BRAF Mutations and the Utility of RAF and MEK Inhibitors in Primary Brain Tumors

Karisa C Schreck, Stuart A Grossman, Christine A Pratilas, Karisa C Schreck, Stuart A Grossman, Christine A Pratilas

Abstract

BRAF mutations have been identified as targetable, oncogenic mutations in many cancers. Given the paucity of treatments for primary brain tumors and the poor prognosis associated with high-grade gliomas, BRAF mutations in glioma are of considerable interest. In this review, we present the spectrum of BRAF mutations and fusion alterations present in each class of primary brain tumor based on publicly available databases and publications. We also summarize clinical experience with RAF and MEK inhibitors in patients with primary brain tumors and describe ongoing clinical trials of RAF inhibitors in glioma. Sensitivity to RAF and MEK inhibitors varies among BRAF mutations and between tumor types as only class I BRAF V600 mutations are sensitive to clinically available RAF inhibitors. While class II and III BRAF mutations are found in primary brain tumors, further research is necessary to determine their sensitivity to third-generation RAF inhibitors and/or MEK inhibitors. We recommend that the neuro-oncologist consider using these drugs primarily in the setting of a clinical trial for patients with BRAF-altered glioma in order to advance our knowledge of their efficacy in this patient population.

Keywords: BRAF; BRAF V600E; MEK; astrocytoma; dabrafenib; encorafenib; glioblastoma; glioma; trametinib; vemurafenib.

Conflict of interest statement

K.C.S. and S.A.G. declare no conflict of interest. C.A.P. is a paid consultant for Genentech.

Figures

Figure 1
Figure 1
BRAF mutations found in 39 gliomas as identified from MSK-IMPACT and TCGA databases in cBioPortal displayed as a (a) lollipop plot identifying unique mutations (excluding fusions) and (b) a pie chart showing mutation types divided by class.
Figure 1
Figure 1
BRAF mutations found in 39 gliomas as identified from MSK-IMPACT and TCGA databases in cBioPortal displayed as a (a) lollipop plot identifying unique mutations (excluding fusions) and (b) a pie chart showing mutation types divided by class.

References

    1. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., et al. Mutations of the BRAF Gene in Human Cancer. Nature. 2002;417:949–954. doi: 10.1038/nature00766.
    1. Cutler R.E., Jr., Stephens R.M., Saracino M.R., Morrison D.K. Autoregulation of the Raf-1 serine/threonine Kinase. Proc. Natl. Acad. Sci. USA. 1998;95:9214–9219. doi: 10.1073/pnas.95.16.9214.
    1. Daum G., Eisenmann-Tappe I., Fries H.W., Troppmair J., Rapp U.R. The ins and outs of Raf kinases. Trends Biochem. Sci. 1994;19:474–480. doi: 10.1016/0968-0004(94)90133-3.
    1. Pratilas C.A., Solit D.B. Therapeutic Strategies for Targeting BRAF in Human Cancer. Rev. Recent. Clin. Trials. 2007;2:121–134. doi: 10.2174/157488707780599393.
    1. Chapman P.B., Hauschild A., Robert C., Haanen J.B., Ascierto P., Larkin J., Dummer R., Garbe C., Testori A., Maio M., et al. Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N. Engl. J. Med. 2011;364:2507–2516. doi: 10.1056/NEJMoa1103782.
    1. Hauschild A., Grob J.J., Demidov L.V., Jouary T., Gutzmer R., Millward M., Rutkowski P., Blank C.U., Miller W.H., Jr., Kaempgen E., et al. Dabrafenib in BRAF-Mutated Metastatic Melanoma: A Multicentre, Open-Label, Phase 3 Randomised Controlled Trial. Lancet. 2012;380:358–365. doi: 10.1016/S0140-6736(12)60868-X.
    1. Kim K.B., Kefford R., Pavlick A.C., Infante J.R., Ribas A., Sosman J.A., Fecher L.A., Millward M., McArthur G.A., Hwu P., et al. Phase II Study of the MEK1/MEK2 Inhibitor Trametinib in Patients with Metastatic BRAF-Mutant Cutaneous Melanoma Previously Treated with or without a BRAF Inhibitor. J. Clin. Oncol. 2013;31:482–489. doi: 10.1200/JCO.2012.43.5966.
    1. Long G.V., Stroyakovskiy D., Gogas H., Levchenko E., de Braud F., Larkin J., Garbe C., Jouary T., Hauschild A., Grob J.J., et al. Combined BRAF and MEK Inhibition Versus BRAF Inhibition Alone in Melanoma. N. Engl. J. Med. 2014;371:1877–1888. doi: 10.1056/NEJMoa1406037.
    1. Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., Garbe C., Schadendorf D., Krajsova I., Gutzmer R., et al. Overall Survival in Patients with BRAF-Mutant Melanoma Receiving Encorafenib Plus Binimetinib Versus Vemurafenib Or Encorafenib (COLUMBUS): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2018;19:1315–1327. doi: 10.1016/S1470-2045(18)30497-2.
    1. Larkin J., Ascierto P.A., Dreno B., Atkinson V., Liszkay G., Maio M., Mandala M., Demidov L., Stroyakovskiy D., Thomas L., et al. Combined Vemurafenib and Cobimetinib in BRAF-Mutated Melanoma. N. Engl. J. Med. 2014;371:1867–1876. doi: 10.1056/NEJMoa1408868.
    1. Brown N.F., Carter T., Kitchen N., Mulholland P. Dabrafenib and Trametinib in BRAFV600E Mutated Glioma. CNS Oncol. 2017;6:291–296. doi: 10.2217/cns-2017-0006.
