In vivo/ex vivo efficacy of artemether-lumefantrine and artesunate-amodiaquine as first-line treatment for uncomplicated falciparum malaria in children: an open label randomized controlled trial in Burkina Faso

Moussa Lingani, Léa Nadège Bonkian, Isidore Yerbanga, Adama Kazienga, Innocent Valéa, Hermann Sorgho, Jean Bosco Ouédraogo, Petronella Francisca Mens, Henk D F H Schallig, Raffaella Ravinetto, Umberto d'Alessandro, Halidou Tinto, Moussa Lingani, Léa Nadège Bonkian, Isidore Yerbanga, Adama Kazienga, Innocent Valéa, Hermann Sorgho, Jean Bosco Ouédraogo, Petronella Francisca Mens, Henk D F H Schallig, Raffaella Ravinetto, Umberto d'Alessandro, Halidou Tinto

Abstract

Background: Artemisinin-based combination therapy (ACT) is recommended to improve malaria treatment efficacy and limit drug-resistant parasites selection in malaria endemic areas. 5 years after they were adopted, the efficacy and safety of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ), the first-line treatments for uncomplicated malaria were assessed in Burkina Faso.

Methods: In total, 440 children with uncomplicated Plasmodium falciparum malaria were randomized to receive either AL or ASAQ for 3 days and were followed up weekly for 42 days. Blood samples were collected to investigate the ex vivo susceptibility of P. falciparum isolates to lumefantrine, dihydroartemisinin (the active metabolite of artemisinin derivatives) and monodesethylamodiaquine (the active metabolite of amodiaquine). The modified isotopic micro test technique was used to determine the 50% inhibitory concentration (IC50) values. Primary endpoints were the risks of treatment failure at days 42.

Results: Out of the 440 patients enrolled, 420 (95.5%) completed the 42 days follow up. The results showed a significantly higher PCR unadjusted cure rate in ASAQ arm (71.0%) than that in the AL arm (49.8%) on day 42, and this trend was similar after correction by PCR, with ASAQ performing better (98.1%) than AL (91.1%). Overall adverse events incidence was low and not significantly different between the two treatment arms. Ex vivo results showed that 6.4% P. falciparum isolates were resistant to monodesthylamodiaquine. The coupled in vivo/ex vivo analysis showed increased IC50 values for lumefantrine and monodesethylamodiaquine at day of recurrent parasitaemia compared to baseline values while for artesunate, IC50 values remained stable at baseline and after treatment failure (p > 0.05).

Conclusion: These findings provide substantial evidence that AL and ASAQ are highly efficacious for the treatment of uncomplicated malaria in children in Burkina Faso. However, the result of P. falciparum susceptibility to the partner drugs advocates the need to regularly replicate such surveillance studies. This would be particularly indicated when amodiaquine is associated in seasonal malaria chemoprophylaxis (SMC) mass drug administration in children under 5 years in Burkina Faso. Trial registration clinicaltrials, NCT00808951. Registered 05 December 2008,https://ichgcp.net/clinical-trials-registry/NCT00808951?cond=NCT00808951&rank=1.

Keywords: Artemisinin-based combination therapy; Burkina Faso; Efficacy; In vivo/ex vivo; Paediatric; Safety; Sub-Saharan Africa; Uncomplicated malaria.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Trial profile: 42-day follow-up of study participants by treatment arm at the Dafra health district medical centre, Burkina Faso 2008-10. AL artemether–lumefantrine, ASAQ artesunate–amodiaquine
Fig. 2
Fig. 2
Kaplan Meier curves showing the treatment failure cumulative proportion for each treatment arm by day 42 in the per protocol population (N = 420): a recrudescent infections, b new infection, c recurrent infections (Recrudescent plus new infection)
Fig. 3
Fig. 3
Mean geometric IC50 values at day 0 and treatment outcome in study participants at the Dafra health district medical centre, Burkina Faso 2008–2010: a artemether–lumefantrine arm, b artesunate amodiaquine arm. D0 day of inclusion before treatment administration, NI new infection, R recrudescent, ACPR adequate clinical and parasitological response, DHA dihydroartemisinin, Lum lumefantrine, MDA monodesethylamodiaquine, IC50 50% inhibitory concentration

