Functional Properties of Microorganisms in Fermented Foods

Jyoti P Tamang, Dong-Hwa Shin, Su-Jin Jung, Soo-Wan Chae, Jyoti P Tamang, Dong-Hwa Shin, Su-Jin Jung, Soo-Wan Chae

Abstract

Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.

Keywords: bioactive compounds; fermented foods; functional properties; health benefits; microorganisms.

References

    1. Abubakr M. A. S., Hassan Z., Imdakim M. M. A., Sharifah N. R. S. (2012). Antioxidant activity of lactic acid bacteria (LAB) fermented skim milk as determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferrous chelating activity (FCA). Afr. J. Microbiol. Res. 6 6358–6364.
    1. Agerholm-Larsen L., Bell M. L., Grunwald G. K., Astrup A. (2000). The effect of probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur. J. Clin. Nutr. 54 856–860.
    1. Aihara K., Kajimoto O., Hirata H., Takahashi R., Nakamura Y. (2005). Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J. Am. Col. Nutri. 24 257–265.
    1. Alessandri C., Sforza S., Palazzo F., Lambertini S., Paolella D., Zennaro C., et al. (2012). Tolerability of a fully maturated cheese in cow’s milk allergic children: biochemical, immunochemical, and clinical aspects. PLoS ONE 7:e40945.
    1. Anderson J. W. (2003). Whole grains protect against atherosclerotic cardiovascular disease. Proc. Nutri. Soc. 62 135–142. 10.1079/PNS2002222
    1. Arvind K., Nikhlesh K. S., Pushpalata R. S. (2010). Inhibition of 1,2-dimethylhydrazine induced colon genotoxicity in rats by the administration of probiotic curd. Mol. Biol. Rep. 37 1373–1376. 10.1007/s11033-009-9519-1
    1. Astuti M. (2015). “Health benefits of tempe,” in Health Benefits of Fermented Foods, ed. Tamang J. P. (New York, NY: CRC Press; ), 371–394.
    1. Axelsson L., Rud I., Naterstad K., Blom H., Renckens B., Boekhorst J., et al. (2012). Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). J. Bacteriol. 194 2391–2392. 10.1128/JB.00141-12
    1. Babalola O. O. (2014). Cyanide content of commercial gari from different areas of Ekiti State, Nigeria. World J. Nutri. Health 2 58–60.
    1. Badis A., Guetarni D., Moussa-Boudjemaa B., Henni D. E., Tornadijo M. E., Kihal M. (2004). Identification of cultivable lactic acid bacteria isolated from Algerian raw goat’s milk and evaluation of their technological properties. Food Microbiol. 21 343–349. 10.1016/j.fm.2003.11.006
    1. Balamurugan R., Chandragunasekaran A. S., Chellappan G., Rajaram K., Ramamoorthi G., Ramakrishna B. S. (2014). Probiotic potential of lactic acid bacteria present in home made curd in Southern India. Indian J. Med. Res. 140 345–355.
    1. Bamidele O. P., Fasogbon M. B., Oladiran D. A., Akande E. O. (2015). Nutritional composition of fufu analog flour produced from Cassava root (Manihot esculenta) and Cocoyam (Colocasia esculenta) tuber. Food Sci. Nutr. 3 597–603. 10.1002/fsn3.250
    1. Bernardeau M., Guguen M., Vernoux J. P. (2006). Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol. Rev. 30 487–513. 10.1111/j.1574-6976.2006.00020.x
    1. Bourdichon F., Casaregola S., Farrokh C., Frisvad J. C., Gerds M. L., Hammes W. P., et al. (2012). Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol. 154 87–97. 10.1016/j.ijfoodmicro.2011.12.030
    1. Cha Y. S., Yang J. A., Back H. I., Kim S. R., Kim M. G., Jung S. J., et al. (2012). Visceral fat and body weight are reduced in overweight adults by the supplementation of Doenjang, a fermented soybean paste. Nutri. Res. Pract. 6 520–526.
    1. Chandan R. C., Kilara A. (2013). Manufacturing Yogurt and Fermented Milks, 2nd Edn (Chichester: John Wiley & Sons; ), 477.
    1. Chang C. T., Wang P. M., Hung Y. F., Chung Y. C. (2012). Purification and biochemical properties of a fibrinolytic enzyme from Bacillus subtilis – fermented red bean. Food Chem. 133 1611–1617.
    1. Chang J. Y., Lee H. J., Chang H. C. (2008). Identification of the agent from Lactobacillus plantarum KFRI464 that enhances bacteriocin production by Leuconostoc citreum GJ7. J. Appl. Microbiol. 103 2504–2515. 10.1111/j.1365-2672.2007.03543.x
    1. Chávarri M., Marañón I., Ares R., Ibáñez F. C., Marzo F., Villarán M. C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 142 185–189. 10.1016/j.ijfoodmicro.2010.06.022
    1. Cheigh H. (1999). Production, characteristics and health functions of kimchi. Acta Horticult. 483 405–420. 10.17660/ActaHortic.1999.483.47
    1. Chen B., Wu Q., Xu Y. (2014). Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor. Int. J. Food Microbiol. 179 80–84. 10.1016/j.ijfoodmicro.2014.03.011
    1. Chen Y., Wang Z., Chen X., Liu Y., Zhang H., Sun T. (2010). Identification of angiotensin I-converting enzyme inhibitory peptides from koumiss, a traditional fermented mare’s milk. J. Dairy Sci. 93 884–892.