    1. Migliorini D., Aguiar D., Vargas M.I., Lobrinus A., Dietrich P.Y. BRAF/MEK Double Blockade in Refractory Anaplastic Pleomorphic Xanthoastrocytoma. Neurology. 2017;88:1291–1293. doi: 10.1212/WNL.0000000000003767.
    1. Schreck K.C., Guajardo A., Lin D.D.M., Eberhart C.G., Grossman S.A. Concurrent BRAF/MEK Inhibitors in BRAF V600-Mutant High-Grade Primary Brain Tumors. J. Natl. Compr. Cancer Netw. 2018;16:343–347. doi: 10.6004/jnccn.2017.7052.
    1. Johanns T.M., Ferguson C.J., Grierson P.M., Dahiya S., Ansstas G. Rapid Clinical and Radiographic Response with Combined Dabrafenib and Trametinib in Adults with BRAF-Mutated High-Grade Glioma. J. Natl. Compr. Cancer Netw. 2018;16:4–10. doi: 10.6004/jnccn.2017.7032.
    1. Kaley T., Touat M., Subbiah V., Hollebecque A., Rodon J., Lockhart A.C., Keedy V., Bielle F., Hofheinz R.D., Joly F., et al. BRAF Inhibition in BRAF(V600)-Mutant Gliomas: Results from the VE-BASKET Study. J. Clin. Oncol. 2018;36:3477. doi: 10.1200/JCO.2018.78.9990.
    1. Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Jacobsen A., Byrne C.J., Heuer M.L., Larsson E., et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer. Discov. 2012;2:401–404. doi: 10.1158/-12-0095.
    1. Yao Z., Torres N.M., Tao A., Gao Y., Luo L., Li Q., de Stanchina E., Abdel-Wahab O., Solit D.B., Poulikakos P.I., et al. BRAF Mutants Evade ERK-Dependent Feedback by Different Mechanisms that Determine their Sensitivity to Pharmacologic Inhibition. Cancer. Cell. 2015;28:370–383. doi: 10.1016/j.ccell.2015.08.001.
    1. Gao J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles using the cBioPortal. Sci. Signal. 2013;6:l1. doi: 10.1126/scisignal.2004088.
    1. Pratilas C.A., Taylor B.S., Ye Q., Viale A., Sander C., Solit D.B., Rosen N. (V600E)BRAF is Associated with Disabled Feedback Inhibition of RAF-MEK Signaling and Elevated Transcriptional Output of the Pathway. Proc. Natl. Acad. Sci. USA. 2009;106:4519–4524. doi: 10.1073/pnas.0900780106.
    1. Lito P., Pratilas C.A., Joseph E.W., Tadi M., Halilovic E., Zubrowski M., Huang A., Wong W.L., Callahan M.K., Merghoub T., et al. Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates their Activity in BRAFV600E Melanomas. Cancer. Cell. 2012;22:668–682. doi: 10.1016/j.ccr.2012.10.009.
    1. Yao Z., Yaeger R., Rodrik-Outmezguine V.S., Tao A., Torres N.M., Chang M.T., Drosten M., Zhao H., Cecchi F., Hembrough T., et al. Tumours with Class 3 BRAF Mutants are Sensitive to the Inhibition of Activated RAS. Nature. 2017;548:234–238. doi: 10.1038/nature23291.
    1. Schindler G., Capper D., Meyer J., Janzarik W., Omran H., Herold-Mende C., Schmieder K., Wesseling P., Mawrin C., Hasselblatt M., et al. Analysis of BRAF V600E Mutation in 1,320 Nervous System Tumors Reveals High Mutation Frequencies in Pleomorphic Xanthoastrocytoma, Ganglioglioma and Extra-Cerebellar Pilocytic Astrocytoma. Acta Neuropathol. 2011;121:397–405. doi: 10.1007/s00401-011-0802-6.
    1. Dahiya S., Emnett R.J., Haydon D.H., Leonard J.R., Phillips J.J., Perry A., Gutmann D.H. BRAF-V600E Mutation in Pediatric and Adult Glioblastoma. Neuro Oncol. 2014;16:318–319. doi: 10.1093/neuonc/not146.
    1. Behling F., Barrantes-Freer A., Skardelly M., Nieser M., Christians A., Stockhammer F., Rohde V., Tatagiba M., Hartmann C., Stadelmann C., et al. Frequency of BRAF V600E Mutations in 969 Central Nervous System Neoplasms. Diagn. Pathol. 2016;11:55. doi: 10.1186/s13000-016-0506-2.
    1. Kleinschmidt-DeMasters B.K., Aisner D.L., Foreman N.K. BRAF VE1 Immunoreactivity Patterns in Epithelioid Glioblastomas Positive for BRAF V600E Mutation. Am. J. Surg. Pathol. 2015;39:528–540. doi: 10.1097/PAS.0000000000000363.
    1. Hatae R., Hata N., Suzuki S.O., Yoshimoto K., Kuga D., Murata H., Akagi Y., Sangatsuda Y., Iwaki T., Mizoguchi M., et al. A Comprehensive Analysis Identifies BRAF Hotspot Mutations Associated with Gliomas with Peculiar Epithelial Morphology. Neuropathology. 2017;37:191–199. doi: 10.1111/neup.12347.
    1. Brastianos P.K., Taylor-Weiner A., Manley P.E., Jones R.T., Dias-Santagata D., Thorner A.R., Lawrence M.S., Rodriguez F.J., Bernardo L.A., Schubert L., et al. Exome Sequencing Identifies BRAF Mutations in Papillary Craniopharyngiomas. Nat. Genet. 2014;46:161–165. doi: 10.1038/ng.2868.