References

    1. WHO. World malaria report 2018. Geneva, World Health Organization. 2018. . Accessed 13 Nov 2019.
    1. Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2010;7:864–874. doi: 10.1038/nrmicro2239.
    1. WHO. World Malaria Report 2015. Geneva, World Health Organization. 2016. . Accessed 12 June 2018.
    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2015;371:411–423. doi: 10.1056/NEJMoa1314981.
    1. Rogers WO, Sem R, Tero T, Chim P, Lim P, Muth S, et al. Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia. Malar J. 2009;8:10. doi: 10.1186/1475-2875-8-10.
    1. Lim P, Alker AP, Khim N, Shah NK, Incardona S, Doung S, et al. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia. Malar J. 2009;8:11. doi: 10.1186/1475-2875-8-11.
    1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–467. doi: 10.1056/NEJMoa0808859.
    1. Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-Isavadharm P, Smith B, et al. Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis. 2010;51:e82–e89. doi: 10.1086/657120.
    1. Khera A, Mukherjee R. Artemisinin resistance: cause for worry? J Marine Med Soc. 2019;21:4–8. doi: 10.4103/jmms.jmms_43_18.
    1. Borrmann S, Sasi P, Mwai L, Bashraheil M, Abdallah A, Muriithi S, et al. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast. PLoS ONE. 2011;6:e26005. doi: 10.1371/journal.pone.0026005.
    1. Yeka A, Kigozi R, Conrad MD, Lugemwa M, Okui P, Katureebe C, et al. Artesunate/amodiaquine versus artemether/lumefantrine for the treatment of uncomplicated malaria in Uganda: a randomized trial. J Infect Dis. 2016;213:1134–1142. doi: 10.1093/infdis/jiv551.
    1. Baraka V, Tinto H, Valea I, Fitzhenry R, Delgado-Ratto C, Mbonye MK, et al. In vivo selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemether–lumefantrine and dihydroartemisinin–piperaquine in Burkina Faso. Antimicrob Agents Chemother. 2015;59(1):734–737. doi: 10.1128/AAC.03647-14.
    1. Rosenthal PJ. The interplay between drug resistance and fitness in malaria parasites. Mol Microbiol. 2014;89:1025–1038. doi: 10.1111/mmi.12349.
    1. Nsobya SL, Dokomajilar C, Joloba M, Dorsey G, Rosenthal PJ. Resistance-mediating Plasmodium falciparum pfcrt and pfmdr1 alleles after treatment with artesunate–amodiaquine in Uganda. Antimicrob Agents Chemother. 2007;51:3023–3025. doi: 10.1128/AAC.00012-07.
    1. Humphreys GS, Merinopoulos I, Ahmed J, Whitty CJM, Mutabingwa TK, Sutherland CJ, et al. Amodiaquine and artemether–lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother. 2007;51:991–997. doi: 10.1128/AAC.00875-06.
    1. Somé AF, Zongo I, Compaoré Y-D, Sakandé S, Nosten F, Ouédraogo J-B, et al. Selection of Drug resistance-mediating Plasmodium falciparum genetic polymorphisms by seasonal malaria chemoprevention in Burkina Faso. Antimicrob Agents Chemother. 2014;58:3660–3665. doi: 10.1128/AAC.02406-14.
    1. WHO. Seasonal malaria chemoprevention with sulfadoxine-pyrimethamine plus amodiaquine in children: a field guide. Geneva, World Health Organization. 2013. . Accessed 13 May 2019.
    1. WHO. Overview of malaria treatment. Geneva, World Health Organization. 2018. . Accessed 12 June 2018.
    1. Gansané A, Nébié I, Soulama I, Tiono A, Diarra A, Konaté AT, et al. Change of antimalarial first-line treatment in Burkina Faso in 2005. Bull Soc Pathol Exot. 2009;102:31–35. doi: 10.3185/pathexo3235.
    1. WHO. Malaria control and elimination. Geneva, World Health Organization. . Accessed 13 Jul 2019.
    1. Sibley CH, Guerin PJ, Ringwald P. Monitoring antimalarial resistance: launching a cooperative effort. Trends Parasitol. 2010;26:221–224. doi: 10.1016/j.pt.2010.02.008.
    1. WHO. Methods for surveillance of antimalarial drug efficacy. Geneva, World Health Organization. 2009. . Accessed 14 May 2019.