    1. Chettri R., Tamang J. P. (2014). Functional properties of tungrymbai and bekang, naturally fermented soybean foods of North East India. Int. J. Fer. Foods 3 87–103. 10.5958/2321-712X.2014.01311.8
    1. Chiou R. Y. Y., Cheng S. L. (2001). Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. J. Agric. Food Chem. 49 3656–3660. 10.1021/jf001524l
    1. Chung Y. C., Jin H. M., Cui Y., Kim D. S., Jung J. M., Park J. I., et al. (2014). Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. J. Funct. Foods 10 465–474. 10.1016/j.jff.2014.07.007
    1. Corder R., Mullen W., Khan N. Q., Marks S. C., Wood E. G., Carrier M. J., et al. (2006). Oenology: red wine procyanidins and vascular health. Nature 444:566.
    1. Dajanta K., Apichartsrangkoon A., Chukeatirote E., Richard A., Frazier R. A. (2011). Free-amino acid profiles of thua nao, a Thai fermented soybean. Food Chem. 125 342–347. 10.1016/j.foodchem.2010.09.002
    1. Dajanta K., Chukeatirote E., Apichartsrangkoon A., Frazier R. A. (2009). Enhanced aglycone production of fermented soybean products by Bacillus species. Acta Biol. Szeged. 53 93–98.
    1. Dajanta K., Janpum P., Leksing W. (2013). Antioxidant capacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: a comparative study of Thai fermented soybeans (thua nao). Int. Food Res. J. 20 3125–3132.
    1. de LeBlanc A. M., Matar C., Perdigón G. (2007). The application of probiotics in cancer. Br. J. Nutri. 98 S105–S110. 10.1017/S0007114507839602
    1. De Mejia E. G., Dia V. P. (2010). The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metast. 29 511–528. 10.1007/s10555-010-9241-4
    1. Ellington A. A., Berhow M. A., Singletary K. W. (2006). Inhibition of Akt singaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27 298–306. 10.1093/carcin/bgi214
    1. Farhad M., Kailasapathy K., Tamang J. P. (2010). “Health aspects of fermented foods,” in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press; ), 391–414.
    1. Feher J., Lengyel G., Lugasi A. (2007). The cultural history of wine - theoretical background to wine therapy. Central Eur. J. Med. 2 379–391.
    1. Fernández-Mar M. I., Mateos R., García-Parrilla M. C., Puertas B., Cantos-Villar E. (2012). Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: a review. Food Chem. 130 797–813.
    1. Ferruzzi M. G., Blakeslee J. (2007). Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr. Res. 27 1–12. 10.1016/j.nutres.2006.12.003
    1. Fukagawa N. K., Anderson J., Young V. R., Minaker K. L. (1990). High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults. Am. J. Clin. Nutri. 52 524–528.
    1. Gaggia F., Di Gioia D., Baffoni L., Biavati B. (2011). The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci. Technol. 22 58–66. 10.1016/j.tifs.2011.03.003
    1. García-Ruiz A., Esteban-Fernández D. G. A., Requena T., Bartolomé B., Moreno-Arribas M. V. (2014). Assessment of probiotics properties in lactic acid bacteria isolated from wine. Food Microbiol. 44 220–225. 10.1016/j.fm.2014.06.015
    1. Ghosh D., Chattopadhyay P. (2011). Preparation of idli batter, its properties and nutritional improvement during fermentation. J. Food Sci. Technol. 48 610–615. 10.1007/s13197-010-0148-4
    1. Goldin B. R., Gorbach S. L. (1984). The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. American. J. Clin. Nutri. 39 756–761.
    1. Granier A., Goulet O., Hoarau C. (2013). Fermentation products: immunological effects on human and animal models. Pediatr. Res. 74 238–244. 10.1038/pr.2013.76
    1. Grosu-Tudor S. S., Zamfir M. (2013). Functional properties of LAB isolated from Romanian fermented vegetables. Food Biotechnol. 27 235–248. 10.1080/08905436.2013.811082
    1. Gupta M., Khetarpaul N., Chauhan B. M. (1992). Rabadi fermentation of wheat: changes in phytic acid content and in vitro digestibility. Plant Foods Hum. Nutri. 42 109–116. 10.1007/BF02196463
    1. Halász A., Baráth A., Simon-Sarkadi L., Holzapfel W. H. (1994). Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol. 5 42–49. 10.1016/0924-2244(94)90070-1
    1. Han E. S., Kim H. J., Choi H. K. (2015). “Health benefits of Kimchi,” in Health Benefits of Fermented Foods, ed. Tamang J. P. (New York: CRC Press; ), 343–370.
    1. Han S., Kang G., Ko Y., Kang H., Moon S., Ann Y., et al. (2012). Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells. BMC Immunol 13:44.
    1. Hermosilla J. A. G., Jha H. C., Egge H., Mahmud M. (1993). Isolation and characterization of hydroxymethylglutaryl coenzyme A reductase inhibitors from fermented soybean extracts. J. Clin. Biochem. Nutri. 15 163–174. 10.3164/jcbn.15.163
    1. Hertzler S. R., Clancy S. M. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J. Am. Diet Assoc. 103 582–587. 10.1053/jada.2003.50111
    1. Hesseltine C. W. (1983). Microbiology of oriental fermented foods. Ann. Rev. Microbiol. 37 575–601. 10.1146/annurev.mi.37.100183.003043
    1. Hill C., Guarner F., Reid G., Gibson G. R., Merenstein D. J., Pot B., et al. (2014). Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11 506–514. 10.1038/nrgastro.2014.66
    1. Holzapfel W. H., Giesen R., Schillinger U. (1995). Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24 343–362. 10.1016/0168-1605(94)00036-6
    1. Holzapfel W. H., Wood B. J. B. (2014). Lactic Acid Bacteria: Biodiversity and Taxonomy. (New York, NY: Wiley-Blackwell; ), 632.