    1. Pajtler K.W., Witt H., Sill M., Jones D.T., Hovestadt V., Kratochwil F., Wani K., Tatevossian R., Punchihewa C., Johann P., et al. Molecular Classification of Ependymal Tumors Across all CNS Compartments, Histopathological Grades, and Age Groups. Cancer. Cell. 2015;27:728–743. doi: 10.1016/j.ccell.2015.04.002.
    1. Pratt D., Camelo-Piragua S., McFadden K., Leung D., Mody R., Chinnaiyan A., Koschmann C., Venneti S. BRAF activating mutations involving the β3-αC loop in V600E-negative anaplastic pleomorphic xanthoastrocytoma. Acta Neuropathol. Commun. 2018;6:24. doi: 10.1186/s40478-018-0525-1.
    1. Chen S.H., Zhang Y., Van Horn R.D., Yin T., Buchanan S., Yadav V., Mochalkin I., Wong S.S., Yue Y.G., Huber L., et al. Oncogenic BRAF Deletions that Function as Homodimers and are Sensitive to Inhibition by RAF Dimer Inhibitor LY3009120. Cancer. Discov. 2016;6:300–315. doi: 10.1158/-15-0896.
    1. Foster S.A., Whalen D.M., Ozen A., Wongchenko M.J., Yin J., Yen I., Schaefer G., Mayfield J.D., Chmielecki J., Stephens P.J., et al. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2. Cancer. Cell. 2016;29:477–493. doi: 10.1016/j.ccell.2016.02.010.
    1. Bar E.E., Lin A., Tihan T., Burger P.C., Eberhart C.G. Frequent Gains at Chromosome 7q34 Involving BRAF in Pilocytic Astrocytoma. J. Neuropathol. Exp. Neurol. 2008;67:878–887. doi: 10.1097/NEN.0b013e3181845622.
    1. Sievert A.J., Lang S.S., Boucher K.L., Madsen P.J., Slaunwhite E., Choudhari N., Kellet M., Storm P.B., Resnick A.C. Paradoxical Activation and RAF Inhibitor Resistance of BRAF Protein Kinase Fusions Characterizing Pediatric Astrocytomas. Proc. Natl. Acad. Sci. USA. 2013;110:5957–5962. doi: 10.1073/pnas.1219232110.
    1. Sievert A.J., Jackson E.M., Gai X., Hakonarson H., Judkins A.R., Resnick A.C., Sutton L.N., Storm P.B., Shaikh T.H., Biegel J.A. Duplication of 7q34 in Pediatric Low-Grade Astrocytomas Detected by High-Density Single-Nucleotide Polymorphism-Based Genotype Arrays Results in a Novel BRAF Fusion Gene. Brain Pathol. 2009;19:449–458. doi: 10.1111/j.1750-3639.2008.00225.x.
    1. Jones D.T., Kocialkowski S., Liu L., Pearson D.M., Backlund L.M., Ichimura K., Collins V.P. Tandem Duplication Producing a Novel Oncogenic BRAF Fusion Gene Defines the Majority of Pilocytic Astrocytomas. Cancer Res. 2008;68:8673–8677. doi: 10.1158/0008-5472.CAN-08-2097.
    1. Jones D.T., Gronych J., Lichter P., Witt O., Pfister S.M. MAPK Pathway Activation in Pilocytic Astrocytoma. Cell Mol. Life Sci. 2012;69:1799–1811. doi: 10.1007/s00018-011-0898-9.
    1. Antonelli M., Badiali M., Moi L., Buttarelli F.R., Baldi C., Massimino M., Sanson M., Giangaspero F. KIAA1549:BRAF Fusion Gene in Pediatric Brain Tumors of various Histogenesis. Pediatr. Blood Cancer. 2015;62:724–727. doi: 10.1002/pbc.25272.
    1. Pekmezci M., Villanueva-Meyer J.E., Goode B., Van Ziffle J., Onodera C., Grenert J.P., Bastian B.C., Chamyan G., Maher O.M., Khatib Z., et al. The Genetic Landscape of Ganglioglioma. Acta Neuropathol. Commun. 2018;6:47. doi: 10.1186/s40478-018-0551-z.
    1. Miller K.E., Kelly B., Fitch J., Ross N., Avenarius M.R., Varga E., Koboldt D.C., Boue D.R., Magrini V., Coven S.L., et al. Genome Sequencing Identifies Somatic BRAF Duplication c.1794_1796dupTAC;p.Thr599dup in Pediatric Patient with Low-Grade Ganglioglioma. Cold Spring Harb Mol. Case Stud. 2018;4 doi: 10.1101/mcs.a002618.
    1. Chmielecki J., Bailey M., He J., Elvin J., Vergilio J.A., Ramkissoon S., Suh J., Frampton G.M., Sun J.X., Morley S., et al. Genomic Profiling of a Large Set of Diverse Pediatric Cancers Identifies Known and Novel Mutations Across Tumor Spectra. Cancer Res. 2017;77:509–519. doi: 10.1158/0008-5472.CAN-16-1106.
    1. Ryall S., Arnoldo A., Krishnatry R., Mistry M., Khor K., Sheth J., Ling C., Leung S., Zapotocky M., Guerreiro Stucklin A., et al. Multiplex Detection of Pediatric Low-Grade Glioma Signature Fusion Transcripts and Duplications using the NanoString nCounter System. J. Neuropathol. Exp. Neurol. 2017;76:562–570. doi: 10.1093/jnen/nlx042.