    1. Anderson T. Mapping the spread of malaria drug resistance. PLoS Med. 2009;6:e1000054. doi: 10.1371/journal.pmed.1000054.
    1. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. Epidemiology of drug-resistant malaria. Lancet Infect Dis. 2002;2:209–218. doi: 10.1016/S1473-3099(02)00239-6.
    1. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–718. doi: 10.1128/AAC.16.6.710.
    1. Shretta R, Omumbo J, Rapuoda B, Snow RW. Using evidence to change antimalarial drug policy in Kenya. Trop Med Int Health. 2000;5:755–764. doi: 10.1046/j.1365-3156.2000.00643.x.
    1. Robert V, Carnevale P, Ouedraogo V, Petrarca V, Coluzzi M. La transmission du paludisme humain dans un village de savane du sud-ouest du Burkina Faso. Ann Soc belge Med Trop. 1988;68:107–121.
    1. Tinto H, Zoungrana EB, Coulibaly SO, Ouedraogo JB, Traoré M, Guiguemde TR, et al. Chloroquine and sulphadoxine-pyrimethamine efficacy for uncomplicated malaria treatment and haematological recovery in children in Bobo-Dioulasso, Burkina Faso during a 3-year period 1998-2000. Trop Med Int Health. 2002;7:925–930. doi: 10.1046/j.1365-3156.2002.00952.x.
    1. Soma DD, Kassié D, Sanou S, Karama FB, Ouari A, Mamai W, et al. Uneven malaria transmission in geographically distinct districts of Bobo-Dioulasso. Burkina Faso. Parasit Vectors. 2018;11:296. doi: 10.1186/s13071-018-2857-x.
    1. WHO. Methods and techniques for clinical trials on antimalarial drug efficacy: genotyping to identify parasite populations. Geneva, World Health Organization. 2007. . Accessed 12 Jul 2019.
    1. Tinto H, Bonkian LN, Nana LA, Yerbanga I, Lingani M, Kazienga A, et al. Ex vivo anti-malarial drugs sensitivity profile of Plasmodium falciparum field isolates from Burkina Faso five years after the national policy change. Malar J. 2014;13:207. doi: 10.1186/1475-2875-13-207.
    1. WHO. Guidelines for the treatment of malaria. Geneva, World Health Organization. 2015. . Accessed 12 Jul 2019.
    1. WHO. Responding to antimalarial drug resistance. Geneva, World Health Organization. 2018. . Accessed 12 July 2019.
    1. Falade CO, Ogundele AO, Yusuf BO, Ademowo OG, Ladipo SM. High efficacy of two artemisinin-based combinations (artemether–lumefantrine and artesunate plus amodiaquine) for acute uncomplicated malaria in Ibadan. Nigeria. Trop Med Int Health. 2008;13:635–643. doi: 10.1111/j.1365-3156.2008.02043.x.
    1. Grandesso F, Guindo O, Woi Messe L, Makarimi R, Traore A, Dama S, et al. Efficacy of artesunate–amodiaquine, dihydroartemisinin–piperaquine and artemether–lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Maradi Niger. Malar J. 2018;17:52. doi: 10.1186/s12936-018-2200-1.
    1. Mensah BA, Koram KA, Amoakoh E, Ghansah A, Essilfie F, Ofori MF, et al. Efficacy of artesunate/amodiaquine in the treatment of uncomplicated malaria among children in Ghana. Am J Trop Med Hyg. 2017;97:690–695. doi: 10.4269/ajtmh.15-0826.
    1. Faye B, Offianan AT, Ndiaye JL, Tine RC, Touré W, Djoman K, et al. Efficacy and tolerability of artesunate–amodiaquine (Camoquin plus®) versus artemether–lumefantrine (Coartem®) against uncomplicated Plasmodium falciparum malaria: multisite trial in Senegal and Ivory Coast. Trop Med Int Health. 2010;15:608–613.
    1. Adjei GO, Kurtzhals JAL, Rodrigues OP, Alifrangis M, Hoegberg LCG, Kitcher ED, et al. Amodiaquine–artesunate vs artemether–lumefantrine for uncomplicated malaria in Ghanaian children: a randomized efficacy and safety trial with one year follow-up. Malar J. 2008;7:127. doi: 10.1186/1475-2875-7-127.
    1. Kabanywanyi AM, Mwita A, Sumari D, Mandike R, Mugittu K, Abdulla S. Efficacy and safety of artemisinin-based antimalarial in the treatment of uncomplicated malaria in children in southern Tanzania. Malar J. 2007;6:5–9. doi: 10.1186/1475-2875-6-146.