    1. Hong W., Chen Y., Chen M. (2010). The antiallergic effect of kefir Lactobacilli. J. Food Sci. 75 H244–H253.
    1. Hur J. W., Hyun H. H., Pyun Y. R., Kim T. S., Yeo I. H., Park H. D. (2000). Identification and partial characterization of lacticin bh5, a bacteriocin produced by Lactococcus lactis BH5 isolated from Kimchi. J. Food Protect. 63 1707–1712.
    1. Ichimura T., Hu J., Aita D. O., Maruyama S. (2003). Angiotensin I-Converting enzyme inhibitory activity and insulin secretion stimulative activity of fermented fish sauce. J. Biosci. Bioengineer. 96 496–499. 10.1016/S1389-1723(03)70138-8
    1. Ishii Y., Tanizawa H. (2006). Effects of soyasaponins on lipid peroxidation through the secretion of thyroid hormones. Biol. Pharm. Bull. 29 1759–1763. 10.1248/bpb.29.1759
    1. Jackson R. S. (2008). Wine Science: Principles and Applications, 3rd Edn London: Academic Press, 686–706.
    1. Jakubczyk A., Karaś M., Baraniak B., Pietrzak M. (2013). The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem. 141 3774–3780. 10.1016/j.foodchem.2013.06.095
    1. Jeong J., Junga H., Leea S., Leea H., Hwanga K. T., Kimb T. (2010). Anti-oxidant, anti-proliferative and anti-inflammatory activities of the extracts from black raspberry fruits and wine. Food Chem. 123 338–344.
    1. Ji Y., Kim H., Park H., Lee J., Lee H., Shin H., et al. (2013). Functionality and safety of lactic bacterial strains from Korean kimchi. Food Control 31 467–473. 10.1016/j.foodcont.2012.10.034
    1. Jiang J., Shi B., Zhu D., Cai Q., Chen Y., Li J., et al. (2012). Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Control 23 338–344.
    1. Jung J. Y., Lee S. H., Jin H. M., Hahn Y., Madsen E. L., Jeon C. O. (2013). Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int. J. Food Microbiol. 163 171–179. 10.1016/j.ijfoodmicro.2013.02.022
    1. Jung S. J., Park S. H., Choi E. K., Cha Y. S., Cho B. H., Kim Y. G., et al. (2014). Beneficial effects of Korean traditional diets in hypertensive and Type 2 diabetic patients. J. Med. Food 17 161–171. 10.1089/jmf.2013.3042
    1. Keuth S., Bisping B. (1994). Vitamin B12 production by Citrobacter freundii or Klebsiella pneumoniae during tempeh fermentation a proof of enterotoxin absence by PCR. Appl. Environ. Microbiol. 60 1495–1499.
    1. Khan H., Flint S., Yu P. L. (2010). Enterocins in food preservation. Int. J. Food Microbiol. 141 1–10. 10.1016/j.ijfoodmicro.2010.03.005
    1. Kiers J. L., Van laeken A. E. A., Rombouts F. M., Nout M. J. R. (2000). In vitro digestibility of Bacillus fermented soya bean. Int. J. Food Microbiol. 60 163–169.
    1. Kim E. K., An S. Y., Lee M. S., Kim T. H., Lee H. K., Hwang W. S., et al. (2011). Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutri. Res. 31 436–443. 10.1016/j.nutres.2011.05.011
    1. Kim H. J., Lee J. S., Chung H. Y., Song S. H., Suh H., Noh J. S., et al. (2007). 3-(4′-Hydroxyl-3′, 5′-dimethoxyphenyl) propionic acid, an active principle of kimchi, inhibits development of atherosclerosis in rabbits. J. Agric. Food Chem. 55 10486–10492. 10.1021/jf072454m
    1. Kim J. H., Ryu J. D., Song Y. O. (2002). The effect of kimchi intake on free radical production and the inhibition of oxidation in young adults and the elderly people. Korean J. Commun. Nutri. 7 257–265.
    1. Kim K. Y., Hahm Y. T. (2002). Recent studies about physiological functions of Chungkkokjang and Functional enhancement with genetic engineering. Instit. Mol. Biol. Genet. 16 1–18.
    1. Kotb E. (ed.). (2012). “Springer briefs microbiol,” in Fibrinolytic Bacterial Enzymes with Thrombolytic Activity (Berlin: Springer; ).
    1. Kris-Etherton P. M., Hecker K. D., Bonanome A., Coval S. M., Binkoski A. E., Hilpert K. F., et al. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113 71S–88S. 10.1016/S0002-9343(01)00995-0
    1. Kubo Y., Rooney A. P., Tsukakoshi Y., Nakagawa R., Hasegawa H., Kimura K. (2011). Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production. Appl. Environ. Microbiol. 77 6463–6469. 10.1128/AEM.00448-11
    1. Kudou S., Fleury Y., Welti D., Magnolato D., Uchida T., Kitamura K., et al. (1991). Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric. Biol. Chem. 55 2227–2233. 10.1271/bbb1961.55.2227
    1. Kwak C. S., Park S., Song K. Y. (2012). Doenjang, a fermented soybean paste, decreased visceral fat accumulation and adipocyte size in rats fed with high fat diet more effectively than nonfermented soybeans. J. Med. Food 15 1–9. 10.1089/jmf.2010.1224
    1. Kwak S. H., Cho Y. M., Noh G. M., Om A. S. (2014). Cancer preventive potential of Kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prevent. 19 253–258. 10.15430/JCP.2014.19.4.253
    1. Lambri M., Fumi M. D., Roda A., de Faveri D. (2013). Improved processing methods to reduce the total cyanide content of cassava roots from Burundi. Afr. J. Biotechnol. 12 2685–2691.