    1. Zhang J., Wu G., Miller C.P., Tatevossian R.G., Dalton J.D., Tang B., Orisme W., Punchihewa C., Parker M., Qaddoumi I., et al. Whole-Genome Sequencing Identifies Genetic Alterations in Pediatric Low-Grade Gliomas. Nat. Genet. 2013;45:602–612.
    1. Helgager J., Lidov H.G., Mahadevan N.R., Kieran M.W., Ligon K.L., Alexandrescu S. A Novel GIT2-BRAF Fusion in Pilocytic Astrocytoma. Diagn. Pathol. 2017;12:82. doi: 10.1186/s13000-017-0669-5.
    1. Hsiao S.J., Karajannis M.A., Diolaiti D., Mansukhani M.M., Bender J.G., Kung A.L., Garvin J.H., Jr. A Novel, Potentially Targetable TMEM106B-BRAF Fusion in Pleomorphic Xanthoastrocytoma. Cold Spring Harb Mol. Case Stud. 2017;3:a001396. doi: 10.1101/mcs.a001396.
    1. Wan P.T., Garnett M.J., Roe S.M., Lee S., Niculescu-Duvaz D., Good V.M., Jones C.M., Marshall C.J., Springer C.J., Barford D., et al. Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell. 2004;116:855–867. doi: 10.1016/S0092-8674(04)00215-6.
    1. Ikenoue T., Hikiba Y., Kanai F., Tanaka Y., Imamura J., Imamura T., Ohta M., Ijichi H., Tateishi K., Kawakami T., et al. Functional Analysis of Mutations within the Kinase Activation Segment of B-Raf in Human Colorectal Tumors. Cancer Res. 2003;63:8132–8137.
    1. Summers M.G., Smith C.G., Maughan T.S., Kaplan R., Escott-Price V., Cheadle J.P. BRAF and NRAS Locus-Specific Variants have Different Outcomes on Survival to Colorectal Cancer. Clin. Cancer Res. 2017;23:2742–2749. doi: 10.1158/1078-0432.CCR-16-1541.
    1. Zheng G., Tseng L.H., Chen G., Haley L., Illei P., Gocke C.D., Eshleman J.R., Lin M.T. Clinical Detection and Categorization of Uncommon and Concomitant Mutations Involving BRAF. BMC Cancer. 2015;15:779. doi: 10.1186/s12885-015-1811-y.
    1. Poulikakos P.I., Zhang C., Bollag G., Shokat K.M., Rosen N. RAF Inhibitors Transactivate RAF Dimers and ERK Signalling in Cells with Wild-Type BRAF. Nature. 2010;464:427–430. doi: 10.1038/nature08902.
    1. Zelboraf [Package Insert] Genentech USA, Inc.; South San Francisco, CA, USA: 2017.
    1. Tafinlar [Package Insert] Novartis Pharmaceuticals Corporation; East Hanover, NJ, USA: 2018.
    1. Braftovi [Package Insert] Array BioPharma Inc.; Boulder, CO, USA: 2019.
    1. Nicolaides T.P., Li H., Solomon D.A., Hariono S., Hashizume R., Barkovich K., Baker S.J., Paugh B.S., Jones C., Forshew T., et al. Targeted Therapy for BRAFV600E Malignant Astrocytoma. Clin. Cancer Res. 2011;17:7595–7604. doi: 10.1158/1078-0432.CCR-11-1456.
    1. Heidorn S.J., Milagre C., Whittaker S., Nourry A., Niculescu-Duvas I., Dhomen N., Hussain J., Reis-Filho J.S., Springer C.J., Pritchard C., et al. Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF. Cell. 2010;140:209–221. doi: 10.1016/j.cell.2009.12.040.
    1. Hatzivassiliou G., Song K., Yen I., Brandhuber B.J., Anderson D.J., Alvarado R., Ludlam M.J., Stokoe D., Gloor S.L., Vigers G., et al. RAF Inhibitors Prime Wild-Type RAF to Activate the MAPK Pathway and Enhance Growth. Nature. 2010;464:431–435. doi: 10.1038/nature08833.
    1. Karajannis M.A., Legault G., Fisher M.J., Milla S.S., Cohen K.J., Wisoff J.H., Harter D.H., Goldberg J.D., Hochman T., Merkelson A., et al. Phase II Study of Sorafenib in Children with Recurrent Or Progressive Low-Grade Astrocytomas. Neuro Oncol. 2014;16:1408–1416. doi: 10.1093/neuonc/nou059.
    1. Zhang C., Spevak W., Zhang Y., Burton E.A., Ma Y., Habets G., Zhang J., Lin J., Ewing T., Matusow B., et al. RAF Inhibitors that Evade Paradoxical MAPK Pathway Activation. Nature. 2015;526:583–586. doi: 10.1038/nature14982.
    1. Jin T., Lavoie H., Sahmi M., David M., Hilt C., Hammell A., Therrien M. RAF Inhibitors Promote RAS-RAF Interaction by Allosterically Disrupting RAF Autoinhibition. Nat. Commun. 2017;8:1211. doi: 10.1038/s41467-017-01274-0.
    1. Okimoto R.A., Lin L., Olivas V., Chan E., Markegard E., Rymar A., Neel D., Chen X., Hemmati G., Bollag G., et al. Preclinical Efficacy of a RAF Inhibitor that Evades Paradoxical MAPK Pathway Activation in Protein Kinase BRAF-Mutant Lung Cancer. Proc. Natl. Acad. Sci. USA. 2016;113:13456–13461. doi: 10.1073/pnas.1610456113.
