz KM, Cartwright KE, Scarborough M, et al. . Glycerol adjuvant therapy in adults with bacterial meningitis in a high HIV seroprevalence setting in Malawi: a double-blind, randomised controlled trial. Lancet Infect Dis 2011; 11:293–300.
    1. Mourvillier B, Tubach F, van de Beek D, et al. . Induced hypothermia in severe bacterial meningitis: a randomized clinical trial. JAMA 2013; 310:2174–2183.
    1. Ribes S, Taberner F, Domenech A, et al. . Evaluation of ceftriaxone, vancomycin and rifampicin alone and combined in an experimental model of meningitis caused by highly cephalosporin-resistant Streptococcus pneumoniae ATCC 51916. J Antimicrob Chemother 2005; 56:979–982.
    1. Wald-Dickler N, Holtom P, Spellberg B. Busting the myth of ‘static vs cidal’: a systemic literature review. Clin Infect Dis 2018; 66:1470–1474.
    1. Grandgirard D, Schurch C, Cottagnoud P, Leib SL. Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother 2007; 51:2173–2178.
    1. Kasanmoentalib ES, Valls Seron M, et al. . Adjuvant treatment with dexamethasone plus anti-C5 antibodies improves outcome of experimental pneumococcal meningitis: a randomized controlled trial. J Neuroinflamm 2015; 12:149.doi: 10.1186/s12974-015-0372-y.
    1. Muri L, Le ND, Zemp J, et al. . Metformin mediates neuroprotection and attenuates hearing loss in experimental pneumococcal meningitis. J Neuroinflamm 2019; 16:156.doi: 10.1186/s12974-019-1549-6.
    1. Mai NT, Dobbs N, Phu NH, et al. . A randomised double blind placebo controlled phase 2 trial of adjunctive aspirin for tuberculous meningitis in HIV-uninfected adults. eLife 2018; 7.doi: 10.7554/eLife.33478.
    1. Liechti FD, Grandgirard D, Leppert D, Leib SL. Matrix metalloproteinase inhibition lowers mortality and brain injury in experimental pneumococcal meningitis. Infect Immun 2014; 82:1710–1718.
    1. Morton B, Mitsi E, Pennington SH, et al. . Augmented passive immunotherapy with P4 peptide improves phagocyte activity in severe sepsis. Shock 2016; 46:635–641.
    1. Jim KK, Engelen-Lee J, van der Sar AM, et al. . Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. J Neuroinflamm 2016; 13:188.doi: 10.1186/s12974-016-0655-y.

Source: PubMed

3
Abonneren