    1. Latorre-Moratalla M. L., Bover-Cid S., Talon R., Garriga M., Aymerich T., Zanardi E., et al. (2010). Strategies to reduce biogenic amine accumulation in traditional sausage manufacturing. Food Sci. Technol. 43 20–25.
    1. Lee C. H. (2004). Creative fermentation technology for the future. J. Food Sci. 69 33–34.
    1. Lee H., Yoon H., Ji Y., Kim H., Park H., Lee J., et al. (2011). Functional properties of Lactobacillus strains isolated from kimchi. Int. J. Food Microbiol. 145 155–161. 10.1016/j.ijfoodmicro.2010.12.003
    1. Lee H. R., Lee J. M. (2009). Anti-stress effects of kimchi. Food Sci. Biotechnol. 18 25–30.
    1. Lee J. K., Jung D. W., Kim Y. J., Cha S. K., Lee M. K., Ahn B. H., et al. (2009). Growth inhibitory effect of fermented kimchi on food-borne pathogens. Food Sci. Biotechnol. 18 12–17.
    1. Lee J. W., Shin J. G., Kim E. H., Kang H. E., Yim I. B., Kim J. Y., et al. (2004). Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci. 5 41–48.
    1. Lee Y. J., Kim J. E., Kwak M. H., Go J., Kim D. S., Son H. J., et al. (2014). Quantitative evaluation of the therapeutic effect of fermented soybean products containing high concentration of GABA on phtalic anhydride-induced atopic dermatitis in IL4/Luc/CNS-1 Tg mice. Int. J. Mol. Med. 33 1185–1194.
    1. Lee Y. W., Kim J. D., Zheng J. Z., Row K. H. (2007). Comparisons of isoflavones from Korean and Chinese soybean and processed products. Biochem. Eng. J. 36 49–53. 10.1016/j.bej.2006.06.009
    1. Liem I. T. H., Steinkraus K. H., Cronk T. C. (1977). Production of vitamin B12 in tempeh, a fermented soybean food. Appl. Environ. Microbiol. 34 773–776.
    1. Lim J., Seo B. J., Kim J. E., Chae C. S., Im S. H., Hahn Y. S., et al. (2011). Characteristics of immunomodulation by a Lactobacillus sakei proBio65 isolated from Kimchi. Korean J. Microbiol. Biotechnol. 39 313–316.
    1. Lim J. H., Jung E. S., Choi E. K., Jeong D. Y., Seung-Wha J. O., Jin J. H., et al. (2014). Supplementation with Aspergillus oryzae-fermented kochujang lowers serum cholesterol in subjects with hyperlipidemia. Clin. Nutri. 34 383–387. 10.1016/j.clnu.2014.05.013
    1. Lim S.-M., Im D. S. (2009). Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 19 178–186. 10.4014/jmb.0804.269
    1. Liu C. F., Pan T. M. (2010). In vitro effects of lactic acid bacteria on cancer cell viability and antioxidant activity. J. Food Drug Anal. 18 77–86.
    1. Lu Y., Wang W., Shan Y., Zhiqiang E., Wang L. (2009). Study on the inhibition of fermented soybean to cancer cells. J. Northeast Agric. Univ. 16 25–28.
    1. Lv X. C., Huang X. L., Zhang W., Rao P. F., Ni L. (2013). Yeast diversity of traditional alcohol fermentation starters for Hong Qu glutinous rice wine brewing, revealed by culture-dependent and culture-independent methods. Food Control 34 183–190. 10.1016/j.foodcont.2013.04.020
    1. Macouzet M., Lee B. H., Robert N. (2009). Production of conjugated linoleic acid by probiotic Lactobacillus acidophilus La-5. J. Appl. Microbiol. 106 1886–1891. 10.1111/j.1365-2672.2009.04164.x
    1. Maintz L., Novak N. (2007). Histamine and histamine intolerance. Am. J. Clin. Nutr. 85 1185–1196.
    1. Martinez-Villaluenga C., Peñas E., Sidro B., Ullate M., Frias J., Vidal-Valverde C. (2012). White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT-Food Sci. Technol. 46 77–83. 10.1016/j.lwt.2011.10.023
    1. Meerak J., Lida H., Watanabe Y., Miyashita M., Sato H., Nakagawa Y., et al. (2007). Phylogeny of poly-γ-glutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries. J. Gen. Appl. Microbiol. 53 315–323. 10.2323/jgam.53.315
    1. Meira S. M. M., Daroit D. J., Helfer V. E. (2012). Bioactive peptides in water soluble extract of ovine cheese from southern Brazil and Uruguay. Food Res. Int. 48 322–329. 10.1016/j.foodres.2012.05.009
    1. Meyer J., Butikofer U., Walther B., Wechsler D., Sieber R. (2009). Hot topic: changes in angiotensin-converting enzyme inhibition and concentration of the teripeptides Val-Pro-Pro and Ile-Pro-Pro during ripening of different Swiss cheese varieties. J. Dairy Sci. 92 826–836. 10.3168/jds.2008-1531
    1. Meyer K., Kushi L., Jacobs D., Slavin J., Sellers T., Folsom A. (2000). Carbohydrates, dietary fiber, and incidence of type 2 diabetes in older women. Am. J. Clin. Nutri. 71 921–930.