    1. Basile K.J., Le K., Hartsough E.J., Aplin A.E. Inhibition of Mutant BRAF Splice Variant Signaling by Next-Generation, Selective RAF Inhibitors. Pigment Cell. Melanoma Res. 2014;27:479–484. doi: 10.1111/pcmr.12218.
    1. Yao Z., Gao Y., Su W., Yaeger R., Tao J., Na N., Zhang Y., Zhang C., Rymar A., Tao A., et al. RAF Inhibitor PLX8394 Selectively Disrupts BRAF Dimers and RAS-Independent BRAF-Mutant-Driven Signaling. Nat. Med. 2019;25:284–291. doi: 10.1038/s41591-018-0274-5.
    1. Hong D.S., Hollebecque A., Gordon M.S., Flaherty K.T., Shapiro G., Rodon J., Millward M., Ramdas N., Zhang W., Gao L., et al. A First-in-Human Dose Phase 1 Study of LY3009120 in Advanced Cancer Patients. JCO. 2017;35:2507. doi: 10.1200/JCO.2017.35.15_suppl.2507.
    1. Girotti M.R., Lopes F., Preece N., Niculescu-Duvaz D., Zambon A., Davies L., Whittaker S., Saturno G., Viros A., Pedersen M., et al. Paradox-Breaking RAF Inhibitors that also Target SRC are Effective in Drug-Resistant BRAF Mutant Melanoma. Cancer. Cell. 2015;27:85–96. doi: 10.1016/j.ccell.2014.11.006.
    1. Wang J., Yao Z., Jonsson P., Allen A.N., Qin A.C.R., Uddin S., Dunkel I.J., Petriccione M., Manova K., Haque S., et al. A Secondary Mutation in BRAF Confers Resistance to RAF Inhibition in a BRAF V600E-Mutant Brain Tumor. Cancer. Discov. 2018;8:1130–1141. doi: 10.1158/-17-1263.
    1. Flaherty K.T., Robert C., Hersey P., Nathan P., Garbe C., Milhem M., Demidov L.V., Hassel J.C., Rutkowski P., Mohr P., et al. Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma. N. Engl. J. Med. 2012;367:107–114. doi: 10.1056/NEJMoa1203421.
    1. Fangusaro J., Onar-Thomas A., Young Poussaint T., Wu S., Ligon A.H., Lindeman N., Banerjee A., Packer R.J., Kilburn L.B., Goldman S., et al. Selumetinib in Paediatric Patients with BRAF-Aberrant Or Neurofibromatosis Type 1-Associated Recurrent, Refractory, Or Progressive Low-Grade Glioma: A Multicentre, Phase 2 Trial. Lancet Oncol. 2019;20:1011–1022. doi: 10.1016/S1470-2045(19)30277-3.
    1. Robison N., Pauly J., Malvar J., Gruber-Filbin M., de Mola R.L., Dorris K., Bendel A., Bowers D., Bornhorst M., Gauvain K., et al. LGG-44. A phase I dose escalation trial of the MEK1/2 inhibitor MEK162 (binimetinib) in children with low-grade gliomas and other Ras/Raf pathway-activated tumors. Neuro-Oncology. 2018;20:i114. doi: 10.1093/neuonc/noy059.385.
    1. Sullivan R.J., Infante J.R., Janku F., Wong D.J.L., Sosman J.A., Keedy V., Patel M.R., Shapiro G.I., Mier J.W., Tolcher A.W., et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer. Discov. 2018;8:184–195. doi: 10.1158/-17-1119.
    1. Johnson A., Severson E., Gay L., Vergilio J.A., Elvin J., Suh J., Daniel S., Covert M., Frampton G.M., Hsu S., et al. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist. 2017;22:1478–1490. doi: 10.1634/theoncologist.2017-0242.
    1. Becker A.P., Scapulatempo-Neto C., Carloni A.C., Paulino A., Sheren J., Aisner D.L., Musselwhite E., Clara C., Machado H.R., Oliveira R.S., et al. KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations are Prognostic Factors in Pilocytic Astrocytomas. J. Neuropathol. Exp. Neurol. 2015;74:743–754. doi: 10.1097/NEN.0000000000000213.
    1. Hawkins C., Walker E., Mohamed N., Zhang C., Jacob K., Shirinian M., Alon N., Kahn D., Fried I., Scheinemann K., et al. BRAF-KIAA1549 Fusion Predicts Better Clinical Outcome in Pediatric Low-Grade Astrocytoma. Clin. Cancer Res. 2011;17:4790–4798. doi: 10.1158/1078-0432.CCR-11-0034.
    1. Lassaletta A., Zapotocky M., Mistry M., Ramaswamy V., Honnorat M., Krishnatry R., Guerreiro Stucklin A., Zhukova N., Arnoldo A., Ryall S., et al. Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. J. Clin. Oncol. 2017;35:2934. doi: 10.1200/JCO.2016.71.8726.
    1. Drobysheva A., Klesse L.J., Bowers D.C., Rajaram V., Rakheja D., Timmons C.F., Wang J., Koral K., Gargan L., Ramos E., et al. Targeted MAPK Pathway Inhibitors in Patients with Disseminated Pilocytic Astrocytomas. J. Natl. Compr. Cancer Netw. 2017;15:978–982. doi: 10.6004/jnccn.2017.0139.