    1. Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Sere Y, Rosenthal PJ, et al. Randomized comparison of amodiaquine plus sulfadoxine–pyrimethamine, artemether–lumefantrine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso. Clin Infect Dis. 2007;45:1453–1461. doi: 10.1086/522985.
    1. Schramm B, Valeh P, Baudin E, Mazinda CS, Smith R, Pinoges L, et al. Tolerability and safety of artesunate–amodiaquine and artemether–lumefantrine fixed dose combinations for the treatment of uncomplicated Plasmodium falciparum malaria: two open-label, randomized trials in Nimba County, Liberia. Malar J. 2013;12(1):250. doi: 10.1186/1475-2875-12-250.
    1. Martensson A, Stromberg J, Sisowath C, Msellem MI, Gil JP, Montgomery SM, et al. Efficacy of artesunate plus amodiaquine versus that of artemether–lumefantrine for the Treatment of uncomplicated childhood Plasmodium falciparum malaria in Zanzibar. Tanzania. Clin Infect Dis. 2005;41:1079–1086. doi: 10.1086/444460.
    1. Espie E, Lima A, Atua B, Dhorda M, Flevaud L, Sompwe EM, et al. Efficacy of fixed-dose combination artesunate–amodiaquine versus artemether–lumefantrine for uncomplicated childhood Plasmodium falciparum malaria in Democratic Republic of Congo: a randomized non-inferiority trial. Malar J. 2012;11:174. doi: 10.1186/1475-2875-11-174.
    1. Brasseur P, Guiguemde R, Diallo S, Guiyedi V, Kombila M, Ringwald P, et al. Amodiaquine remains effective for treating uncomplicated malaria in West and Central Africa. Trans R Soc Trop Med Hyg. 1999;93:645–650. doi: 10.1016/S0035-9203(99)90083-4.
    1. Tinto H, Rwagacondo C, Karema C, Mupfasoni D, Vandoren W, Rusanganwa E, et al. In-vitro susceptibility of Plasmodium falciparum to monodesethylamodiaquine, dihydroartemisinin and quinine in an area of high chloroquine resistance in Rwanda. Trans R Soc Trop Med Hyg. 2006;100:509–514. doi: 10.1016/j.trstmh.2005.09.018.
    1. Frosch AE, Venkatesan M, Laufer MK. Patterns of chloroquine use and resistance in sub-Saharan Africa: a systematic review of household survey and molecular data. Malar J. 2011;10:116. doi: 10.1186/1475-2875-10-116.
    1. Tinto H, Diallo S, Zongo I, Guiraud I, Valea I, Kazienga A, et al. Effectiveness of artesunate–amodiaquine vs. artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in Nanoro, Burkina Faso: a non-inferiority randomised trial. Trop Med Int Health. 2014;19:469–475. doi: 10.1111/tmi.12274.
    1. Sá JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci USA. 2009;106:18883–18889. doi: 10.1073/pnas.0911317106.
    1. De Wit M, Funk AL, Moussally K, Nkuba DA, Siddiqui R, Bil K, et al. In vivo efficacy of artesunate–amodiaquine and artemether–lumefantrine for the treatment of uncomplicated falciparum malaria: an open-randomized, non-inferiority clinical trial in South Kivu Democratic Republic of Congo. Malar J. 2016;15:455. doi: 10.1186/s12936-016-1444-x.
    1. Orrell C, Little F, Smith P, Folb P, Taylor W, Olliaro P, et al. Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers. Eur J Clin Pharmacol. 2008;64:683–690. doi: 10.1007/s00228-007-0452-8.
    1. Jain JP, Leong FJ, Chen L, Kalluri S, Koradia V, Stein DS, et al. Bioavailability of lumefantrine is significantly enhanced with a novel formulation approach, an outcome from a randomized, open-label pharmacokinetic study in healthy volunteers. Antimicrob Agents Chemother. 2017;61:1–10. doi: 10.1128/AAC.00868-17.
    1. Takala-Harrison S, Laufer MK. Antimalarial drug resistance in Africa: key lessons for the future. Ann N Y Acad Sci. 2015;1342:62–67. doi: 10.1111/nyas.12766.
    1. York A. Seasonal malaria chemoprevention in the Sahel. Lancet Infect Dis. 2017;17:588. doi: 10.1016/S1473-3099(17)30255-4.
    1. WHO. Guidelines for the treatment of malaria. Third edition April 2015. Geneva, World Health Organization. 2015. . Accessed 20 May 2019.

Source: PubMed

3
Abonneren