    1. Mine Y., Wong A. H. K., Jiang B. (2005). Fibrinolytic enzymes in Asian traditional fermented foods. Food Res. Int. 38 243–250. 10.1016/j.foodres.2004.04.008
    1. Mitra S., Chakrabartty P. K., Biswas S. R. (2010). Potential production and preservation of dahi by Lactococcus lactis W8, a nisin-producing strain. LWT-Food Sci. Technol. 43 337–342. 10.1016/j.lwt.2009.08.013
    1. Mo H., Zhu Y., Chen Z. (2008). Review. Microbial fermented tea – a potential source of natural food preservatives. Trends Food Sci. Technol. 19 124–130. 10.1016/j.tifs.2007.10.001
    1. Mogensen G., Salminen S., O’Brien J., Ouwehand A., Holzapfel W., Shortt C., et al. (2002). Inventory of micro-organisms with a documented history of use in food. Bulletin 377 10–19.
    1. Mohania D., Kansal V. K., Sagwal R., Shah D. (2013). Anticarcinogenic effect of probiotic dahi and piroxicam on DMH-induced colorectal carcinogenesis in Wister rats. Am. J. Cancer Ther. Pharmacol. 1 8–24.
    1. Moktan B., Saha J., Sarkar P. K. (2008). Antioxidant activities of soybean as affected by Bacillus-fermentation to Kinema. Food Res. Int. 4 586–593.
    1. Monteagudo-Mera A., Rodríguez-Aparicio L., Rúa J., Martínez- Blanco H., Navasa N., García-Armesto M. R., et al. (2012). In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J. Funct. Foods 4 531–541. 10.1016/j.jff.2012.02.014
    1. Montriwong A., Kaewphuak S., Rodtong S., Roytrakul S. (2012). Novel fibrinolytic enzymes from Virgibacillus halodenitrificans SK1-3-7 isolated from fish sauce fermentation. Process. Biochem. 47 2379–2387. 10.1007/s12010-015-1591-5
    1. Moslehishad M., Ehsani M. R., Salami M. (2013). The comparative assessment of ACE- inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC1637. Int. Dairy Res. 29 82–87. 10.1016/j.idairyj.2012.10.015
    1. Murata M., Houdai T., Yamamoto H., Matsumori M., Oishi T. (2006). Membrane interaction of soyasaponins in association with their antioxidation effect –analysis of biomembrane interaction. Soy Protein Res. 9 82–86.
    1. Nagai T. (2015). “Health benefits of Natto,” in Health Benefits of Fermented Foods, ed. Tamang J. P. (New York, NY: CRC Press; ), 433–453.
    1. Nagai T., Tamang J. P. (2010). “Fermented soybeans and non-soybeans legume foods,” in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press; ), 191–224.
    1. Nakajima N., Nozaki N., Ishihara K., Ishikawa A., Tsuji H. (2005). Analysis of isoflavone content in tempeh: a fermented soybean product, and preparation of a new isoflavone-enriched tempeh. J. Biosci. Bioeng. 100 685–687. 10.1263/jbb.100.685
    1. Nakamura Y., Masuda O., Takano T. (1996). Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 60 488–489. 10.1271/bbb.60.488
    1. Nikkuni S., Karki T. B., Vilku K. S., Suzuki T., Shindoh K., Suzuki C., et al. (1995). Mineral and amino acid contents of kinema, a fermented soybean food prepared in Nepal. Food Sci. Technol. Int. 1 107–111. 10.3136/fsti9596t9798.1.107
    1. Nishito Y., Osana Y., Hachiya T., Popendorf K., Toyoda A., Fujiyama A., et al. (2010). Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data. BMC Genomics 11:243 10.1186/1471-2164-11-243
    1. Nout M. J. R. (1994). Fermented foods and food safety. Food Res. Int. 27 291–298. 10.1016/0963-9969(94)90097-3
    1. Nout M. J. R., Aidoo K. E. (2002). “Asian fungal fermented food,” in The Mycota, ed. Osiewacz H. D. (New York: Springer-Verlag; ), 23–47.
    1. Nurrahman Astuti M., Suparmo M., Soesatyo H. N. E. (2013). The role of black soybean tempe in increasing antioxidant enzyme activity and human lymphocyte proliferation in vivo. Int. J. Curr. Microbiol. Appl. Sci. 2 316–327.
    1. Okada N. (1989). Role of microorganism in tempeh manufacture. Isolation of vitamin B12 producing bacteria. Japan Agric. Res. Q. 22 310–316.
    1. Omizu Y., Tsukamoto C., Chettri R., Tamang J. P. (2011). Determination of saponin contents in raw soybean and fermented soybean foods of India. J. Sci. Indus. Res. 70 533–538.
    1. Oppermann-Sanio F. B., Steinbüchel A. (2002). Occurence, functions and biosynthesis of polyamides in microorganisms and biotechnological productions. Naturwissenschaften 89 11–22. 10.1007/s00114-001-0280-0
    1. Orel R., Trop T. K. (2014). Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J. Gastroenterol. 20 11505–11524. 10.3748/wjg.v20.i33.11505
    1. Otes S., Cagindi O. (2003). Kefir: a probiotic dairy-composition, nutritional and therapeutic aspects. Pakistan J. Nutri. 2 54–59. 10.3923/pjn.2003.54.59
    1. Ouwehand A. C., Salminen S., Isolauri E. (2002). Probiotics: an overview of beneficial effects. Antonie Van Leeuwen 82 279–289. 10.1023/A:1020620607611
    1. Papadimitriou C. G., Vafopoulou-Mastrojiannaki A., Silva S. V., Gomes A. M., Malcata F. X., Alichanidis E. (2007). Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem. 105 647–656. 10.3168/jds.2015-9336
    1. Park J. A., Tirupathi Pichiah P. B., Yu J. J., Oh S. H., Daily J. W., III, Cha Y. S. (2012). Anti-obesity effect of kimchi fermented with Weissella koreensis OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J. Appl. Microbiol. 113 1507–1516. 10.1111/jam.12017
    1. Park J. E., Moon Y. J., Cha Y. S. (2008). Effect of functional materials producing microbial strains isolated from Kimchi on antiobesity and inflammatory cytokines in 3T3-L1 preadipocytes. FASEB J. 23:111.