    1. Ho C.Y., Mobley B.C., Gordish-Dressman H., VandenBussche C.J., Mason G.E., Bornhorst M., Esbenshade A.J., Tehrani M., Orr B.A., LaFrance D.R., et al. A Clinicopathologic Study of Diencephalic Pediatric Low-Grade Gliomas with BRAF V600 Mutation. Acta Neuropathol. 2015;130:575–585. doi: 10.1007/s00401-015-1467-3.
    1. Kieran M.W., Bouffet E., Tabori U., Broniscer A., Cohen K., Hansford J., Geoerger B., Hingorani P., Dunkel I., Russo M., et al. The First Study of Dabrafenib in Pediatric Patients with BRAF V600-Mutant Relapsed or Refractory Low-Grade Gliomas. Ann. Oncol. 2016;27:vi552–vi587. doi: 10.1093/annonc/mdw435.09.
    1. Banerjee A., Jakacki R.I., Onar-Thomas A., Wu S., Nicolaides T., Young Poussaint T., Fangusaro J., Phillips J., Perry A., Turner D., et al. A Phase I Trial of the MEK Inhibitor Selumetinib (AZD6244) in Pediatric Patients with Recurrent or Refractory Low-Grade Glioma: A Pediatric Brain Tumor Consortium (PBTC) Study. Neuro Oncol. 2017;19:1135–1144. doi: 10.1093/neuonc/now282.
    1. Korshunov A., Ryzhova M., Hovestadt V., Bender S., Sturm D., Capper D., Meyer J., Schrimpf D., Kool M., Northcott P.A., et al. Integrated Analysis of Pediatric Glioblastoma Reveals a Subset of Biologically Favorable Tumors with Associated Molecular Prognostic Markers. Acta Neuropathol. 2015;129:669–678. doi: 10.1007/s00401-015-1405-4.
    1. Ballester L.Y., Fuller G.N., Powell S.Z., Sulman E.P., Patel K.P., Luthra R., Routbort M.J. Retrospective Analysis of Molecular and Immunohistochemical Characterization of 381 Primary Brain Tumors. J. Neuropathol. Exp. Neurol. 2017;76:179–188. doi: 10.1093/jnen/nlw119.
    1. Wen P., Alexander S., Yung-Jue B., van den Bent M.J., Gazzah A., Dietrich S., de Vos F., van Linde M.E., Lai A., Chi A., et al. Efficacy and Safety of Dabrafenib + Trametinib in Patients with recurrent/refractory BRAF V60E-Mutated High-Grade Glioma (HGG) Neuro Oncol. 2018;20:vi238.
    1. Pages M., Beccaria K., Boddaert N., Saffroy R., Besnard A., Castel D., Fina F., Barets D., Barret E., Lacroix L., et al. Co-Occurrence of Histone H3 K27M and BRAF V600E Mutations in Paediatric Midline Grade I Ganglioglioma. Brain Pathol. 2018;28:103–111. doi: 10.1111/bpa.12473.
    1. Meletath S.K., Pavlick D., Brennan T., Hamilton R., Chmielecki J., Elvin J.A., Palma N., Ross J.S., Miller V.A., Stephens P.J., et al. Personalized Treatment for a Patient with a BRAF V600E Mutation using Dabrafenib and a Tumor Treatment Fields Device in a High-Grade Glioma Arising from Ganglioglioma. J. Natl. Compr. Cancer Netw. 2016;14:1345–1350. doi: 10.6004/jnccn.2016.0145.
    1. Touat M., Gratieux J., Condette Auliac S., Sejean K., Aldea S., Savatovsky J., Perkins G., Blons H., Ligon K.L., Idbaih A., et al. Vemurafenib and Cobimetinib Overcome Resistance to Vemurafenib in BRAF-Mutant Ganglioglioma. Neurology. 2018;91:523–525. doi: 10.1212/WNL.0000000000006171.
    1. Garnier L., Ducray F., Verlut C., Mihai M.I., Cattin F., Petit A., Curtit E. Prolonged Response Induced by Single Agent Vemurafenib in a BRAF V600E Spinal Ganglioglioma: A Case Report and Review of the Literature. Front. Oncol. 2019;9:177. doi: 10.3389/fonc.2019.00177.
    1. Bautista F., Paci A., Minard-Colin V., Dufour C., Grill J., Lacroix L., Varlet P., Valteau-Couanet D., Geoerger B. Vemurafenib in Pediatric Patients with BRAFV600E Mutated High-Grade Gliomas. Pediatr. Blood Cancer. 2014;61:1101–1103. doi: 10.1002/pbc.24891.
    1. del Bufalo F., Carai A., Figa-Talamanca L., Pettorini B., Mallucci C., Giangaspero F., Antonelli M., Badiali M., Moi L., Bianco G., et al. Response of Recurrent BRAFV600E Mutated Ganglioglioma to Vemurafenib as Single Agent. J. Transl. Med. 2014;12:356. doi: 10.1186/s12967-014-0356-1.
    1. Rush S., Foreman N., Liu A. Brainstem Ganglioglioma Successfully Treated with Vemurafenib. J. Clin. Oncol. 2013;31:e159–e160. doi: 10.1200/JCO.2012.44.1568.
    1. Aguilera D., Janss A., Mazewski C., Castellino R.C., Schniederjan M., Hayes L., Brahma B., Fogelgren L., MacDonald T.J. Successful Retreatment of a Child with a Refractory Brainstem Ganglioglioma with Vemurafenib. Pediatr. Blood Cancer. 2016;63:541–543. doi: 10.1002/pbc.25787.