    1. Park J. M., Shin J. H., Gu J. G., Yoon S. J., Song J. C., Jeon W. M., et al. (2011). Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J. Biosci. Bioeng. 112 356–359. 10.1016/j.jbiosc.2011.06.003
    1. Park K. Y., Jeong J. K., Lee Y. E., Daily J. W., III (2014). Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Foods 17 6–20. 10.1089/jmf.2013.3083
    1. Patel A., Prajapati J. B., Holst O., Ljungh A. (2014). Determining probiotic potential of exopolysaccharide producing LAB isolated from vegetables and traditional Indian fermented food products. Food Biosci. 5 27–33. 10.1016/j.fbio.2013.10.002
    1. Pattanagul P., Pinthong R., Phianmongkhol A., Tharatha S. (2008). Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int. J. Food Microbiol. 126 20–23. 10.1016/j.ijfoodmicro.2008.04.019
    1. Paucar-Menacho L. M., Amaya-Farfan J., Berhow M. A., Mandarino J. M. G., de Mejia E., Chang Y. K. (2010). A high-protein soybean cultivar contains lower isoflavones and saponins but higher minerals and bioactive peptides than a low-protein cultivar. Food Chem. 120 15–21. 10.1016/j.foodchem.2009.09.062
    1. Pedone C. A., Arnaud C. C., Postaire E. R., Bouley C. F., Reinert P. (2000). Multicentric study of the effect of milk fermented by Lactobacillus casei on the incidence of diarrhoea. Int. J. Clin. Pract. 54 568–571.
    1. Peñas E., Limón R. I., Vidal-Valverde C., Frias J. (2013). Effect of storage on the content of indole-glucosinolate breakdown products and vitamin C of sauerkrauts treated by high hydrostatic pressure. LWT-Food Sci. Technol. 53 285–289. 10.1016/j.lwt.2013.01.015
    1. Perna A., Intaglietta I., Simonetti A., Gambacorta E. (2013). Effect of genetic type and casein halotype on antioxidant activity of yogurts during storage. J. Dairy Sci. 96 1–7. 10.3168/jds.2012-5859
    1. Phelan M., Kerins D. (2011). The potential role of milk derived peptides in cardiovascular diseases. Food Funct. 2 153–167. 10.1039/c1fo10017c
    1. Ping S. P., Shih S. C., Rong C. T., King W. Q. (2012). Effect of isoflavone aglycone content and antioxidation activity in natto by various cultures of Bacillus subtilis during the fermentation period. J. Nutri. Food Sci. 2:153 10.4172/2155-9600.1000153
    1. Qian B., Xing M., Cui L., Deng Y., Xu Y., Huang M., et al. (2011). Antioxidant, antihypertensive, and immunomodulatory activities of peptide fraction from fermented skim milk with Lactobacillus delbrueckii ssp bulgaricus LB340. J. Dairy Res. 78 72–79. 10.1017/S0022029910000889
    1. Quiros A., Hernandez-Ledesma B., Ramos M., Amigo L., Recio I. (2005). Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir. J. Dairy Sci. 88 3480–3487. 10.3168/jds.S0022-0302(05)73032-0
    1. Rabie M. A., Siliha H., El-Saidy S., El-Badawy A. A., Malcata F. X. (2011). Reduced biogenic amine contents in sauerkraut via addition of selected LAB. Food Chem. 129 1778–1782. 10.1016/j.foodchem.2011.05.106
    1. Ramadori G., Gautron L., Fujikawa T., Claudia R., Vianna J., Elmquist E., et al. (2009). Central administration of resveratrol improves diet-induced diabetes. Endocrinology 150 5326–5333. 10.1210/en.2009-0528
    1. Ramrez J. F., Sanchez-Marroquin A., Alvarez M. M., Valyasebi R. (2004). “Industrialization of Mexican pulque,” in Industrialization of Indigenous Fermented Foods, 2nd Edn, ed. Steinkraus K. (New York, NY: Marcel Deckker; ), 547–586.
    1. Ranadheera R., Baines S., Adams M. (2010). Importance of food in probiotic efficacy. Food Res. Int. 43 1–7. 10.1016/j.foodres.2009.09.009
    1. Rauscher-Gabernig E., Grossgut R., Bauer F., Paulsen P. (2009). Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods. Food Control 20 423–429. 10.1016/j.foodcont.2008.07.011
    1. Reddy N. R., Salunkhe D. K. (1980). Effect of fermentation on phytate phosphorus, and mineral content in black gram, rice, and black gram and rice blends. J. Food Sci. 45 1708–1712. 10.1111/j.1365-2621.1980.tb07594.x
    1. Saad N., Delattre C., Urdaci M., Schmitter J. M., Bressollier P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT Food Sci. Technol. 50 1–16. 10.1016/j.lwt.2012.05.014
    1. Sabeena F. K. H., Baron C. P., Nielsen N. S., Jacobsen C. (2010). Antioxidant activity of yoghurt peptides: part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chem. 123 1081–1089. 10.1016/j.foodchem.2010.05.067
    1. Sanchez P. C. (2008). Philippine Fermented Foods: Principles and Technology. (Quezon City: University of the Philippines Press; ), 511.
    1. Sarkar P. K., Jones L. J., Craven G. S., Somerset S. M. (1997). Oligosaccharides profile of soybeans during kinema production. Lett. Appl. Microbiol. 24 337–339. 10.1046/j.1472-765X.1997.00035.x
    1. Sarkar P. K., Morrison E., Tingii U., Somerset S. M., Craven G. S. (1998). B-group vitamin and mineral contents of soybeans during kinema production. J. Sci. Food Agric. 78 498–502. 10.1002/(SICI)1097-0010(199812)78:4<498::AID-JSFA145>;2-3
    1. Sarkar P. K., Tamang J. P. (1995). Changes in the microbial profile and proximate composition during natural and controlled fermentations of soybeans to produce kinema. Food Microbiol. 12 317–325. 10.1016/S0740-0020(95)80112-X
    1. Seppo L., Kerojoki O., Suomalainen T., Korpela R. (2002). The effect of a Lactobacillus helveticus LBK-16 H fermented milk on hypertension — a pilot study on humans. Milchwissen 57 124–127.
    1. Shah N. P. (2015). “Functional properties of fermented milks,” in Health Benefits of Fermented Foods, ed. Tamang J. P. (New York, NY: CRC Press; ), 261–274.
    1. Shah N. P., da Cruz A. G., Faria J. D. A. F. (2013). Probiotics and Probiotic Foods: Technology, Stability and Benefits to Human Health. New York, NY: Nova Science Publishers.
    1. Shin D. H., Jeong D. (2015). Korean traditional fermented soybean products: Jang. J. Ethnic Foods 2 2–7. 10.1016/j.jef.2015.02.002
    1. Shin D. H., Jung S. J., Chae S. W. (2015). “Health benefits of Korean fermented soybean products,” in Health Benefits of Fermented Foods, ed. Tamang J. P. (New York, NY: CRC Press; ), 395–431.
    1. Shin M. S., Han S. K., Ryu J. S., Kim K. S., Lee W. K. (2008). Isolation and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from kimchi. J. Appl. Microbiol. 105 331–339. 10.1111/j.1365-2672.2008.03770.x
    1. Shin S. K., Kwon J. H., Jeon M., Choi J., Choi M. S. (2011). Supplementation of Cheonggukjang and Red Ginseng Cheonggukjang can improve plasma lipid profile and fasting blood glucose concentration in subjects with impaired fasting glucose. J. Med. Food 14 108–113. 10.1089/jmf.2009.1366
    1. Shon M. Y., Lee J., Choi J. H., Choi S. Y., Nam S. H., Seo K. I., et al. (2007). Antioxidant and free radical scavenging activity of methanol extract of chungkukjang. J. Food Composit. Anal. 20 113–118. 10.1016/j.jfca.2006.08.003
    1. Singh T. A., Devi K. R., Ahmed G., Jeyaram K. (2014). Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of Northeast India. Food Res. Int. 55 356–362. 10.1016/j.foodres.2013.11.028
    1. Sipola M., Finckenberg P., Korpela R., Vapaatalo H., Nurminen M. (2002). Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69 103–111. 10.1017/S002202990100526X
    1. Spano G., Russo P., Lonvaud-Funel A., Lucas P., Alexandre H., Grandvalet C., et al. (2010). Biogenic amine in fermented foods. Eur. J. Clin. Nutr. 64 95–100. 10.1038/ejcn.2010.218
    1. Stanley N. R., Lazazzera B. A. (2005). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-dl-glutamic acid production and biofilm formation. Mol. Microbiol. 57 1143–1158. 10.1111/j.1365-2958.2005.04746.x
    1. Steinkraus K. H. (1996). Handbook of Indigenous Fermented Food, 2nd Edn New York, NY: Marcel Dekker, Inc.
    1. Suganuma T., Fujita K., Kitahara K. (2007). Some Distinguishable properties between acid-stable and neutral types of α-amylases from acid-producing koji. J. Biosci. Bioeng. 104 353–362. 10.1263/jbb.104.353
    1. Suzzi G., Gardini F. (2003). Biogenic amines in dry fermented sausages: a review. Int. J. Food Microbiol. 88 41–54. 10.1016/S0168-1605(03)00080-1
    1. Syal P., Vohra A. (2013). Probiotic potential of yeasts isolated from traditional Indian fermented foods. Int. J. Microbiol. Res. 5 390–398. 10.9735/0975-5276.5.2.390-398
    1. Szajewska H., Skorka A., Ruszczynski M., Gieruszczak-bialek D. (2007). Meta-analysis: Lactobacillus GG for treating acute diarrhoea in children. Aliment. Pharm. Therapeut. 25 871–881. 10.1111/j.1365-2036.2007.03282.x
    1. Tamang J. P. (2015). Naturally fermented ethnic soybean foods of India. J. Ethnic Foods 2 8–17. 10.1007/s12275-012-1409-x
    1. Tamang J. P., Dewan S., Tamang B., Rai A., Schillinger U., Holzapfel W. H. (2007). Lactic acid bacteria in Hamei and Marcha of North East India. Indian J. Microbiol. 47 119–125. 10.1007/s12088-007-0024-8
    1. Tamang J. P., Fleet G. H. (2009). “Yeasts diversity in fermented foods and beverages,” in Yeasts Biotechnology: Diversity and Applications, eds Satyanarayana T., Kunze G. (New York: Springer; ), 169–198.