    1. Beland B., Tsang R.Y., Sutherland G. Unprecedented Response to Combination BRAF and MEK Inhibitors in Adult Anaplastic Ganglioglioma. J. Neurooncol. 2018;137:667–669. doi: 10.1007/s11060-018-2760-5.
    1. Toll S.A., Tran H.N., Cotter J., Judkins A.R., Tamrazi B., Biegel J.A., Dhall G., Robison N.J., Waters K., Patel P., et al. Sustained Response of Three Pediatric BRAF(V600E) Mutated High-Grade Gliomas to Combined BRAF and MEK Inhibitor Therapy. Oncotarget. 2019;10:551–557. doi: 10.18632/oncotarget.26560.
    1. Marks A.M., Bindra R.S., DiLuna M.L., Huttner A., Jairam V., Kahle K.T., Kieran M.W. Response to the BRAF/MEK Inhibitors dabrafenib/trametinib in an Adolescent with a BRAF V600E Mutated Anaplastic Ganglioglioma Intolerant to Vemurafenib. Pediatr. Blood Cancer. 2018;65:e26969. doi: 10.1002/pbc.26969.
    1. Kumar A., Pathak P., Purkait S., Faruq M., Jha P., Mallick S., Suri V., Sharma M.C., Suri A., Sarkar C. Oncogenic KIAA1549-BRAF Fusion with Activation of the MAPK/ERK Pathway in Pediatric Oligodendrogliomas. Cancer Genet. 2015;208:91–95. doi: 10.1016/j.cancergen.2015.01.009.
    1. Mistry M., Zhukova N., Merico D., Rakopoulos P., Krishnatry R., Shago M., Stavropoulos J., Alon N., Pole J.D., Ray P.N., et al. BRAF Mutation and CDKN2A Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma. J. Clin. Oncol. 2015;33:1015–1022. doi: 10.1200/JCO.2014.58.3922.
    1. Del Bufalo F., Ceglie G., Cacchione A., Alessi I., Colafati G.S., Carai A., Diomedi-Camassei F., De Billy E., Agolini E., Mastronuzzi A., et al. BRAF V600E Inhibitor (Vemurafenib) for BRAF V600E Mutated Low Grade Gliomas. Front. Oncol. 2018;8:526. doi: 10.3389/fonc.2018.00526.
    1. Vuong H.G., Altibi A.M.A., Duong U.N.P., Ngo H.T.T., Pham T.Q., Fung K.M., Hassell L. BRAF Mutation is Associated with an Improved Survival in Glioma-a Systematic Review and Meta-Analysis. Mol. Neurobiol. 2017;55:3718–3724. doi: 10.1007/s12035-017-0599-y.
    1. Ferguson S.D., Xiu J., Weathers S.P., Zhou S., Kesari S., Weiss S.E., Verhaak R.G., Hohl R.J., Barger G.R., Reddy S.K., et al. GBM-Associated Mutations and Altered Protein Expression are More Common in Young Patients. Oncotarget. 2016;7:69466–69478. doi: 10.18632/oncotarget.11617.
    1. Zhang R.Q., Shi Z., Chen H., Chung N.Y., Yin Z., Li K.K., Chan D.T., Poon W.S., Wu J., Zhou L., et al. Biomarker-Based Prognostic Stratification of Young Adult Glioblastoma. Oncotarget. 2016;7:5030–5041. doi: 10.18632/oncotarget.5456.
    1. Schreck K., Vera E., Aboud O., Acquaye A., Boris L., Briceno N., Brown M., Chung H., Crandon S., Garren N., et al. PATH-28. The natural history of braf v600e-mutated glioblastomas in adults. Neuro-Oncology. 2018;20:vi164. doi: 10.1093/neuonc/noy148.684.
    1. Chamberlain M.C. Salvage Therapy with BRAF Inhibitors for Recurrent Pleomorphic Xanthoastrocytoma: A Retrospective Case Series. J. Neurooncol. 2013;114:237–240. doi: 10.1007/s11060-013-1176-5.
    1. Ida C.M., Rodriguez F.J., Burger P.C., Caron A.A., Jenkins S.M., Spears G.M., Aranguren D.L., Lachance D.H., Giannini C. Pleomorphic Xanthoastrocytoma: Natural History and Long-Term Follow-Up. Brain Pathol. 2015;25:575–586. doi: 10.1111/bpa.12217.
    1. Tabouret E., Bequet C., Denicolai E., Barrie M., Nanni I., Metellus P., Dufour H., Chinot O., Figarella-Branger D. BRAF Mutation and Anaplasia may be Predictive Factors of Progression-Free Survival in Adult Pleomorphic Xanthoastrocytoma. Eur. J. Surg. Oncol. 2015;41:1685–1690. doi: 10.1016/j.ejso.2015.09.012.
    1. Usubalieva A., Pierson C.R., Kavran C.A., Huntoon K., Kryvenko O.N., Mayer T.G., Zhao W., Rock J., Ammirati M., Puduvalli V.K., et al. Primary Meningeal Pleomorphic Xanthoastrocytoma with Anaplastic Features: A Report of 2 Cases, One with BRAF(V600E) Mutation and Clinical Response to the BRAF Inhibitor Dabrafenib. J. Neuropathol. Exp. Neurol. 2015;74:960–969. doi: 10.1097/NEN.0000000000000240.
    1. Lee E.Q., Ruland S., LeBoeuf N.R., Wen P.Y., Santagata S. Successful Treatment of a Progressive BRAF V600E-Mutated Anaplastic Pleomorphic Xanthoastrocytoma with Vemurafenib Monotherapy. J. Clin. Oncol. 2016;34:e87–e89. doi: 10.1200/JCO.2013.51.1766.