    1. Tamang J. P., Nikkuni S. (1996). Selection of starter culture for production of kinema, fermented soybean food of the Himalaya. World J. Microbiol. Biotechnol. 12 629–635. 10.1007/BF00327727
    1. Tamang J. P., Nikkuni S. (1998). Effect of temperatures during pure culture fermentation of Kinema. World J. Microbiol. Biotechnol. 14 847–850. 10.1023/A:1008867511369
    1. Tamang J. P., Tamang B., Schillinger U., Guigas C., Holzapfel W. H. (2009). Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int. J. Food Microbiol. 135 28–33. 10.1016/j.ijfoodmicro.2009.07.016
    1. Tamang J. P., Watanabe K., Holzapfel W. H. (2016). Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7:377 10.3389/fmicb.2016.00377
    1. Thapa N., Tamang J. P. (2015). “Functionality and therapeutic values of fermented foods,” in Health Benefits of Fermented Foods, ed. Tamang J. P. (New York: CRC Press; ), 111–168.
    1. Tolhurst G., Heffron H., Lam Y. S., Parker H. E., Habib A. M., Diakogiannaki E., et al. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the g-protein-coupled receptor FFAR2. Diabetes Metab. Res. Rev. 61 364–371. 10.2337/db11-1019
    1. Tsubura S. (2012). Anti-periodontitis effect of Bacillus subtilis (natto). Shigaku (Odontol.) 99 160–164.
    1. Tsuyoshi N., Fudou R., Yamanaka S., Kozaki M., Tamang N., Thapa S., et al. (2005). Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation. Int. J. Food Microbiol. 99 135–146. 10.1016/j.ijfoodmicro.2004.08.011
    1. Urushibata Y., Tokuyama S., Tahara Y. (2002). Characterization of the Bacillus subtilis ywsC gene, involved in (–polyglutamic acid production. J. Bacteriol. 184 337–343. 10.1128/JB.184.2.337-343.2002
    1. US Probiotics Home (2011). Available at:
    1. Varankovich N. V., Nickerson M. T., Korber D. R. (2015). Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front. Microbiol. 6:685 10.3389/fmicb.2015.00685
    1. Verna E. C., Lucak S. (2010). Use of probiotics in gastrointestinal disorders: what to recommend? Ther. Adv Gastroenterol. 3 307–319. 10.1177/1756283X10373814
    1. Visciano P., Schirone N., Tofalo R., Suzzi G. (2014). Histamine poisoning and control measures in fish and fishery products. Front. Microbiol. 5:500 10.3389/fmicb.2014.00500
    1. Walker G. M. (2014). “Microbiology of winemaking,” in Encyclopaedia of Food Microbiology, 2 Edn, eds Batt C., Tortorello M. A. (Oxford: Elsevier Ltd.), 787–792.
    1. Wang L. J., Li D., Zou L., Chen X. D., Cheng Y. Q., Yamaki K., et al. (2007a). Antioxidative activity of douchi (a Chinese traditional salt-fermented soybean food) extracts during its processing. Int. J. Food Propert. 10 1–12. 10.1080/10942910601052715
    1. Wang L.-J., Yin L.-J., Li D., Zou L., Saito M., Tatsumi E., et al. (2007b). Influences of processing and NaCl supplementation on isoflavone contents and composition during douchi manufacturing. Food Chem. 101 1247–1253. 10.1016/j.foodchem.2006.03.029
    1. Weill F. S., Cela E. M., Paz M. L., Ferrari A., Leoni J., Gonzalez Maglio D. H. (2013). Lipoteichoic acid from Lactobacillus rhamnosus GG as an oral photoprotective agent against UV-induced carcinogenesis. Br. J. Nutri. 109 457–466. 10.1017/S0007114512001225
    1. Willcox B. J., Willcox D. C., Suzuki M. (2004). The Okinawa Diet Plan. New York, NY: Three Rivers Press.
    1. Won T. J., Kim B., Song D. S., Lim Y. T., Oh E. S., Lee D. I., et al. (2011). Modulation of Th1/Th2 balance by Lactobacillus strains isolated from kimchi via stimulation of macrophage cell line J774A.1 in vitro. J. Food Sci. 76 H55–H61. 10.1111/j.1750-3841.2010.02031.x
    1. Yadav H., Jain S., Sinha P. R. (2007). Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23 62–68. 10.1016/j.nut.2006.09.002
    1. Yanagisawa Y., Sumi H. (2005). Natto bacillus contains a large amount of water-soluble vitamin K (menaquinone-7). J. Food Biochem. 29 267–277. 10.1111/j.1745-4514.2005.00016.x
    1. Yanping W., Nv X., Aodeng X., Zaheer A., Bin Z., Xiaojia B. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl. Microbiol. Biotechnol. 84 341–347. 10.1007/s00253-009-2012-x
    1. Yin L. J., Li D., Zou L., Saito M., Tatsumi E., Li L. T. (2007). Influences of processing and NaCl supplementation on isoflavone contents and composition during douchi manufacturing. Food Chem. 101 1247–1253.
    1. Yoon S., Do J., Lee S., Chag H. (2000). Production of poly-δ-glutamic acid by fed-batch culture of Bacillus lichenifomis. Biotechnol. Lett. 22 585–588. 10.1023/A:1005625026623
    1. Zeng W., Li W., Shu L., Yi J., Chen G., Liang Z. (2013). Non-sterilized fermentative co-production of poly (γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28. Bioresour. Technol. 142 697–700. 10.1016/j.biortech.2013.05.020
    1. Zhai H., Yang X., Li L., Xia G., Cen J., Huang H., et al. (2012). Biogenic amines in commercial fish and fish products sold in southern china. Food Control 25 303–308. 10.1016/j.foodcont.2011.10.057

Source: PubMed

3
Abonneren