    1. Leaver K.M., Zhang N., Ziskin J.L., Vogel H., Recht L., Thomas R.P. Response of Metastatic Glioma to Vemurafenib. Neuro-Oncol. Pract. 2016;3:268–271. doi: 10.1093/nop/npv054.
    1. Burger M.C., Ronellenfitsch M.W., Lorenz N.I., Wagner M., Voss M., Capper D., Tzaridis T., Herrlinger U., Steinbach J.P., Stoffels G., et al. Dabrafenib in Patients with Recurrent, BRAF V600E Mutated Malignant Glioma and Leptomeningeal Disease. Oncol. Rep. 2017;38:3291–3296. doi: 10.1093/neuonc/nox168.877.
    1. Dahiya S., Haydon D.H., Alvarado D., Gurnett C.A., Gutmann D.H., Leonard J.R. BRAF(V600E) Mutation is a Negative Prognosticator in Pediatric Ganglioglioma. Acta Neuropathol. 2013;125:901–910. doi: 10.1007/s00401-013-1120-y.
    1. Louis D.N., Giannini C., Capper D., Paulus W., Figarella-Branger D., Lopes M.B., Batchelor T.T., Cairncross J.G., van den Bent M., Wick W., et al. CIMPACT-NOW Update 2: Diagnostic Clarifications for Diffuse Midline Glioma, H3 K27M-Mutant and Diffuse astrocytoma/anaplastic Astrocytoma, IDH-Mutant. Acta Neuropathol. 2018;135:639–642. doi: 10.1007/s00401-018-1826-y.
    1. Brastianos P.K., Shankar G.M., Gill C.M., Taylor-Weiner A., Nayyar N., Panka D.J., Sullivan R.J., Frederick D.T., Abedalthagafi M., Jones P.S., et al. Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy. J. Natl. Cancer Inst. 2015;108 doi: 10.1093/jnci/djv310.
    1. Aylwin S.J., Bodi I., Beaney R. Pronounced Response of Papillary Craniopharyngioma to Treatment with Vemurafenib, a BRAF Inhibitor. Pituitary. 2016;19:544–546. doi: 10.1007/s11102-015-0663-4.
    1. Himes B.T., Ruff M.W., Van Gompel J.J., Park S.S., Galanis E., Kaufmann T.J., Uhm J.H. Recurrent Papillary Craniopharyngioma with BRAF V600E Mutation Treated with Dabrafenib: Case Report. J. Neurosurg. 2018;130:1299–1303.
    1. Rostami E., Witt Nystrom P., Libard S., Wikstrom J., Casar-Borota O., Gudjonsson O. Recurrent Papillary Craniopharyngioma with BRAFV600E Mutation Treated with Neoadjuvant-Targeted Therapy. Acta Neurochir. 2017;159:2217–2221. doi: 10.1007/s00701-017-3311-0.
    1. Roque A., Odia Y. BRAF-V600E Mutant Papillary Craniopharyngioma Dramatically Responds to Combination BRAF and MEK Inhibitors. CNS Oncol. 2017;6:95–99. doi: 10.2217/cns-2016-0034.
    1. Montero-Conde C., Ruiz-Llorente S., Dominguez J.M., Knauf J.A., Viale A., Sherman E.J., Ryder M., Ghossein R.A., Rosen N., Fagin J.A. Relief of Feedback Inhibition of HER3 Transcription by RAF and MEK Inhibitors Attenuates their Antitumor Effects in BRAF-Mutant Thyroid Carcinomas. Cancer. Discov. 2013;3:520–533. doi: 10.1158/-12-0531.
    1. Prahallad A., Sun C., Huang S., Di Nicolantonio F., Salazar R., Zecchin D., Beijersbergen R.L., Bardelli A., Bernards R. Unresponsiveness of Colon Cancer to BRAF(V600E) Inhibition through Feedback Activation of EGFR. Nature. 2012;483:100–103. doi: 10.1038/nature10868.
    1. Nazarian R., Shi H., Wang Q., Kong X., Koya R.C., Lee H., Chen Z., Lee M.K., Attar N., Sazegar H., et al. Melanomas Acquire Resistance to B-RAF(V600E) Inhibition by RTK or N-RAS Upregulation. Nature. 2010;468:973–977. doi: 10.1038/nature09626.
    1. Nissan M.H., Pratilas C.A., Jones A.M., Ramirez R., Won H., Liu C., Tiwari S., Kong L., Hanrahan A.J., Yao Z., et al. Loss of NF1 in Cutaneous Melanoma is Associated with RAS Activation and MEK Dependence. Cancer Res. 2014;74:2340–2350. doi: 10.1158/0008-5472.CAN-13-2625.
    1. Poulikakos P.I., Persaud Y., Janakiraman M., Kong X., Ng C., Moriceau G., Shi H., Atefi M., Titz B., Gabay M.T., et al. RAF Inhibitor Resistance is Mediated by Dimerization of Aberrantly Spliced BRAF(V600E) Nature. 2011;480:387–390. doi: 10.1038/nature10662.
    1. Samatar A.A., Poulikakos P.I. Targeting RAS-ERK Signalling in Cancer: Promises and Challenges. Nat. Rev. Drug Discov. 2014;13:928–942. doi: 10.1038/nrd4281.
    1. Lim S.Y., Menzies A.M., Rizos H. Mechanisms and Strategies to Overcome Resistance to Molecularly Targeted Therapy for Melanoma. Cancer. 2017;123:2118–2129. doi: 10.1002/cncr.30435.

Source: PubMed

3
Abonneren